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A law of large numbers for random hierarchical sequences1

B.M. Hambly2 and Neil O'Connell3

May 19, 2000

Abstract

We generate a hierarchical sequence of random variables from a map taking k

copies of a Banach space to itself. With a simple assumption on the map and an

integrability condition for the initial random variables we prove that the renormal-

ized sequence converges almost surely to a constant. We apply this result to the

homogenization of Laplace operators on fractals.

1 Introduction

Let fX
(0)
i ; i 2 Ng be a sequence of independent and identically distributed random vari-

ables taking values in a Banach space, B. Consider a map f : Bk ! B, a function of k

Banach space valued variables. We can use this map to generate a sequence of random

variables by setting

X
(n+1)
i = f(X

(n)

(i�1)k+1
; : : : ;X

(n)
ik ); i 2 N ; 8n � 0:

The question of interest to us is a simple version of renormalization group theory con-

cerning the convergence of the hierarchical sequence given by fX
(n)
1 ;n 2 Ng.

The renormalization group is a widely used technique of mathematical physics which

is often di�cult to make mathematically rigorous. Hierarchical models provide a setting

where exact computations are possible and they are also interesting models in their own

right. In this paper we will establish an abstract renormalization theorem, giving a

condition on the map f which guarantees almost sure convergence of the sequence to a

constant, under a 1 + � moment condition on kX
(0)
1 k. Note that the usual strong law of

large numbers can be thought of as a special case by setting f(x1; : : : ; xk) = (x1 + � � � +
xk)=k. Our condition on f will be satis�ed for concave homogeneous functions with a

non-trivial �xed point. The hierarchical sequence generated by a concave homogeneous

function occurs in the renormalization of electrical networks, where the e�ective resistance

is a concave function of the individual resistors in the network. Previous work on this

problem can be found in [17, 18, 10, 7] in the case of real valued random variables.

A motivating example for this work is the homogenization problem for �nitely rami�ed

fractals. The homogenization problem is to determine the e�ective macroscopic properties

of a medium which has microscopic irregularities. There are well developed methods for

tackling such problems in translation invariant settings such as R
d, [15] and Z

d, [3],
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however new techniques are required for fractals. We will consider graphs whose large

scale structure is that of a �nitely rami�ed fractal and with random resistors on each edge.

We establish a homogenization result by proving that the rescaled e�ective conductivity

across the fractal graph converges to a non-trivial limit.

A �nitely rami�ed fractal is a fractal subset of Rd with the property that any con-

nected subset can be disconnected by the removal of only a �nite number of points. The

Sierpinski gasket provides a basic example. The construction of a Laplace operator on

a �nitely rami�ed fractal already involves a deterministic renormalization problem. The

Laplacian is obtained from a compatible sequence of electrical networks which approxi-

mate the fractal. For the networks to be compatible they must be constructed from the

scaled �xed point of a renormalization map from one level to the next. The scaling is

called the conductance scale factor. For general �nitely rami�ed self-similar sets there

is a deterministic �xed point problem which needs to be solved in order to deduce the

existence of an operator. As the electrical network can be viewed as a Dirichlet form, the

�xed point problem can be regarded as an eigenvalue problem on the cone of Dirichlet

forms. Conditions for the existence and uniqueness of a �xed point have been found in

[16].

We will consider a random version of this �xed point problem. We take an in�nite

fractal lattice, consisting of translates of a basic cell, and place random resistors on each

such basic cell, chosen as random elements of the cone of Dirichlet forms on the cell.

We rescale the lattice by the natural length scale factor and consider the convergence of

the induced e�ective conductance across the unit cell rescaled by the conductance scale

factor. This problem was �rst considered in [9] in which it was shown that for nested

fractals, under some assumptions corresponding to the uniqueness of the �xed point and

boundedness of the conductors, that there was L1 convergence of the conductance. In

[5] the Vicsek set, a nested fractal for which there is not a unique �xed point for the

renormalized conductivity map was discussed. However the Vicsek set is su�ciently

simple that the renormalization map is e�ectively linear and the strong law of large

numbers can be used to give the almost sure convergence of the e�ective conductance

under a �nite �rst moment condition on the conductors. Here we will prove that, for a

more general map allowing weights on di�erent parts of the fractal and only assuming a

�nite 1+� moment condition, the rescaled e�ective conductance converges almost surely.

However, to ensure positivity of the limit in general, we require our conductors to be

bounded away from 0.

