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ALMOST SURE CONVERGENCE FOR ITERATED

FUNCTIONS OF INDEPENDENT RANDOM

VARIABLES

JONATHAN JORDAN

Abstract. We consider a class of probabilistic models obtained

by iterating random functions of k random variables. We prove an

analogue of the weak law of large numbers and under a symmetry

condition we prove a strong law. The symmetry condition is sat-

is�ed if the initial random variables are exchangeable. Our results

can be used to give stronger results than those previously obtained

in the special case where the function is deterministic. Both types

of model have applications in physics and in computer science.

1. Introduction

Let D � (�1;1) be a closed domain and consider a function

f : Dk ! D for some k 2 N :

Now consider a set of i.i.d. random variables fX
(0)
j ; j � 1g = X (0), say,

on some probability space (
;F ;P).

De�ne

X

(1)
j = f(X

(0)
(j�1)k+1; : : : ; X

(0)
jk ) for j � 1:

This gives a sequence X (1) = RX (0) of i.i.d. random variables. We

iterate the map R to get a sequence X (0)
;X (1)

; : : : ;X (n)
; : : : of i.i.d.

sequences, and we are interested in the limiting behaviour.
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This type of model arises naturally in the study of networks of ran-

dom resistors on hierarchical lattices, see for example Schl�osser and

Spohn (1992); Essoh and Bellisard (1989); Schenkel, Wehr and Wittwer

(2000); Wehr (1997); Wehr and Woo (2000). Hierarchical models are

studied in statistical physics because they can often be solved explic-

itly and may provide insight into behaviour on standard lattices. For a

discussion see Stinchcombe and Watson (1976); Bernasconi (1978) and

for studies of some statistical physics models in the hierarchical setting

see Gri�iths and Kaufman (1982); Derrida (1986). Similar models also

occur in other situations arising in physics, such as modelling earth-

quakes and �bre strengths in Newman et. al. (1994). A discussion of

the relationship between classical probability results such as the central

limit theorem and renormalization in physics appears in Jona-Lasinio

(1975). Fluctuation theorems for speci�c models are obtained in Es-

soh and Bellisard (1989); Wehr and Woo (2000); Schenkel, Wehr and

Wittwer (2000).

An application to computer science is the study of the biased coin

problem considered in Alon and Rabin (1989); Boppana and Narayanan

(1993). Furthermore, the model analysed similarly in Alon and Naor

(1993); Boppana and Narayanan (1993, 2000) to study collective coin-


ipping and leader-election protocols is an example of the randomized

hierarchical models also considered in this paper.

In the case where the function is continuous, de�ned on D = [0; 1],

concave, positively homogeneous and increasing, convergence in prob-

ability to a constant is proved in Shneiberg (1986). For one particular

function obtained by considering a speci�c lattice, almost sure con-

vergence to a constant is proved in Essoh and Bellisard (1989). The

most general result to date is due to Li and Rogers (1999) who at

each level n of the renormalization considered a (deterministic) func-

tion fn of kn variables. They assumed that the initial sequence of

random variables was stationary and m-dependent, i.e. the two col-

lections fX
(0)
1 ; : : : ; X

(0)
n g and fX

(0)
n+m+1; X

(0)
n+m+2; : : : g are independent,

and proved a weak law of large numbers. Under stronger conditions

they proved the following strong law (Theorem 2.1(iii) of Li and Rogers

(1999)).

Theorem 1.1. Suppose that the fn satisfy the subadditive constraint

fn(x1; : : : ; xk) �
1

k

kX
i=1

xi for all (x1; : : : ; xk) 2 D
k
:
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Then if D is bounded below, the fn, n � 1 are symmetric functions of

k(� 2) real variables and X (0) = fX
(0)
j ; j � 1g is a sequence of i.i.d.

random variables such that

E jX
(0)
1 j <1;

then for some � 2 D,

lim
n!1

X

(n)
1 = � a.s.

We will develop a randomized version of the problem and extend the

weak law from Li and Rogers (1999) to this setting. In the randomized

setting the symmetry condition needed for the strong law is less rigid

and we can then use this strong law to weaken the conditions of Li

and Rogers (1999) in the non-randomized model, giving the following

result.

Theorem 1.2. (a) If

f(x1; : : : ; xn) �

kX
i=1

�ixi

where the �i are positive constants with �i < 1 for each i,
Pk

i=1 �i = 1

and

E

�
jX

(0)
1 j(L(jX

(0)
1 j))Æ

�
<1

where

Æ > 1 and L(x) = maxf1; logxg;

then there exists � 2 D with

X

(n)
1 ! � a.s.

