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A law of large numbers for random hierarchical sequences!’

B.M. Hambly? and Neil O’Connell?

May 19, 2000

Abstract

We generate a hierarchical sequence of random variables from a map taking &
copies of a Banach space to itself. With a simple assumption on the map and an
integrability condition for the initial random variables we prove that the renormal-
ized sequence converges almost surely to a constant. We apply this result to the
homogenization of Laplace operators on fractals.

1 Introduction

Let {Xi(o);i € N} be a sequence of independent and identically distributed random vari-
ables taking values in a Banach space, B. Consider a map f : B¥ — B, a function of &
Banach space valued variables. We can use this map to generate a sequence of random
variables by setting

X = f(X((;’jl)kH,...,X}g’), i €N, VYn>0.
The question of interest to us is a simple version of renormalization group theory con-
cerning the convergence of the hierarchical sequence given by {X fn);n € N}.

The renormalization group is a widely used technique of mathematical physics which
is often difficult to make mathematically rigorous. Hierarchical models provide a setting
where exact computations are possible and they are also interesting models in their own
right. In this paper we will establish an abstract renormalization theorem, giving a
condition on the map f which guarantees almost sure convergence of the sequence to a
constant, under a 1 + § moment condition on || X {0) |. Note that the usual strong law of
large numbers can be thought of as a special case by setting f(z1,...,z5) = (1 + -+ +
z)/k. Our condition on f will be satisfied for concave homogeneous functions with a
non-trivial fixed point. The hierarchical sequence generated by a concave homogeneous
function occurs in the renormalization of electrical networks, where the effective resistance
is a concave function of the individual resistors in the network. Previous work on this
problem can be found in [17, 18, 10, 7] in the case of real valued random variables.

A motivating example for this work is the homogenization problem for finitely ramified
fractals. The homogenization problem is to determine the effective macroscopic properties
of a medium which has microscopic irregularities. There are well developed methods for
tackling such problems in translation invariant settings such as R%, [15] and ZZ, [3],
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however new techniques are required for fractals. We will consider graphs whose large
scale structure is that of a finitely ramified fractal and with random resistors on each edge.
We establish a homogenization result by proving that the rescaled effective conductivity
across the fractal graph converges to a non-trivial limit.

A finitely ramified fractal is a fractal subset of R? with the property that any con-
nected subset can be disconnected by the removal of only a finite number of points. The
Sierpinski gasket provides a basic example. The construction of a Laplace operator on
a finitely ramified fractal already involves a deterministic renormalization problem. The
Laplacian is obtained from a compatible sequence of electrical networks which approxi-
mate the fractal. For the networks to be compatible they must be constructed from the
scaled fixed point of a renormalization map from one level to the next. The scaling is
called the conductance scale factor. For general finitely ramified self-similar sets there
is a deterministic fixed point problem which needs to be solved in order to deduce the
existence of an operator. As the electrical network can be viewed as a Dirichlet form, the
fixed point problem can be regarded as an eigenvalue problem on the cone of Dirichlet
forms. Conditions for the existence and uniqueness of a fixed point have been found in
[16].

We will consider a random version of this fixed point problem. We take an infinite
fractal lattice, consisting of translates of a basic cell, and place random resistors on each
such basic cell, chosen as random elements of the cone of Dirichlet forms on the cell.
We rescale the lattice by the natural length scale factor and consider the convergence of
the induced effective conductance across the unit cell rescaled by the conductance scale
factor. This problem was first considered in [9] in which it was shown that for nested
fractals, under some assumptions corresponding to the uniqueness of the fixed point and
boundedness of the conductors, that there was L' convergence of the conductance. In
[5] the Vicsek set, a nested fractal for which there is not a unique fixed point for the
renormalized conductivity map was discussed. However the Vicsek set is sufficiently
simple that the renormalization map is effectively linear and the strong law of large
numbers can be used to give the almost sure convergence of the effective conductance
under a finite first moment condition on the conductors. Here we will prove that, for a
more general map allowing weights on different parts of the fractal and only assuming a
finite 1+ § moment condition, the rescaled effective conductance converges almost surely.
However, to ensure positivity of the limit in general, we require our conductors to be
bounded away from 0.