The paper will begin with some preliminary results giving the necessary background

for the convergence of reversed submartingales in Banach spaces. We will state and

prove our main result in Section 3 and in the �nal section apply it to the homogenization

problem on nested fractals.

2 Preliminaries

In order to prove our results we introduce a suitable setting for understanding convergence

of hierarchical sequences. The main result we will need is the reversed submartingale

convergence theorem for Banach spaces. We will also record a version of the Hahn-

Banach theorem needed for our application.

Let B be a �-complete Banach lattice with the property that the norm is continuous
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in the order topology. (For the properties of Banach lattices that we use here we refer the

reader to [1], [19]). A sequence of strongly measurable random variables fXngn�0 with

respect to a decreasing �ltration fFngn�0 is a reversed submartingale if for each n � 0,

EjXnj 2 B and

Xn+1 � E(XnjFn+1):

We will denote by P the positive cone in the Banach space B. Unless stated otherwise

convergence in B will be in the metric topology.

Theorem 2.1 Let fXng be a reversed submartingale in P with respect to a decreasing

�ltration Fn. Then Xn converges almost surely (in the metric topology) to a random

variable X1.

Proof: We prove this using a martingale convergence theorem for Banach spaces

and a Doob decomposition. Observe that we can write the submartingale in terms of a

martingale Mn null at 0, and a decreasing process An as Xn =Mn +An where

Mn =

nX
i=1

E(Xi�1jF i)�Xi�1;

An = X0 +

nX
i=1

E(Xi �Xi�1jF i):

The martingale part Mn is a reversed martingale and hence converges (in the metric

topology) by the usual reversed martingale convergence theorem for Banach spaces, [2]

Theorem 4.

For the decreasing part we have

0 � E(An) = E(Xn) � E(X0) = X0:

We want to prove that the sequence An will converge. In order to do this we will show

that 0 � An � X0. The upper bound is obvious. For the lower bound we assume that

the sequence An leaves the positive cone. Thus there exists an element � = Ap+1 where

p = supfn : An 2 Pg, the �rst point at which the sequence was not in the cone. As the

sequence An is decreasing we see that an = P (An � �)! 1 as n!1. Now

0 � E(An) � an� + (1� an)X0 ! �;

as n ! 1. Thus we have a contradiction and the sequence must remain in the positive

cone.

As we have a monotone decreasing sequence which is order bounded below it con-

verges in the order topology and hence in the norm. Thus Xn ! X1 almost surely as

required.

Corollary 2.2 A reversed submartingale in B which is bounded below converges almost

surely.

We will be studying concave functions on the k-fold products of the Banach space

and the following lemma gives us control on such functions.
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Lemma 2.3 Let f : P k ! P be a concave homogeneous function for which there is a

�xed point x0 2 Pnf0g, that is f(x0; : : : ; x0) = x0. Then there exists w 2 R
k
+ such thatPk

i=1wi = 1 and

f(x1; : : : ; xk) �
kX
i=1

wixi:

Proof: We use the geometric version of the Hahn-Banach Theorem as given in [4] p117.

Consider the Banach space E = Bk+1 and let

A = fx 2 (P �)k+1 : f(x1; : : : ; xk) > xk+1g:

It is easy to see by the concavity of f that the set A is convex and open. Let x0 be the

point containing k + 1 copies of the �xed point and let M = f�x0 : � 2 Rg. Observe

that, by the homogeneity of f , M \ A = ;. Applying the Hahn-Banach Theorem, there

exists a hyperplane H such that M � H and H \ A = ;. Since the hyperplane H in E

contains the origin it can be written as
Pk+1

i=1 uixi = 0. As the point x0 lies in H and is

non-zero we see that
Pk+1

i=1 ui = 0 and we can write the hyperplane as

xk+1 =

kX
i=1

wixi;

where
Pk

i=1wi = 1. Now as H � Ac we have

f(x1; : : : ; xk) � xk+1 =

kX
i=1

wixi:

To see that the wi � 0 we observe that, if not, we get a contradiction to the positivity of

f .