(b) Further, if �i =
1
k
for all i; then the conclusion holds under the

weaker condition that E jX
(0)
1 j <1.

Part (b) of this was originally claimed in Wehr (1997).

For recent work on this problem in the Banach space setting, see Ham-

bly and O'Connell (2000).
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2. Required lemmas

The following results and their proofs are extensions of Propositon 3.1

of Li and Rogers (1999) to the case with random weights.

A set of random variables fXj : j � 1g is said to be stationary and

m-dependent if for all n the sequence fXn+j : j � 1g has the same

distribution as fXj : j � 1g and the collections

fX1; : : : ; Xng and fXn+m+1; Xn+m+2; : : : g

are independent.

Lemma 2.1. Let fXn;n � 1g be a sequence of stationary and m-
dependent random variables on a probability space (
;F ;P) and fan;k; k �
1; n � 1g an array of non-negative real random variables on the same
probability space independent of fXn;n � 1g such that, for all ! 2 
,X

k�1

an;k = 1 for n � 1:

If

sup
!2


sup
k�1

an;k ! 0 as n!1

and

E (X1 _ 0) <1;

then for each n � 1,
P

k�1 an;kXk is a well-de�ned [�1;1)-valued
random variable with

E

 X
k�1

an;kXk

!
= EX1

and X
k�1

an;kXk !p EX1 :

Proof. We de�ne the �-algebra Gn = �(an;k; k � 1): By conditioning

on Gn it is obvious that

E

 X
k�1

an;kXk

!
= EX1 :

For the second part, �rst assume that E (X1 ^0) > �1. Then we know

that

E jX1 j <1
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from the hypothesis that E (X1 _ 0) <1. Given � > 0 we choose � > 0

such that

E (jX1 jIfjX1j��g) �
�
2

2
:

Now, for j � 1, de�ne the following two random variables:

Yj(�) = XjIfjX1j��g � E (Xj IfjX1j��g);

Zj(�) = Xj � EX1 � Yj(�):

Then because
P

k�1 an;k = 1 for all ! 2 
 and all n � 1, we have from

the de�nition of Zj(�),

X
k�1

an;kXk � EX1 =
X
k�1

an;kYk(�) +
X
k�1

an;kZk(�):

Now

P

 �����
X
k�1

an;kZk(�)

����� � �

�����Gn
!

�
1

�

E

 �����
X
k�1

an;kZk(�)

�����
�����Gn
!

�
1

�

X
k�1

an;kE ( jZk(�)jj Gn) :

Now E jZk(�)j < 2E (jX1 jIfjX1j��g) by the de�nition of Zk(�) so we use

properties of conditional expectation to get

P

 �����
X
k�1

an;kZk(�)

����� � �

!
�

2

�

E
�
jX1jIfjX1j>�g

�
� �:
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We now use the stationarity and m-dependence of fXn;n � 1g to get

P

 �����
X
k�1

an;kYk(�)

����� � �

�����Gn
!

�
1

�
2
Var

 X
k�1

an;kYk(�)

�����Gn
!

=
1

�
2

 X
k�1

a
2
n;k Var(Yk(�)jGn)

+2
X

1�i�j�m

an;ian;j Cov(Yi(�); Yj(�)j Gn)

!

�
1

�
2
(m + 1)

X
k�1

a
2
n;k Var(Yk(�)j Gn)

�
2(m + 1)� 2

�
2

sup
k�1

an;k

X
k�1

an;k

=
2(m + 1)� 2

�
2

sup
k�1

an;k:

Now remove the conditioning and use the condition on the an;k to

obtain

P

 �����
X
k�1

an;kYk(�)

����� � �

!
! 0 as n!1:

Hence

lim supP

 
j
X
k�1

an;kXk � EX1 j � 2�

!
� �;

from which we can deduce the result, when E (X1 ^ 0) > �1. If

E (X1 ^ 0) = �1, for each M > 0, we truncate and apply the previous

argument to XkIfXk��Mg as in Li and Rogers (1999).

Lemma 2.2. With the same framework as Lemma 2.1, and further
that

�
�1
n :=

X
k�1

a
2
n;k � cb

�n for all n � 1; ! 2 


for some constants b > 1 and c > 0, and

E (jX1 j(L(jX1j))
Æ) <1

for some Æ > 1, where L(x) := log(maxfe; xg), then

X
n�1

P

 �����
X
k�1

an;kXk � EX1

����� � �

!
<1; for all � > 0
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and hence (via Borel-Cantelli) we have that

lim
n!1

X
k�1

an;kXk = EX1 a.s.