The paper will begin with some preliminary results giving the necessary background
for the convergence of reversed submartingales in Banach spaces. We will state and
prove our main result in Section 3 and in the final section apply it to the homogenization
problem on nested fractals.

2 Preliminaries

In order to prove our results we introduce a suitable setting for understanding convergence
of hierarchical sequences. The main result we will need is the reversed submartingale
convergence theorem for Banach spaces. We will also record a version of the Hahn-
Banach theorem needed for our application.

Let B be a o-complete Banach lattice with the property that the norm is continuous



in the order topology. (For the properties of Banach lattices that we use here we refer the
reader to [1], [19]). A sequence of strongly measurable random variables { X, },>0 with
respect to a decreasing filtration {F n}nZO is a reversed submartingale if for each n < 0,
E|X,| € B and

Xn+1 < E(Xnu:n—l—l)

We will denote by P the positive cone in the Banach space B. Unless stated otherwise
convergence in B will be in the metric topology.

Theorem 2.1 Let {X,,} be a reversed submartingale in P with respect to a decreasing
filtration F,. Then X, converges almost surely (in the metric topology) to a random
variable X .

Proof: We prove this using a martingale convergence theorem for Banach spaces
and a Doob decomposition. Observe that we can write the submartingale in terms of a
martingale M,, null at 0, and a decreasing process A,, as X,, = M,, + A,, where

n
M, = Y E(X;1|Fi)— X1,
=1

n
A, = X0+ZE(Xi_Xi—1|Fi)-
=1

The martingale part M, is a reversed martingale and hence converges (in the metric
topology) by the usual reversed martingale convergence theorem for Banach spaces, [2]
Theorem 4.

For the decreasing part we have
0<E(A,) =E(X,) < E(Xy) = Xp.

We want to prove that the sequence A, will converge. In order to do this we will show
that 0 < A,, < Xg. The upper bound is obvious. For the lower bound we assume that
the sequence A, leaves the positive cone. Thus there exists an element £ = A, ; where
p =sup{n : A, € P}, the first point at which the sequence was not in the cone. As the
sequence A, is decreasing we see that a, = P(A, <) — 1 as n — oo. Now

as n — oo. Thus we have a contradiction and the sequence must remain in the positive
cone.

As we have a monotone decreasing sequence which is order bounded below it con-
verges in the order topology and hence in the norm. Thus X,, — X, almost surely as
required. I

Corollary 2.2 A reversed submartingale in B which is bounded below converges almost
surely.

We will be studying concave functions on the k-fold products of the Banach space
and the following lemma gives us control on such functions.
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Lemma 2.3 Let f : P* — P be a concave homogeneous function for which there is a
fized point 20 € P\{0}, that is f(2°,...,2%) = 2°. Then there ewists w € R’i such that
Zle w; =1 and

k
flze,...,zx) < szxz
=1

Proof: We use the geometric version of the Hahn-Banach Theorem as given in [4] p117.
Consider the Banach space E = B*t! and let

A={xe P fz1,...,2%) > ppa ).

It is easy to see by the concavity of f that the set A is convex and open. Let x° be the
point containing k + 1 copies of the fixed point and let M = {ax" : a € R}. Observe
that, by the homogeneity of f, M N A = (. Applying the Hahn-Banach Theorem, there
exists a hyperplane H such that M C H and H N A = 0. Since the hyperplane H in E

contains the origin it can be written as Z _1 ujz; = 0. As the point x° lies in H and is

non-zero we see that Zf+11 u; = 0 and we can write the hyperplane as

k
Tiy1 = E W;Lyg,
i=1

where Zle w; = 1. Now as H C A® we have

f($17"'7 <$k)+1 sz$z

To see that the w; > 0 we observe that, if not, we get a contradiction to the positivity of