3 Convergence under Renormalization

The results of this section extend those of [17] and [18] in the real valued case. As in

Section 2, B is a �-complete Banach lattice with the property that the norm is continuous

in the order topology. We also assume that B is a Banach space of type p for some p > 1

and recall the de�nition. Let

C(B) = ffxng :
X
n

�nxn converges in probabilityg;

and write f�ng, for a sequence of independent Bernoulli random variables, taking the

value �1 with equal probability. A Banach space is said to be of type p (for 1 � p � 2)

if there exists A 2 R+ such that

Ek
X
n

�nxnk
p � A

X
n

kxnk
p;

for every sequence fxng 2 C(B).
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Theorem 3.1 Let f : Bk ! B be a function bounded below with the property that there

exists w 2 R
k
+ such that w1 + � � �+ wk = 1 and

f(x1; : : : ; xk) � w1x1 + � � �+ wkxk

for all x 2 Bk. Let X1; X2; : : : be a sequence of iid integrable random variables in B with

EkX1k
p <1. For each j, set X

(0)
j = Xj, and for n � 0,

X
(n+1)
i = f(X

(n)

(i�1)k+1
; : : : ;X

(n)
ik ); i 2 N : (3.1)

Then the sequence X
(n)
1 converges almost surely to a constant in B.

We will prove this via a series of Lemmas.

Let ~X
(n)
i be the sequence of random variables constructed as in (3.1) with the linear

function f(x1; : : : ; xk) = w1x1+ � � �+wkxk. Note that we can write X
(n)
1 =

Pkn

i=1 a
(n)
i Xi.

Lemma 3.2 There exist constants b > 1; c > 0, such that

Ek ~X
(n)
1 �E( ~X

(n)
1 )kp � cb�nEkX(0)kp:

Proof: We �rst show that
knX
i=1

(a
(n)
i )p � b�n: (3.2)

Note that the a
(n)
i are the terms in the expansion of (w1+: : :+wk)

n. Hence
Pkn

i=1(a
(n)
i )p =

(w
p
1 + : : :+ w

p
k)

n. As xp is strictly convex for p > 1 and wi > 0 for i = 1; : : : ; k,

b�1 =

kX
i=1

w
p
i <

 
kX
i=1

wi

!p

= 1:

Thus we have the inequality (3.2).

As B is a type p Banach space we have the following ([6] Theorem 2.1), that there

exists an A > 0 such that

Ek

knX
i=1

Uik
p � A

knX
i=1

EkUik
p; (3.3)

for any sequence of independent zero mean random variables fUig with �nite p-th mo-

ment. Without loss of generality we can assume that EX
(0)
i = 0, and applying (3.3) we

have

Ek ~X
(n)
1 kp = Ek

knX
i=1

a
(n)
i X

(0)
i kp

� A

knX
i=1

(a
(n)
i )pEkX

(0)
i kp:

Finally, using (3.2), we have the result.
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Lemma 3.3 If E(kX
(0)
1 kp) <1, then E(kX

(n)
1 kp) is uniformly bounded.

Proof: Firstly we observe that as f is bounded below there is an l 2 B such that

l � X
(n)
1 � ~X

(n)
1 almost surely. It is a standard fact about Banach lattices that if

0 � x � y, then kxk � kyk. Thus, combining this with the triangle inequality we have

21�pEkX
(n)
1 kp � EkX

(n)
1 + lkp + klkp

� Ek ~X
(n)
1 + lkp + klkp

� 2p�1
�
Ek ~X(n) �EX1k

p + kl �EX1k
p
�
+ klkp:

Combining this with Lemma 3.2 yields the result.

Lemma 3.4 The sequence fX
(n)
1 g converges in probability.

Proof: By the �-lattice property and the fact that f is bounded below we have

E(X
(n)
1 ) # v for some v.

By hypothesis we have X
(n)
1 � ~X

(n)
1 almost surely. It follows from this that

lim sup
n!1

X
(n)
1 � EX

(0)
1 ; almost surely.

The sequence f ~X
(n)
1 g can be de�ned by replacing fX

(0)
j ; j � 1g by fX

(n0)
j ; j � 1g for any

n0. Thus

lim sup
n!1

X
(n)
1 � EX

(n0)
1 ; almost surely.

Letting n0 !1 gives

lim sup
n!1

X
(n)
1 � v; almost surely. (3.4)

We now assume that v = 0. Let � 2 P , m > 0, and consider the following events

A0 = fX
(n)
1 < �g;

A1 = A0 \ fkX
(n)
1 � �k � m+ 2k�kg;

C = A0 \A
c
1:

Now

EX
(n)
1 = EX

(n)
1 IAc

0
+EX

(n)
1 IA1

+EX
(n)
1 IC :

By Lemma 3.3, (3.4) and H�older's inequality,

kE(X
(n)
1 IAc

0
)k � (EkX

(n)
1 kp)1=p(P (Ac

0))
1�1=p ! 0: (3.5)

Now

k�k+ kE(X
(n)
1 IA0

)k � kE(��X
(n)
1 )IA0

k

= kE(��X
(n)
1 )IA1

+E(��X
(n)
1 )ICk

� kE(��X
(n)
1 )ICk

� mP (C):
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By (3.5) and the fact that kE(X
(n)
1 )k ! 0 we have that kE(X

(n)
1 IA0

)k ! 0. Thus for

any � > 0, we can choose � with k�k = �m=2; moreover there exists an n0 such that

kE(X
(n)
1 IA0

)k < �m=2 for all n > n0. Hence P (C) � � for n > n0.