Proof. By subtracting EX1 from the initial random variables, we can

assume EX1 = 0.

For each n � 1, de�ne the following random variables:

Un =
X
k�1

an;kXkIfjXkj��ng;

Vn =
X
k�1

an;kXkIfjXkj>�ng;

and de�ne G = �(an;k;n � 1; k � 1). Now

X
n�1

P ( jVn � E (Vn jG)j � �j G) �
1

�

X
n�1

E ( jVn � E (Vn jG)jj G)

=
1

�

X
n�1

E
�
jX1IfjX1j>�ng � E (X1IfjX1j>�ngjG)j

��G�
by the de�nition of Vn:

�
2

�

X
n�1

E
�
jX1IfjX1j>�ngj

��G�
by the triangle and Jensen's inequalities.

Now remove the conditioning to get

X
n�1

P(jVn � EVn j � �) �
2

�

X
n�1

E (jX1 jIfjX1j>bn=cg))

�
2

�

1X
n=1

1X
j=n

b
j+1

c

P(bj=c < jX1j < b
j+1

=c)

�
2

�

1X
j=n

jb
j+1

c

P(bj < jcX1j < b
j+1)

�
2b

� log b
E (jX1 jL(jcX1j))

< 1:
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Now we use variance and covariance arguments again to get

P(jUn � E (Un jG)j � �jG) �
1

�
2
Var(Unj G)

�
m + 1

�
2

X
k�1

a
2
n;k Var(X1IfjX1j��ng

��G)
�

m + 1

�
2

�
�1
n Var(X1IfjX1j��ng

��G):
Now remove the conditioning to getX
n�1

P(jUn � EUn j � �) �
m+ 1

�
2

X
n�1

cb
�nVar(X1IfjX1j�bn=cg)

�
m+ 1

�
2

X
n�1

cb
�n
E (X2

1 IfjX1j�bn=cg)

=
m+ 1

�
2

X
n�1

cb
�n(

b
n

c

O(
1

(L( b
n

c
))Æ

)E (jX1 j(L(jX1j))
Æ))

=
X
n�1

O(
1

n
Æ
)

< 1:

Combining the results for Un and Vn we can now use the Borel-Cantelli

Lemma to get the result.

3. The randomized model

We let X (0) = fX
(0)
j ; j � 1g be a sequence of independent identically

distributed random variables with P(X(0) 2 D) = 1 for some closed

domain D � R. We de�ne � = inffx : x 2 Dg. (Note that � may be

�1 but otherwise � 2 D.)

Now let Z
(n)
j ; j � 1; n � 1 be a set of independent (of each other and

of X (0)) and identically distributed random variables taking values in

some measurable space R. For each r 2 R let fr : D
k ! D be a real

measurable function of k variables, where k is a �xed integer, k > 1.

We now de�ne a sequence fX (n);n � 0g by

X

(n)
j = f

Z
(n)
j

(X
(n�1)
(k�1)j+1; X

(n�1)
(k�1)j+2; : : : ; X

(n�1)
kj );

X (n) = RX (n�1) = fX
(n)
j ; j � 1g:
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A model of this type, with R = f1; 2g, f1(x1; x2) =
x1+x2

2
, f2(x1; x2) =

minfx1; x2g, is discussed in Alon and Naor (1993); Boppana and Nara-

yanan (1993, 2000) in connection with a `collective coin-
ipping proto-

col' and a `leader election protocol'.

De�ne �-algebras Fn = �(X
(j)
i ; 0 � j � n; i � 1) and Gn = �(Z

(n)
i ; i �

1).

The following result is based on Theorem 2.1(i) of Li and Rogers (1999)

and the proof is largely the same except for the use of conditional

expectation.