I 1

3 Convergence under Renormalization

The results of this section extend those of [17] and [18] in the real valued case. As in
Section 2, B is a o-complete Banach lattice with the property that the norm is continuous
in the order topology. We also assume that B is a Banach space of type p for some p > 1
and recall the definition. Let

C(B) = {{zn} : Z €nTy converges in probability},

n

and write {e,}, for a sequence of independent Bernoulli random variables, taking the
value £1 with equal probability. A Banach space is said to be of type p (for 1 < p < 2)
if there exists A € Ry such that

B Z enZnl|” < AZ [
n n

for every sequence {z,} € C(B).



Theorem 3.1 Let f : B¥ — B be a function bounded below with the property that there
exists w € R’i such that wy + -+ +wp =1 and

f((I:l,...,(L‘k) <wizy + -+ wpxk
for all z € B*. Let X1, Xo,... be a sequence of iid integrable random variables in B with
E||X1||? < oo. For each j, set X](.O) = X, and forn >0,

Xi(nH) = f(X((?_)1)k+1’ e in(/?))a i €N. (3.1)

Then the sequence an) converges almost surely to o constant in B.
We will prove this via a series of Lemmas.
Let )N(i(n) be the sequence of random variables constructed as in (3.1) with the linear

function f(z1,...,zE) = w1z + - - - + wiz. Note that we can write an) = Zf; agn)Xi.

Lemma 3.2 There exist constants b > 1,¢c > 0, such that
BIX" - BE)IP < b "EIXOP.

Proof: We first show that
kTL

S @My <o, (3.2)

=1

Note that the agn) are the terms in the expansion of (w;+...+wy)™. Hence Zf; (al(”))l’ =
(w) + ... +wy)™ As zP is strictly convex for p > 1 and w; >0 for i =1,...,k,

k k p
b_1:wa< (sz> =1.
i=1 i=1

Thus we have the inequality (3.2).
As B is a type p Banach space we have the following ([6] Theorem 2.1), that there
exists an A > 0 such that

ki ki
E|> Ul < AY E|U|P, (3.3)
i=1 i=1

for any sequence of independent zero mean random variables {U;} with finite p-th mo-

(0)

ment. Without loss of generality we can assume that FX;”’ = 0, and applying (3.3) we

have
kTL
lod 0
BIXMP = EIY o"xO)p
=1
kTL
0
< A @)yPE|IxXP|P.
=1
Finally, using (3.2), we have the result. 1



Lemma 3.3 If E(HX ||p) < oo, then E(||X Hp) is uniformly bounded.

Proof: Firstly we observe that as f is bounded below there is an [ € B such that
[ < X{n) < X{n) almost surely. It is a standard fact about Banach lattices that if
0 <z <y, then ||z]| < ||y||. Thus, combining this with the triangle inequality we have
2PE|XMP < BIX™ 1P+ )
BIIX" + 1P + 1))
21 (BIX® — BX\|P + i~ BX)|P) + ).

N

IN

Combining this with Lemma 3.2 yields the result. I

Lemma 3.4 The sequence {an)} converges in probability.

Proof: By the o-lattice property and the fact that f is bounded below we have
E(X{n)) 1 v for some v.
By hypothesis we have X {n) <X {n) almost surely. It follows from this that

lim sup X {n) <EX fo), almost surely.

n—0o0

The sequence {X } can be defined by replacing {X ;7 > 1} by {X](no);j > 1} for any
ng. Thus
lim sup X{n) < EX{”O), almost surely.
n—o00
Letting ng — oo gives
lim sup X {n)

n— 00

< v, almost surely. (3.4)
We now assume that v = 0. Let ¢ € P, m > 0, and consider the following events

A = {xM <e},
A = Ao {IX{" — e <m+2|el},
C = Ayn A?
Now
EX™ = EX" 1y + EX" 1y, + EX" I,
By Lemma 3.3, (3.4) and Holder’s inequality,

IE(X Lig) | < (B X [P) /P (P(4G) =17 — 0. (3.5)
Now
lell + IEX T L)l = 1E(e — X)) La,l
= ||B(e— X")Ia, + E(e - X\")I||
> ||E(e — X{")Ic|
> mP(C)



By (3.5) and the fact that |E(X; )|| — 0 we have that ||E(X; IA0)|| — 0. Thus for
any o > 0, we can choose € Wlth llell = 0m/2; moreover there exists an ng such that
|E(X, IAo)“ < 0m/2 for all n > ngy. Hence P(C) < 6 for n > ny.