Thus there is an n1 such that P (X
(n)
1 2 A1) > 1 � 2�, and hence P (kX

(n)
1 k <

m+ 3k�k) = P (kX
(n)
1 k < m(1 + 3�=2)) > 1� 2� for n > n1. Since m and � are arbitrary

we are done.

To prove almost-sure convergence we will use a randomization technique introduced

in [7]. De�ne random variables Y
(n)
i as follows. For each j, set Y

(0)
j = Xj . For permuta-

tions � 2 Sk, de�ne �f by

(�f)(x1; : : : ; xk) = f(x�(1); : : : ; x�(k)):

Now let �
(n)
i be iid, uniformly distributed on Sk, and set F

(n)
i = �

(n)
i f . For n � 0, set

Y
(n+1)
i = F

(n)
i (Y

(n)

(i�1)k+1
; : : : ; Y

(n)
ik ); i 2 N :

Let Zn =
Pk

i=1 Y
(n)
i .

Lemma 3.5 The sequence fZng converges almost surely.

Proof: We will show that Zn is a reversed submartingale with respect to the decreasing

�ltration Fn = �(Z(l); l � n), and apply Corollary 2.2.

By symmetry, Ew
�
(n)

i
(j)

= 1=k, for each j and the sequence �(n) is independent of

Fn+1. Thus,

E(ZnjFn+1) = k�1E(Y
(n)
1 + � � � Y

(n)
k + � � � + Y

(n)

k2�k+1
+ � � �+ Y

(n)

k2
jFn+1)

= E(w
�
(n)

1 (1)
Y
(n)
1 + � � �+ w

�
(n)

1 (k)
Y
(n)
k + � � �

� � �+ w
�
(n)

k
(1)
Y
(n)

k2�k+1
+ � � � +w

�
(n)

k
(k)
Y
(n)

k2
jFn+1)

� E(F
(n)
1 (Y

(n)
1 ; : : : ; Y

(n)
k ) + � � �+ F

(n)
k (Y

(n)

k2�k+1
; : : : ; Y

(n)

k2
)jFn+1)

= Zn+1;

as required.

Proof of Theorem: We show that the sequence fX
(n)
1 g converges almost surely to v,

the limit arising in the proof of Lemma 3.4.

Observe that for each n, X(n) has the same law as Y (n). It follows that Zn has the

same law as
Pk

i=1X
(n)
i for each n. By Lemma 3.4 fX

(n)
i g converges in probability to v

for each i and hence, as fX
(n)
i ; i � 1g is an iid sequence, fZng converges in probability

to kv. Combining this with Lemma 3.5 we see that fZng converges almost surely to kv.

We will now deduce that Y
(n)

k converges almost surely to v. This will follow from the

fact that fY
(n)
i ; i � 1g is an iid sequence.
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Assume without loss of generality that v = 0. Fix � > 0 and suppose
Pk�1

i=1 Y
(n)
i does

not converge almost surely to 0. Then we can de�ne a sequence of �nite stopping times

T0 = inffn � 0 : k

k�1X
i=1

Y
(n)
i k > �g

Ti = inffn > Ti�1 : k

k�1X
i=1

Y
(n)
i k > �g:

Since Zn ! 0 almost surely there exists an n0 such that kZnk < �=2 for all n > n0

and hence kY
(Ti)
k k > �=2 for all i su�ciently large. Note that Y

(Ti)
k is independent of

GTi = �(
Pk�1

i=1 Y
(n)
i : n � Ti).

Lemma 3.6 Let fUng be a sequence of random variables in B and fSng a strictly in-

creasing sequence of stopping times with respect to an increasing �ltration Fn. Assume

Un�1 2 Fn, Un is independent of Fn and Un ! 0 in probability, then USn ! 0 in

probability.