Theorem 3.1. Suppose that we have non-negative constants �i;r; 1 �

i � k; r 2 R, such that

kX
i=1

�i;r = 1 for all r and �i;r � A for all i; r and some constant A < 1:

Further suppose that for all r 2 R, we have the subadditivity constraint

fr(x1; x2; : : : ; xk) �

kX
i=1

�i;rxi:

If

E (X
(0)
1 ^ 0) <1;

then for some � 2 D [ f�g,

EX
(n)
1 # � as n!1 and X

(n)
1 !p �:

Proof. De�ne

g

(n)
j (x1; : : : ; xk) =

kX
i=1

�
i;Z

(n)

j

xi

and

h

(n)
j (x1; : : : ; xkn) = g

(n)
j (h

(n�1)
(j�1)k+1(x1; : : : ; xkn�1);

h

(n�1)
(j�1)k+2(xkn�1+1; : : : ; x2kn�1); : : : ;

h

(n�1)
jk (x(k�1)kn�1+1; : : : ; xkn))

where h
(0)
j (x) = x for all j:

Note that

h

(n)
j (x1; : : : ; xkn) =

knX
i=1

d

(n)
i;j xi
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where d
(n)
i;j = �

p;Z
(n)
j

d

(n�1)
q;(j�1)k+q where i = (p�1)kn�1+ q with 1 � p � k

and 1 � q � k
n�1. Inductively, we see that maxi d

(n)
i;1 � A

n ! 0 as n!

1. This allows us to use Lemma 2.1 (with an;i = d

(n)
i;1 ) to give

knX
i=1

d

(n)
i;1X

(0)
i !p EX

(0)
1 : (1)

Now

E (X
(n)
1 jFn�1;Gn) = f

Z
(n)
1

(X
(n�1)
1 ; : : : ; X

(n�1)
k )

�

kX
i=1

�
i;Z

(n)
1

X

(n�1)
i

and using properties of conditional expectation and the i.i.d. property

of X (n�1) we have

E (X
(n)
1 jGn) �

kX
i=1

�
i;Z

(n)
1

E (X
(n�1)
i jGn)

= E (X
(n�1)
1 jGn)

butX
(n�1)
1 is independent of Gn so that EX

(n)
1 ; n � 1 is a non-increasing

sequence of real numbers, hence there exists � 2 [�1;1) such that

EX
(n)
1 # � as n!1: (2)

Then if EX
(0)
1 = �1 we have, using (1) that X

(n)
1 !p �1 and if

E jX
(0)
1 j <1 then

lim
n!1

P(X
(n)
1 � EX

(0)
1 + �) = 0:

Further,

X

(n)
1 I

fX
(n)
1 �EX

(0)
1 +�g

�

knX
i=1

dn;ijX
(0)
i jI

f

Pkn

i=1 dn;iX
(0)

i �EX
(0)
1 +�g

;

and for every M > 0,

E (

knX
i=1

dn;ijX
(0)
i jI

f

Pkn

i=1 dn;iX
(0)

i �EX
(0)

1 +�g
)

�MP(

knX
i=1

dn;iX
(0)
i � EX

(0)
1 + �)+E (

knX
i=1

dn;ijX
(0)
i jI

f

Pkn

i=1 dn;ijX
(0)

i j�Mg
)
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which with E jX
(0)
1 j <1 implies that

lim
n!1

E (X
(n)
1 I

fX
(n)
1 �EX

(0)
1 +�g

) = 0: (3)

Now we repeat these arguments but starting with X (n0) instead of with

X (0). The conditions on X (0) imply that E (X
(n0 )
1 ^0) <1 so they apply

to X (n0) as well. So if for any n0, EX
(n0 )
1 = �1 then X

(n)
1 !p �1

and if E jX
(n0 )
1 j <1 then

lim
n!1

P(X
(n)
1 � EX

(n0 )
1 + �) = 0

and

lim
n!1

E (X
(n)
1 I

fX
(n)
1 �EX

(n0 )

1 +�g
) = 0: (4)

So if � = �1 then we have

X

(n)
1 !p �1

and if � > �1, for all � > 0,

lim
n!1

P(X
(n)
1 � �+ �) = 0

and

lim
n!1

E (X
(n)
1 I

fX
(n)
1 ��+�g

) = 0: (5)

If � > �1 then

E (X
(n)
1 � �) = E

�
(X

(n)
1 � �)I

fX
(n)
1 ��+�0g

�
+ E

�
(X

(n)
1 � �)I

fX
(n)
1 ����g

�
+ E

�
(X

(n)
1 � �)I

f���<X
(n)
1 <�+�0g

�
;

so using (2) and (5) gives that

0 � lim
n!1

E

�
(X

(n)
1 � �)I

fX
(n)
1 ����g

�
= � lim

n!1

E

�
(X

(n)
1 � �)I

f���<X
(n)
1 <�+�0g

�
� ��0

for all �0 > 0. Hence

lim
n!1

E

�
(X

(n)
1 � �)I

fX
(n)
1 ����g

�
= 0 (6)

and (5) and (6) give the result

X

(n)
1 !p � as n!1:

As in Li and Rogers (1999), the proof �nishes by taking an a.s.-conv-

ergent subsequence to obtain � 2 D [ f�g.
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The next result is based on Theorem 2.1(ii) of Li and Rogers (1999)

and gives a form of strong law, but only for the lim sup. Again the

proof is based on that in Li and Rogers (1999).