Thus there is an ny such that P(an) € A;) > 1 — 24, and hence P(HX || <

m + 3el]) = (||X || <m(1+3§/2)) >1—26 for n > ny. Since m and § are arbitrary
we are done. 1

To prove almost-sure convergence we will use a randomization technique introduced

(n) (0)

in [7]. Define random variables Y;" as follows. For each j, set Y;

tions o € Si, define o f by

= X;. For permuta-

(O-f)(xla R 73:/0) = f($a(1)7 s 7$U(k))'
(n)

Now let o, be iid, uniformly distributed on Sy, and set Fi(n) = O'gn) f. Forn >0, set
(n+1) _ p(n) v (n) (n)
}/i _Fz (}f(ifl)]ﬁkla"'ayrik )a it €N

Let Z, = Y% v,
Lemma 3.5 The sequence {Z,} converges almost surely.

Proof: We will show that Z, is a reversed submartingale with respect to the decreasing
filtration F,, = o(Z", [ > n), and apply Corollary 2.2.

By symmetry, Ewagn) G = 1/k, for each j and the sequence o™ is independent of

fnJrl- Thus,
E(Z,|F = FE v 4 v e+ YF
( n| n+1) ( 1t k -t k2 k+1 + k2 | n+1)
_ (n) (n)
= E(wain)(l)yl + - +wa§")(k)Yk + -
o+ wg-l(c")(l)yk(;ﬂk+1 +otw (")( )Yk(:)|‘7:n+1)
> BEFEMYM, ) 4 EPWE  YE) Fag)
= Zn-i—l,
as required. I

Proof of Theorem: We show that the sequence {X } converges almost surely to v,
the limit arising in the proof of Lemma 3.4.

Observe that for each n, X" (") has the same law as Y( n) Tt follows that Z,, has the
(n)

same law as Zle X;" for each n. By Lemma 3.4 {X } converges in probability to v

(n)

for each i and hence, as {X;"’;i > 1} is an iid sequence, {Z,} converges in probability
to kv. Combining this with Lemma 3.5 we see that {Z,} converges almost surely to kv.

We will now deduce that Yk(n) converges almost surely to v. This will follow from the
fact that {Yi(n);i > 1} is an iid sequence.



Assume without loss of generality that v = 0. Fix € > 0 and suppose ZZ 1 Y ™) does
not converge almost surely to 0. Then we can define a sequence of finite stopplng times

k—1
o = infln>0:]Y Y| > ¢
=1

k—1
T, = inf{n>T;_1:| ZYZ(n)H > €}
i=1

Since Z, — 0 almost surely there exists an ng such that ||Z,] < €/2 for all n > ny
and hence ||Y || > ¢/2 for all i sufficiently large. Note that Y,C(Ti) is independent of
Gr, = o(SiL YV :n < T).

Lemma 3.6 Let {U,} be a sequence of random variables in B and {S,} a strictly in-
creasing sequence of stopping times with respect to an increasing filtration F,. Assume
Un—1 € Fn, U, is independent of F,, and U, — 0 in probability, then Us, — 0 in
probability.

Proof: Let € > 0. By independence,

P(|[Us, || >€) = ZP(IlUsnII > €|Sn = j)P(Sn = J)
= Y PUU;l > )P(S, = j).
i

Since U, — 0 in probability, there exists a J such that
P(||U;|| > €) <€/2, j>J.