Proof: Let � > 0. By independence,

P (kUSnk > �) =
X
j

P (kUSnk > �jSn = j)P (Sn = j)

=
X
j

P (kUjk > �)P (Sn = j):

Since Un ! 0 in probability, there exists a J such that

P (kUjk > �) < �=2; j > J:

Furthermore, since Sn !1 there exists an N such thatX
j�J

P (Sn = j) < �=2 n > N:

Hence P (kUSnk > �) < � for n > N as required.

Our sequence Y
(n)
k , stopping times Tn and �ltration Gn satisfy the conditions of the

above Lemma and hence Y
(Ti)
k ! 0 in probability as i!1.

Now, using the triangle inequality, we have

P (kY
(Ti)
k k > �=2) = P (kY

(Ti)
k k > �=2jk

k�1X
j=1

Y
(Ti)
j k > �)

� P (k

kX
j=1

Y
(Ti)
j k < �=2jk

k�1X
j=1

Y
(Ti)
j k > �)

= P (k

kX
j=1

Y
(Ti)
j k < �=2):
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By our choice of stopping times we have a contradiction as the right hand side converges

to 1 while the left hand side converges to 0. Thus
Pk�1

i=1 Y
(n)
i ! 0 almost surely and

hence Y
(n)
k ! 0 almost surely.

Using the mutual independence of the sequence of random variables fY
(n)
k : n � 0g

(as k > 1) and Borel-Cantelli

X
n

P (kY
(n)
k k > �) <1:

Hence X
n

P (kX
(n)
1 k > �) <1;

so that X
(n)
1 converges almost surely.

Combining the above Theorem with Lemma 2.3 we have

Corollary 3.7 Let f : P k ! P be a concave homogeneous function with a non-zero

�xed point. Then X
(n)
1 converges almost surely to a constant in P .

3.1 On the positivity of the limit

We have established convergence for our hierarchical sequence but there is still the pos-

sibility that the limit is 0. We give some conditions which will ensure strict positivity.

Let pn = P (X
(n)
1 > 0). Following [14] we de�ne

U = fA � f1; : : : ; kg : xj > 0;8j 2 A) f(x1; : : : ; xk) > 0; 8xi with i 2 A
cg;

and

g(p) =
X
A2U

pjAj(1� p)k�jAj:

Lemma 3.8 If f : P k ! P is concave, then pn+1 = g(pn) for all n.

Proof: It su�ces to show that

xj > 0;8j 2 A) f(x1; : : : ; xk) > 0; 8xi with i 2 A
c

if and only if

9xj > 0; j 2 A such that f(x1; : : : ; xk) > 0; 8xi with i 2 A
c:

We will use the positivity and concavity of the function f . Fix A and label its elements

i1; : : : ; im. Now de�ne fA : P jAj ! P by

fA(x1; : : : ; xm) = infff(y1; : : : ; yk) : yij = xj; j = 1; : : : ;mg:

Note that fA is concave.

We will show that if fA is positive at any point in the interior of K = P jAj, then fA is

positive throughout the interior. Suppose otherwise: Suppose fA(x) > 0 for some x 2 K�
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and fA(y) = 0 for some y 2 K�. Let l(t) = x+ t(y�x) for t � 0. There exists � > 0 such

that z = l(1 + �) 2 K�. Note that

y =
�

1 + �
x+

1

1 + �
z;

and hence by concavity,

0 = fA(y) �
�

1 + �
fA(x) +

1

1 + �
fA(z):

Thus fA(z) < 0 contradicting the positivity.

We state some properties of g. Firstly g(0) = 0; g(1) = 1, g is an increasing function

and g0(0) is the number of A 2 U with exactly one element. It is shown in [14] that g has

a unique repulsive �xed point pg in [0; 1]. Also

lim
n!1

pn =

�
0; p0 < pg;

1; p0 > pg:

We summarize the above in a Lemma.

Lemma 3.9 If f : P k ! P is concave, then X(n) ! 0 if p0 < pg.

It is more di�cult to establish strict positivity.

Lemma 3.10 In the context of Corollary 3.7, a su�cient condition for a strictly positive

limit is that there exists a neighbourhood U of the origin such that xi =2 U for all i implies

that f(x) =2 U and P (X(0) =2 �U) = 1 for some � > 0.

Proof: The conditions ensure that P (X(n) =2 �U) = 1 for all n and hence the limit is

strictly positive.