Lemma 3.2. With the hypotheses of Theorem 3.1 and additionally if
D is bounded below and we have

E (jX
(0)
1 j(L(jX

(0)
1 j))Æ) <1

for some Æ > 1 then for some � 2 D the conclusion of Theorem 3.1
holds and additionally

lim sup
n!1

X

(n)
1 = � almost surely.

Proof. With the hypotheses of Theorem 3.1 holding, we know that

X

(n)
1 !p � for some � 2 D [ f�g. However D is closed and bounded

below, so � 2 D, hence � 2 D. There exists a subsequence fnj; j � 1g

such that

lim
j!1

X

(nj)
1 = � a.s.

and hence

lim sup
j!1

X

(nj)
1 � � a.s. (7)

Now X

(n)
1 �

Pkn

i=1 d
(n)
i;1X

(0)
i as before. The condition

Pkn

i=1(d
(n)
i;1 )

2 �

cb
�n(b > 1; c > 0) necessary to apply Lemma 2.2 is easy in our case

(see Example 2.1 of Li and Rogers (1999)). So we have

lim
n!1

knX
i=1

d

(n)
i;1X

(0)
i = EX

(0)
1 a.s.

and hence

lim sup
n!1

X

(n)
1 � EX

(0)
1 a.s. (8)

As in the proof of Theorem 3.1, we now observe that the conditions on

X (0) imply the same conditions on X (n0) for any integer n0 (we need

D to be bounded below here, and also Jensen's inequality). So we can

use identical arguments to those above to obtain

lim sup
n!1

X

(n)
1 � EX

(n0 )
1 a.s. (9)

and letting n0 !1,

lim sup
n!1

X

(n)
1 � � a.s. (10)

Then (7) and (10) give the result.
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The next result is based on Theorem 2.1(iii) of Li and Rogers (1999)

although the symmetry condition is slightly modi�ed. It gives strong-

law convergence in a restricted case.

Lemma 3.3. Assume the hypotheses of Lemma 3.2, and further the
following symmetry conditon:

For all � 2 Sk, the permutation group on k elements, we have

P(f
Z
(n)
i

2 E) = P(f
Z
(n)
i

Æ � 2 E)

for all P-measurable subsets E of measurable functions of k real vari-
ables (i.e. changing the order of the input variables does not alter the

conditional distributions of X (n�1) and X (n)).

Then for some � 2 D, we have

lim
n!1

X

(n)
1 = � a.s.

Further, if �i;r = 1=k for all i; r, then the conclusion holds under the

weaker condition that E jX
(0)
1 j <1.

Proof. The hypotheses of Lemma 3.2 apply so we know that there exists

a � 2 D such that

X

(n)
1 !p �

and

lim supX
(n)
1 = � a.s. (11)

Similarly for every l > 1 we have X
(n)
l !p � and lim supX

(n)
1 = � a.s.

Now set

Y
(n) =

kX
i=1

X

(n)
k :

For n � 0, de�ne �-algebras

F 0

n = �(Y (l); l � n):

Our symmetry condition gives that, for 1 � i � k,

E (X
(n)
(i�1)k+1 + � � �+X

(n)
ik jF

0

n+1) = E (Y (n)jF 0

n+1)

and hence

E (Y (n)jF 0

n+1) =
E (X

(n)
1 + � � �+X

(n)

k2
jF 0

n+1)

k

:
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We note that the symmetry conditon implies that E�
i;Z

(n+1)

j

= 1=k and

further that Z
(n+1)
j is independent of F 0

n+1, and so

E (�
i;Z

(n+1)

j

jF 0

n+1) =
1

k

:

Hence conditioning on the Z

(n+1)
j and using the subadditivity of the

functions will give

E

 
X

(n)
1 + � � �+X

(n)
k

k

�����F 0

n+1

!
� E (X(n+1) jF 0

n+1)

and similarly for the other X
(n+1)
k , giving

E (Y (n)jF 0

n+1) � E (X
(n+1)
1 + � � �+X

(n+1)
k jF 0

n+1)

= Y
(n+1) a.s.