Furthermore, since S;, — oo there exists an N such that

> P(S,=j) <€¢/2 n>N.
J<J
Hence P(||Us, || > €) < € for n > N as required. 1

(n)

Our sequence Y,, stopping times T}, and filtration G,, satisfy the conditions of the

above Lemma and hence Yk(Ti) — 0 in probability as 7 — oo.

Now, using the triangle inequality, we have

P ) > e/2) = P(ly" ||>6/2IIIZY > ¢

> HZY |<e/2|||ZY I > e

= IIZY | < ¢/2).



By our choice of stopping times we have a contradiction as the right hand side converges
to 1 while the left hand side converges to 0. Thus Zi:ll Yi(n) — 0 almost surely and

hence Yk(n) — 0 almost surely.

Using the mutual independence of the sequence of random variables {Yk(n) :n > 0}
(as k > 1) and Borel-Cantelli

ST P> €) < .

Hence
> P(IxV I > @) < o0,
n
so that X{n) converges almost surely. I

Combining the above Theorem with Lemma 2.3 we have

Corollary 3.7 Let f : P¥ — P be a concave homogeneous function with a non-zero
fized point. Then an) converges almost surely to a constant in P.

3.1 On the positivity of the limit

We have established convergence for our hierarchical sequence but there is still the pos-
sibility that the limit is 0. We give some conditions which will ensure strict positivity.
Let p, = P(an) > 0). Following [14] we define

U={AcC{l,...;k}:2; >0,Vj € A= f(x1,...,2x) >0, Vz; withi € A},
and
g(p) = pll(a—pyIAl.
AeU
Lemma 3.8 If f : P¥ — P is concave, then p,1 = g(p,) for all n.
Proof: 1t suffices to show that
z; >0,Yj € A= f(z1,...,2) >0, Va; withi € A°
if and only if
Jz; > 0,5 € Asuch that f(z1,...,zx) > 0, Va; with i € A°.

We will use the positivity and concavity of the function f. Fix A and label its elements
i1,...,im. Now define f4 : P14l — P by

falzy, ... zm) :inf{f(yl,...,yk):yij =zj,j=1,...,m}.

Note that f4 is concave.
We will show that if f4 is positive at any point in the interior of K = P4/, then f4 is
positive throughout the interior. Suppose otherwise: Suppose f4(z) > 0 for some z € K°

9



and fa(y) = 0 for some y € K°. Let I(t) = x4+ t(y — z) for £ > 0. There exists € > 0 such
that z =I(1 + €) € K°. Note that

Y= 15" 15

and hence by concavity,

1
0= faly) = 7 fal@) + 7o fal2).

Thus fa(z) < 0 contradicting the positivity. 1

We state some properties of g. Firstly ¢(0) = 0,¢(1) = 1, ¢ is an increasing function
and ¢'(0) is the number of A € U with exactly one element. It is shown in [14] that ¢ has
a unique repulsive fixed point py in [0,1]. Also

{ 03 Po <pga

li =
S L, po>py.

n—00
We summarize the above in a Lemma.

Lemma 3.9 If f : P¥ — P is concave, then X — 0 if py < Dg-
It is more difficult to establish strict positivity.

Lemma 3.10 In the context of Corollary 3.7, a sufficient condition for a strictly positive
limit is that there exists a neighbourhood U of the origin such that z; ¢ U for all i implies
that f(x) ¢ U and P(X©®) ¢ eU) = 1 for some e > 0.

Proof: The conditions ensure that P(X(™) ¢ eU) = 1 for all n and hence the limit is
strictly positive. I

3.2 Conjugacy

An alternative approach to this problem which seems to have some potential is to use the
idea of conjugacy. We begin with an example. Let P = R3 and f(z1,32) = z122/ (71 +
x2). If we define ¢ : Ry — R by ¢(z) = 1/z, then

f(p(z1), p(x2)) = p(g(1,72)), (3.6)

where g(z1,z2) = (21 + z2)/2. Thus

2TL
x () — ¢ <2n ZXz'(O)) ,
i=1

and X(™ converges almost surely by the usual strong law of large numbers provided
H(E(X®)) < oco. Note that the electrical network generating this map is a pair of
resistors in parallel and hence the map ¢ examines the effective conductivity instead of
the effective resistance across the network.