3.2 Conjugacy

An alternative approach to this problem which seems to have some potential is to use the

idea of conjugacy. We begin with an example. Let P = R
2
+ and f(x1; x2) = x1x2=(x1 +

x2). If we de�ne � : R+ ! R+ by �(x) = 1=x, then

f(�(x1); �(x2)) = �(g(x1; x2)); (3.6)

where g(x1; x2) = (x1 + x2)=2. Thus

X(n) = �

 
2�n

2nX
i=1

X
(0)
i

!
;

and X(n) converges almost surely by the usual strong law of large numbers provided

�(E(X(0))) < 1. Note that the electrical network generating this map is a pair of

resistors in parallel and hence the map � examines the e�ective conductivity instead of

the e�ective resistance across the network.
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This extends the usual notion of conjugacy to our setting: We will say that a non-

linear function f : P k ! P is conjugate to a linear function g : P k ! P if there exists

a one-to-one function � satisfying the extension of (3.6) to k variables. (Note that this

idea also works in the case where � is not one-to-one; this is the natural analogue of

semi-conjugacy.) As in the usual dynamical systems context conjugacy is a powerful tool

for reducing non-linear problems to linear ones even if it is not possible to determine the

conjugating function explicitly; there are abstract theorems giving su�cient conditions

for the existence of conjugating functions (see for example [8]).

In the case of a homogeneous function f : R2
+ ! R+ with a �xed point at (1; 1), we

can apply the standard results in [8] directly. More generally (as far as we know) there

are no abstract theorems on this form of conjugacy.

4 The homogenization problem for nested fractals

The homogenization problem for fractals has been treated in [9] and [5]. We consider

a fractal graph, such as the Sierpinski gasket graph in which we take unit equilateral

triangles and extend them to in�nity using the structure of the Sierpinski gasket. The

problem is to assign a random resistor to each edge of the graph and then rescale the

graph according to the appropriate length scale factor. As we iterate this process, does the

e�ective conductivity, renormalized by the appropriate factor, converge? The previous

work on this problem made either strong assumptions about the random variables or

looked at su�ciently simple fractals.

We will consider the class of nested fractals �rst de�ned by [11]. For l > 1, an

l-similitude is a map  : Rd ! R
d such that

 (x) = l�1U(x) + x0; (4.1)

where U is a unitary, linear map and x0 2 R
d. Let  = f 1; : : : ;  mg be a �nite family

of maps where  i is an l-similitude. For B � R
d, de�ne

	(B) =

m[
i=1

 i(B);

and let

	n(B) = 	 � : : : �	(B):

The map 	 on the set of compact subsets of Rd has a unique �xed point F , which is a

self-similar set satisfying F = 	(F ).

As each  i is a contraction, it has a unique �xed point. Let F 00 be the set of �xed

points of the mappings  i, 1 � i � m. A point x 2 F 00 is called an essential �xed point if

there exist i; j 2 f1; : : : ;mg; i 6= j and y 2 F 00 such that  i(x) =  j(y). We write F0 for

the set of essential �xed points. Now de�ne

 i1;:::;in(B) =  i1 � : : : �  in(B); B � R
D:

The set Fi1;:::;in =  i1;:::;in(F0) is called an n-cell. The lattice of �xed points Fn is de�ned

by

Fn = 	n(F0); (4.2)
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and the set F can be recovered from the essential �xed points by setting

F = cl([1n=0Fn):

We can now de�ne a nested fractal as follows.

De�nition 4.1 The set F is a nested fractal if f 1; : : : ;  mg satisfy:
(A1) (Connectivity) For any 1-cells C and C 0, there is a sequence fCi : i = 0; : : : ; ng of

1-cells such that C0 = C;Cn = C 0 and Ci�1 \ Ci 6= ;; i = 1; : : : ; n.

(A2) (Symmetry) If x; y 2 F0, then reection in the hyperplane Hxy = fz : jz � xj =
jz � yjg maps Fn to itself.

(A3) (Nesting) If fi1; : : : ; ing; fj1; : : : ; jng are distinct sequences, then

 i1;:::;in(F )
\

 j1;:::;jn(F ) =  i1;:::;in(F0)
\
 j1;:::;jn(F0):

(A4) (Open set condition) There is a non-empty, bounded, open set V such that the

 i(V ) are disjoint and [
m
i=1 i(V ) � V .