Hence the sequence fY (n);n � 1g is a reversed time submartingale, so

as in Li and Rogers (1999) we can use the convergence theorem and

the convergence in probability to conclude that

lim inf
n!1

X

(n)
1 � � a.s. (12)

Then (11) and (12) give the result.

When �i;r = 1=k we can use the Strong Law of Large Numbers instead

of Lemma 2.2 (as in the proof of Theorem 2.1(iii) of Li and Rogers

(1999)) and so the �nal part of the statement follows.

The following result and its proof are based on Corollary 3.1 of Li and

Rogers (1999).

Corollary 3.4. For any set of random variables ~
X

(n) where ~
X

(n) has

the same distribution as X
(n)
1 for all n,

~
X

(n) ! � a.s.

Proof. For each n � 1, X
(n)
2 is determined by the random variables

fX
(0)
i ; kn + 1 � i � 2kng [ fZ

(j)
i ; 1 � j � n; kn�j + 1 � i � 2kn�jg.

But these sets are independent for di�erent n and so fX
(n)
2 ;n � 0g is

a set of independent random variables. From the proof of Lemma 3.3
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we have that X
(n)
2 ! � a.s. and so by Borel-Cantelli we have that
1X
n=0

P(jX
(n)
2 � �j � �) <1 for all � > 0: (13)

But, for each n, X
(n)
2 and X

(n)
1 are i.i.d. random variables. By the

hypotheses of the corollary, ~
X

(n) has the same distribution as X
(n)
2 and

hence (13) implies that
1X
n=0

P(j ~X(n) � �j � �) <1 for all � > 0;

which, using Borel-Cantelli, gives the result.

We can now use this to strengthen Lemma 3.3 by removing the sym-

metry condition. Theorem 1.2 is a special case of the following:

Theorem 3.5. (a) Under the hypotheses of Lemma 3.2 there exists
� 2 D with

X

(n)
1 ! � a.s.

(b) If �i;r = 1=k for all i; r then the conclusion holds under the weaker

condition that E jX
(0)
1 j <1.

Proof. We de�ne

gr(x1; : : : ; xk) =

kX
i=1

�i;rxi for all (x1; : : : ; xk) 2 D
k
:

Set ~
R = R�Sk where Sk is the kth permutation group. Then, for each

r; �; r 2 R; � 2 Sk, de�ne ~
f(r;�) : D

k ! D by

~
f(r;�)(x1; : : : ; xk) = fr Æ �(x1; : : : ; xk):

The condition on the fr ensures that, for all r,

~
f(r;�)(x1; : : : ; xk) � ~g(r;�)(x1; : : : ; xk)

:= gr Æ �(x1; : : : ; xk) for all (x1; : : : ; xk) 2 D
k
:

We now consider a model with, with random variables Y
(n)
j , based on

the set of functions f ~f~r; ~r 2 ~
Rg. The symmetry condition of Lemma

3.3 will be satis�ed if we de�ne the random variables ~
Z

(n)
i so that

P( ~Z
(n)
i 2 E �f�g) = (1=k!)P(Z

(n)
i 2 E) for measurable subsets E � R
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and � 2 Sk. So if we set Y(0) = X (0) and de�ne i.i.d. sequences

Y(n) = fY
(n)
i : i � 1g using our new model, we can apply Lemma 3.3

to obtain Y

(n)
1 ! � a.s. for some � 2 D.

Now note that, as fY
(n)
i : i � 1g are i.i.d., the distribution of Y

(1)
i

is independent of Z
(1)
i . Hence it is the same as the distribution of

X

(1)
i . We continue inductively to see that X

(n)
i and Y

(n)
i have the same

distribution for all n; i (although the joint distributions as n varies will

not necessarily be the same). We now apply Corollary 3.4 to obtain

the result.

To apply Lemma 3.3 we need E

�
jX

(0)
1 j(L(jX

(0)
1 j))Æ

�
< 1, giving (a),

except when �i = 1=k when E jX
(0)
1 j <1 is suÆcient, giving (b).

Theorem 1.2 is just Theorem 3.5 in the case R = f1g.

It is conjectured in Li and Rogers (1999) that an almost sure limit

will exist for more general iterations which may vary from stage to

stage, and with the initial random variables m-dependent rather than

independent. In the case where k varies the reversed submartingale

argument of this paper cannot be used and the argument in Theorem

3.5 requires independence initially, so the methods used here cannot be

applied in their present form to this conjecture.
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