10



This extends the usual notion of conjugacy to our setting: We will say that a non-
linear function f : P¥ — P is conjugate to a linear function g : P¥ — P if there exists
a one-to-one function ¢ satisfying the extension of (3.6) to k variables. (Note that this
idea also works in the case where ¢ is not one-to-one; this is the natural analogue of
semi-conjugacy.) As in the usual dynamical systems context conjugacy is a powerful tool
for reducing non-linear problems to linear ones even if it is not possible to determine the
conjugating function explicitly; there are abstract theorems giving sufficient conditions
for the existence of conjugating functions (see for example [8]).

In the case of a homogeneous function f : Ri — Ry with a fixed point at (1,1), we
can apply the standard results in [8] directly. More generally (as far as we know) there
are no abstract theorems on this form of conjugacy.

4 The homogenization problem for nested fractals

The homogenization problem for fractals has been treated in [9] and [5]. We consider
a fractal graph, such as the Sierpinski gasket graph in which we take unit equilateral
triangles and extend them to infinity using the structure of the Sierpinski gasket. The
problem is to assign a random resistor to each edge of the graph and then rescale the
graph according to the appropriate length scale factor. As we iterate this process, does the
effective conductivity, renormalized by the appropriate factor, converge? The previous
work on this problem made either strong assumptions about the random variables or
looked at sufficiently simple fractals.

We will consider the class of nested fractals first defined by [11]. For [ > 1, an
l-similitude is a map 1 : R? — R? such that

() = 17U () + 2o, (4.1)

where U is a unitary, linear map and zg € R% Let ¢ = {t1,...,¢¥m} be a finite family
of maps where 1; is an [-similitude. For B C R%, define

¥(B) = | vu(B),
=1

and let
U,(B)=%¥o...0U(B).

The map U on the set of compact subsets of R? has a unique fixed point F, which is a
self-similar set satisfying F' = WU(F).

As each 1); is a contraction, it has a unique fixed point. Let Fj be the set of fixed
points of the mappings 1;, 1 <i < m. A point z € F} is called an essential fixed point if
there exist ¢, € {1,...,m}, i # j and y € Fj such that 9;(z) = 9;(y). We write F for
the set of essential fixed points. Now define

Giy i (B) =iy 0.0, (B), BCRP.
The set Fj, i, = ¥i,,...i, (Fo) is called an n-cell. The lattice of fixed points F}, is defined

by

11



and the set F' can be recovered from the essential fixed points by setting
F = (U2 Fy).
We can now define a nested fractal as follows.

Definition 4.1 The set F'is a nested fractal if {¢1,..., 1, } satisfy:

(A1) (Connectivity) For any 1-cells C' and C’, there is a sequence {C; : i = 0,...,n} of
1-cells such that Cy = C,C, =C"and C; 1 NC; #0, i=1,...,n.

(A2) (Symmetry) If z,y € Fpy, then reflection in the hyperplane Hyy, = {z : |z — 2| =
|z — y|} maps F,, to itself.

(A3) (Nesting) If {i1,...,in}, {J1,..-,Jn} are distinct sequences, then

Wiromin F) [\ 5110 (F) = Wi i (FO) () Woin (FO).

(A4) (Open set condition) There is a non-empty, bounded, open set V' such that the
1i(V') are disjoint and U~ (V) C V.