Let  1 denote the similitude which has the origin as a �xed point. We can construct

the pre-fractal, an in�nite graph, by setting G(n) =  �n1 (G0), where G0 is the complete

graph on the essential �xed points F0. The pre-fractal graph is then

G(1) =

1[
n=0

G(n):

Let T n denote the set of translations of G0 in G(n) and de�ne T = [nT n. Then the

in�nite fractal lattice can be written, in terms of translations of the complete graph on

F0, as

G(1) =
[
�2T

�(G0):

We now recall the �xed point problem for nested fractals which we set up as an

eigenvalue problem for a nonlinear map on discrete Dirichlet forms. We let c0 be a set

of conductors on G0, which we can view as an jE0j � jE0j matrix. De�ne the quadratic

form E(0) by

E(0)(f; g) =
1

2

X
x;y2G0

(f(x)� f(y))(g(x) � g(y))c(x; y);

with domain F0 = ff jf : F0 ! Rg.
The renormalization map we are interested in can be de�ned as the composition of

two maps. Let positive real numbers ri be given and set

	(E1; : : : ; EN )(f; g) = E(1)(f; g) =
NX
i=1

r�1i E i(f �  i; g �  i);

for f; g 2 F1 := ff jf : F1 ! Rg. De�ne the renormalized Dirichlet form by taking its

trace on F0,

�(E(1))(f; f) = ~E0(f; f) = inffE(1)(g; g)jg = f on F0g:
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This Dirichlet form is associated with the electrical network on F0 with the e�ective

conductance between vertices of F0 induced by the weighted electrical network F1. The

operation we have described is a nonlinear map on conductors and we can write this as a

map on Dirichlet forms as � = � �	. For a given set of r, the existence problem for the

corresponding Laplace operator on the fractal is solved, if we can �nd a set of conductors

c and a constant � such that

�(E0; : : : ; E0)(f; f) = ~E0(f; f) = �E0(f; f); 8f 2 F0:

The case ri = 1 for all i corresponds to that considered in [11] and for which the ho-

mogenization problem is discussed in [9]. However we can consider the more general

non-symmetric framework here. Conditions for the existence of a �xed point in this case

were determined by [16].

Let P denote the set of positive semide�nite forms on F0 and let D denote the set of

Dirichlet forms on F0. The space B := D � D with norm kEk2 = supfE(f; f)jf 2 F0; <

f; f >= 1g is a Banach space. Let P� be interior of P, the set of irreducible positive

semide�nite forms. A Dirichlet form is said to be irreducible if the only functions for

which E(f; f) = 0 are the constant functions. Thus we have D � P and the set of

irreducible forms in D is D \ P
�. The sets D ;P are cones and we refer to [12] for more

details.

We will be interested in �xed points of the map � which lie in D \ P
� as these

correspond to non-degenerate Laplace operators on the fractal. In order to work with

these �xed points we use Hilbert's projective metric on the cone P. The projective metric

is de�ned on comparable quadratic forms. Two elements E ; E 0 of our cone are comparable

if there exist real constants a; b > 0 such that aE � E 0 � bE . This is an equivalence

relation and the cone can be divided into parts based on this relation. If we take E ; E 0 to
be two non zero comparable elements of our cone, then we can de�ne

h(E ; E 0) = ln
M(E=E 0)

m(E=E 0)
;

where

M(E=E 0) = inffb > 0 : E � bE 0g;

m(E=E 0) = supfa > 0 : aE 0 � Eg:

If E ; E 0 are not comparable, then h(E ; E 0) =1. The function h is called Hilbert's projec-

tive metric, even though it is not a metric. It is not di�cult to see that if we restrict h to

a part of the cone which intersects with the surface of the unit ball in the Banach space

B , then it is a metric. The projective metric, h and the norm k:k are locally equivalent

on the surface of the unit ball in B .

We now consider the renormalization map �, which we can regard as � : PN ! P.

From the de�nitions we have that �(D ; : : : ; D ) � D . By using the fact that the unit ball

in B is compact and Brouwer's �xed point Theorem, the eigenvalue problem can be solved

on the cone of Dirichlet forms.

Lemma 4.2 There exists � 2 R and E 0 2 D such that �(E 0; : : : ; E 0) = �E 0.

13



However this solution does not necessarily correspond to an irreducible Dirichlet form.

From [12], the map is non-expansive on P
�, in Hilbert's projective metric and we can

show, using this metric, that under certain conditions there exists an irreducible �xed

point. >From this point we make the following assumption.

Assumption 4.3 There exists Ê 2 D \ P
� such that �(Ê ; : : : ; Ê) = �Ê.