Let ¢; denote the similitude which has the origin as a fixed point. We can construct
the pre-fractal, an infinite graph, by setting G = 1 "(Go), where Gy is the complete
graph on the essential fixed points Fj. The pre-fractal graph is then

Let T, denote the set of translations of Gy in G™ and define 7 = U, T,. Then the
infinite fractal lattice can be written, in terms of translations of the complete graph on
Fpy, as
G = | ] 7(Gy).
TET

We now recall the fixed point problem for nested fractals which we set up as an
eigenvalue problem for a nonlinear map on discrete Dirichlet forms. We let ¢y be a set
of conductors on Gy, which we can view as an |Ey| x |Ep| matrix. Define the quadratic

form £ by .
£O(f,9) = 3 > (f@) = F)g(z) — 9())e(z,y),

xvyeGO
with domain Fo = {f|f : Fo — R}.
The renormalization map we are interested in can be defined as the composition of
two maps. Let positive real numbers r; be given and set

N

\11(517"' 75N)(fag) = 5(1)(fag) = Zr;lﬁ'l(f 01/)7;,901/)2'),

=1

for f,g € F1 :={f|f : F1 — R}. Define the renormalized Dirichlet form by taking its
trace on Fy,

QEW)(f, ) =Eo(f, f) = inf{€(1)(9,9)lg = f on Fy}.

12



This Dirichlet form is associated with the electrical network on Fy with the effective
conductance between vertices of Fy induced by the weighted electrical network Fy. The
operation we have described is a nonlinear map on conductors and we can write this as a
map on Dirichlet forms as A = ® o U. For a given set of r, the existence problem for the
corresponding Laplace operator on the fractal is solved, if we can find a set of conductors
c and a constant A\ such that

A(goa750)(f7f)ZEO(faf):AEU(faf)a VfEfo-

The case r; = 1 for all i corresponds to that considered in [11] and for which the ho-
mogenization problem is discussed in [9]. However we can consider the more general
non-symmetric framework here. Conditions for the existence of a fixed point in this case
were determined by [16].

Let P denote the set of positive semidefinite forms on Fj and let D denote the set of
Dirichlet forms on Fy. The space B := D — D with norm ||£]|? = sup{&(f, f)|f € Fo,<
f.f >= 1} is a Banach space. Let P° be interior of P, the set of irreducible positive
semidefinite forms. A Dirichlet form is said to be irreducible if the only functions for
which E(f,f) = 0 are the constant functions. Thus we have D C P and the set of
irreducible forms in D is D N P°. The sets D, P are cones and we refer to [12] for more
details.

We will be interested in fixed points of the map A which lie in D N P° as these
correspond to non-degenerate Laplace operators on the fractal. In order to work with
these fixed points we use Hilbert’s projective metric on the cone P. The projective metric
is defined on comparable quadratic forms. Two elements £, &’ of our cone are comparable
if there exist real constants a,b > 0 such that a€ < £ < b€. This is an equivalence
relation and the cone can be divided into parts based on this relation. If we take £, &’ to
be two non zero comparable elements of our cone, then we can define

M(E/E

h(c‘:,E):an,

where

M(E/EY = inf{b>0:& <bE'Y,
m(E/E") = sup{a>0:af' < E}.

If £,&" are not comparable, then h(&,E’) = co. The function h is called Hilbert’s projec-
tive metric, even though it is not a metric. It is not difficult to see that if we restrict h to
a part of the cone which intersects with the surface of the unit ball in the Banach space
B, then it is a metric. The projective metric, h and the norm ||.|| are locally equivalent
on the surface of the unit ball in B.

We now consider the renormalization map A, which we can regard as A : PN — P.
From the definitions we have that A(D,...,D) C D. By using the fact that the unit ball
in B is compact and Brouwer’s fixed point Theorem, the eigenvalue problem can be solved
on the cone of Dirichlet forms.

Lemma 4.2 There ezists o € R and &' € D such that A(E',...,E") = a&’.
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However this solution does not necessarily correspond to an irreducible Dirichlet form.
From [12], the map is non-expansive on P°, in Hilbert’s projective metric and we can
show, using this metric, that under certain conditions there exists an irreducible fixed
point. jFrom this point we make the following assumption.

Assumption 4.3 There ezists £ € D NP° such that A(é, . ,5) =\E.

For nested fractals with conductors invariant under the full symmetry group the existence
was first demonstrated in [11], and the uniqueness of £ was first established by [16] (it is
also shown via an alternative approach in [13]). In [16] conditions are given for existence
and uniqueness in the general case. We note that for the Sierpinski gasket there are
explicit conditions on the weights r;,4 = 1,2,3 which give existence and uniqueness of
the fixed point in I N P°.

Let Xi(o) be a sequence of D valued random variables. We can place these on the
infinite nested fractal lattice G(°) to define a random Dirichlet form

e =Y XO(for,gor),
TET

for f,g € {f|f : G® — R}. Our map A can be extended to act on this random form.
Hence we can construct the sequence X (™) as

XD — = x (™ x W),
with associated random form

ENfo9) = X" (for,gor),
TET

where the Xﬁn) are independent copies of X {n). Note that X {n) is the Dirichlet form on
the unit cell induced by rescaling the lattice by [~ and weighting the cells of the fractal
according to the weights r.

Theorem 4.4 (1). If E||X§0)Hp < o0, for some p > 1, then
X{n) — X g5 as n— oo,

where X () = v&', a scaled copy of a fized point &' € D.

(2). If Eh(EA,Xfo))p < 0o and there exists € > 0 such that P(X(©) > ¢£) =1, then an)
converges almost surely to X() = 'yf where & € DNP° and v > 0. Also the sequence
57(100) of random Dirichlet forms on G(®) converges to é'(oo), the Dirichlet form in which
each unit cell has a copy of 'yé'.

Proof: As the Banach space is finite dimensional all norms on B are equivalent and it is
straightforward to show that it is of type p for any 1 < p < 2. Using the fact that there is
a one to one correspondence between the Dirichlet forms and symmetric positive definite
matrices it is not difficult to show that the norm is continuous in the order topology.
The map A is derived from an electrical network and, as shown in [12] Theorem 2.2, it is
concave and homogeneous on P.
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For (1) we note that from Lemma 4.2 there is a fixed point £’ € D. By assumption we

have E||X fo) ||IP < oo and hence we can apply Theorem 3.1 to deduce the convergence of
the hierarchical sequence. As the limit is constant and satisfies the fixed point equation
it must be a multiple of the fixed point (though it may be the case that v = 0).

For (2), the assumption on the Hilbert distance ensures that our random variables lie
in the same part, and on this part the norm and the Hilbert metric are locally equivalent.
Thus P(X{U) e DNP°) =1 and E||X§0)Hp < o0o. Again we can apply our result,
Theorem 3.1 to obtain the almost sure convergence. In this case, by our assumption 4.3
the limit X(°) must be a multiple of the non-degenerate fixed point & as the limit is a
constant which satisfies the fixed point equation. In order to check that v > 0 we note
that the map A is monotone. Thus, if P(X() > ¢£) = 1, then P(X™ > ¢£) =1 for all
n and hence for the limit (recall Lemma 3.10). 1

Remarks: 1. In the case of equal weights, this theorem extends the first result obtained
in [9] on the L' convergence of the effective conductance. We do not need the D-valued
random variables to be bounded away from oo and we obtain an almost sure limit. For
strict positivity of the limit in general we require the same bounded below condition. In
the case of the Vicsek set, a tree like fractal, [5] proved that the limit is strictly positive
provided P(X(® e DNP°) = 1.

2. For the Sierpinski gasket, if the weights do not satisfy the condition for the existence
of a unique fixed point, then the effective conductivity will converge to a multiple of a
degenerate fixed point. This fixed point only has a non-zero connection between one pair
of vertices.

3. If the fixed point of the map A is not unique, we still have convergence to a limit.
In this case the set of fixed points is arcwise connected and our sequence will converge
(up to a scale factor) to a point in this set. For the Vicsek set, this limit was explicitly
identified in [5].

4. In case (2) the limiting Dirichlet form will correspond to a diffusion on the fractal which
is a deterministic time change of the diffusion corresponding to the Laplace operator & (OO).
We note that more work is required to prove the weak convergence of the associated
sequence of Markov chains to the diffusion.
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