For nested fractals with conductors invariant under the full symmetry group the existence

was �rst demonstrated in [11], and the uniqueness of E was �rst established by [16] (it is

also shown via an alternative approach in [13]). In [16] conditions are given for existence

and uniqueness in the general case. We note that for the Sierpinski gasket there are

explicit conditions on the weights ri; i = 1; 2; 3 which give existence and uniqueness of

the �xed point in D \ P
�.

Let X
(0)
i be a sequence of D valued random variables. We can place these on the

in�nite nested fractal lattice G(1) to de�ne a random Dirichlet form

E
(1)
0 (f; g) =

X
�2T

X(0)
� (f � �; g � �);

for f; g 2 ff jf : G(1) ! Rg. Our map � can be extended to act on this random form.

Hence we can construct the sequence X(n) as

X(n+1) = ��n�(X
(n)
1 ; : : : ;X

(n)
N );

with associated random form

E(1)
n (f; g) =

X
�2T

X(n)
� (f � �; g � �);

where the X
(n)
� are independent copies of X

(n)
1 . Note that X

(n)
1 is the Dirichlet form on

the unit cell induced by rescaling the lattice by l�n and weighting the cells of the fractal

according to the weights r.

Theorem 4.4 (1). If EkX
(0)
1 kp <1, for some p > 1, then

X
(n)
1 ! X(1); a:s: as n!1;

where X(1) = E 0, a scaled copy of a �xed point E 0 2 D .

(2). If Eh(Ê ;X
(0)
1 )p < 1 and there exists � > 0 such that P (X(0) > �Ê) = 1, then X

(n)
1

converges almost surely to X(1) = Ê where Ê 2 D \ P
� and  > 0. Also the sequence

E
(1)
n of random Dirichlet forms on G(1) converges to Ê

(1)
, the Dirichlet form in which

each unit cell has a copy of Ê.

Proof: As the Banach space is �nite dimensional all norms on B are equivalent and it is

straightforward to show that it is of type p for any 1 � p � 2. Using the fact that there is

a one to one correspondence between the Dirichlet forms and symmetric positive de�nite

matrices it is not di�cult to show that the norm is continuous in the order topology.

The map � is derived from an electrical network and, as shown in [12] Theorem 2.2, it is

concave and homogeneous on P.
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For (1) we note that from Lemma 4.2 there is a �xed point E 0 2 D . By assumption we

have EkX
(0)
1 kp <1 and hence we can apply Theorem 3.1 to deduce the convergence of

the hierarchical sequence. As the limit is constant and satis�es the �xed point equation

it must be a multiple of the �xed point (though it may be the case that  = 0).

For (2), the assumption on the Hilbert distance ensures that our random variables lie

in the same part, and on this part the norm and the Hilbert metric are locally equivalent.

Thus P (X
(0)
1 2 D \ P

�) = 1 and EkX
(0)
1 kp < 1. Again we can apply our result,

Theorem 3.1 to obtain the almost sure convergence. In this case, by our assumption 4.3

the limit X(1) must be a multiple of the non-degenerate �xed point Ê as the limit is a

constant which satis�es the �xed point equation. In order to check that  > 0 we note

that the map � is monotone. Thus, if P (X(0) > �Ê) = 1, then P (X(n) > �Ê) = 1 for all

n and hence for the limit (recall Lemma 3.10).

Remarks: 1. In the case of equal weights, this theorem extends the �rst result obtained

in [9] on the L1 convergence of the e�ective conductance. We do not need the D -valued

random variables to be bounded away from 1 and we obtain an almost sure limit. For

strict positivity of the limit in general we require the same bounded below condition. In

the case of the Vicsek set, a tree like fractal, [5] proved that the limit is strictly positive

provided P (X(0) 2 D \ P
�) = 1.

2. For the Sierpinski gasket, if the weights do not satisfy the condition for the existence

of a unique �xed point, then the e�ective conductivity will converge to a multiple of a

degenerate �xed point. This �xed point only has a non-zero connection between one pair

of vertices.

3. If the �xed point of the map � is not unique, we still have convergence to a limit.

In this case the set of �xed points is arcwise connected and our sequence will converge

(up to a scale factor) to a point in this set. For the Vicsek set, this limit was explicitly

identi�ed in [5].

4. In case (2) the limiting Dirichlet form will correspond to a di�usion on the fractal which

is a deterministic time change of the di�usion corresponding to the Laplace operator Ê
(1)

.

We note that more work is required to prove the weak convergence of the associated

sequence of Markov chains to the di�usion.
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