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Abstract

We describe a strategy which allows one to produce computer assisted proofs

of almost everywhere strong convergence of Jacobi-Perron type algorithms in arbi-

trary dimension. Numerical work is carried out in dimension three to illustrate our

method. To the best of our knowledge this is the �rst result on almost everywhere

strong convergence in dimension greater than two.

1 Introduction

The construction of simultaneous rational approximations to an irrational vector is a

classical problem which has been studied for over a hundred years [15, 24, 22, 21, 7,

5, 25, 28]. By \rational approximation" we mean a sequence of vectors of the form

(
p1(n)

q(n)
; : : : ;

pd(n)

q(n)
) which converge to a vector (!1; : : : ; !d) 2 I

d = [0; 1]d. This convergence

can be understood in two di�erent ways. The sequence converges in a weak sense if

lim
n!1






�
p1(n)

q(n)
; : : : ;

pd(n)

q(n)

�
� (!1; : : : ; !d)





 = 0: (1)

While (1) is a tempting de�nition of convergence, it is not what is really required for

applications. More useful is the following de�nition:

lim
n!1

kq(n)(!1; : : : ; !d)� (p1(n); : : : ; pd(n))k = 0; (2)
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which we call strong convergence. Dirichlet's Theorem ([8]) states that any (!1; : : : ; !d) 2
I
dnQ d has in�nitely many approximations of the form (p1

q
; : : : ;

pd

q
) such that, for 1 � j � d,����!j � pj

q

���� � 1

q
1+1=d

:

This obviously implies the existence of a strongly convergent sequence. Moreover,

kq(!1; : : : ; !d)� (p1; : : : ; pd)k �
p
dq

�1=d
:

However, it is very diÆcult to �nd these approximations which are guaranteed to exist

by Dirichlet's Theorem. Thus it is important to have an algorithm which allows one

to construct strongly convergent approximations. By \algorithm" we mean a procedure

which allows one to calculate �-close strong approximations, i.e. approximations which

satisfy

kq(!1; : : : ; !d)� (p1; : : : ; pd)k < �;

using not more than cj log �j binary operations. Such an algorithm is certainly known in

dimension 1, namely the famous continued fraction algorithm which has many nice prop-

erties. Di�erent generalizations of continued fractions to the multidimensional case have

been known for more than a hundred years. These include the Jacobi-Perron algorithm

(JPA) and other connected algorithms (see [15, 22, 7, 23, 24]). However the properties of

these generalizations are much worse than the properties of continued fractions. For ex-

ample, continued fractions give strongly convergent approximations for every ! 2 [0; 1]nQ
but all known multidimensional algorithms (see [7, 1, 2, 3]) do not have this property.

This means that there always exist \bad" irrational vectors for which there is no strong

convergence [6, 18]. Thus the most one can hope to prove is almost everywhere strong

convergence, i.e. that strong convergence holds for points in a subset of Id of full Lebesgue

measure.

Numerical studies indicate (see [17, 3]) that the Jacobi-Perron algorithm and many

other algorithms have the property of almost everywhere strong convergence in any di-

mension. The only rigorous results concerning strong convergence are for two dimensional

algorithms. Almost everywhere strong convergence for the two dimensional JPA follows

from an old paper of Paley and Ursell [21]. This fact was pointed out by Khanin [16] (see

also Schweiger [29]). A computer assisted proof of almost everywhere strong convergence

for a two dimensional modi�cation of the JPA was independently provided by Fujita, Ito,

Keane and Ohtsuki [14, 11]. Their approach can also be carried out in dimension greater

than two, and this is closely related to our approach. In this paper we consider the same

modi�cation but in higher dimensions. We call this modi�cation the ordered Jacobi-

Perron algorithm (OJPA). For the two dimensional OJPA, as for the two dimensional

JPA, one can prove almost everywhere strong convergence without using a computer (see

Meester [20]). However, at present there are no theoretical results on strong convergence

in dimension greater than two. In fact there is a principle di�erence between two dimen-

sions and higher dimensions. In dimension two one can e�ectively describe the set of bad

vectors, i.e. the vectors for which strong convergence does not hold. For example, in the

case of the JPA these are vectors for which the integer entries produced by the algorithm

grow very fast. At the same time it is known that for high enough dimension (d � 5)
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even noble vectors (i.e. vectors which are �xed points of the algorithm) may be bad.

The di�erence between two dimensions and higher dimensions can also be described on

a more technical level. It turns out that in the case d � 3 strong convergence is due to

the cancellation of positive and negative terms in certain matrix products. The absolute

values of both positive and negative contributions grow exponentially, but their di�erence

is exponentially small, while in dimension two both positive and negative contributions

are exponentially small (see [12]).

The main purpose of this paper is to present a scheme which in principle allows one to

give a rigorous proof of almost everywhere strong convergence for any Jacobi-Perron type

algorithm. We will illustrate our strategy by discussing the OJPA which will be described

in the next section. In our opinion, this version of the JPA is the best generalization

of continued fractions. It shares many properties with the one dimensional case which

makes the study of it easier than the study of other generalizations. For example, it has

an extremely nice natural extension (see [13]). Our scheme consists of two parts. The �rst

part is the reduction of the original problem to the calculation of certain concrete integrals

which give estimates for the Lyapunov exponents. The second part involves carrying out

a �nite number of calculations numerically. In this sense the proof of the �nal result is

computer assisted. In the present paper we deal with the �rst part of the scheme, namely

the reduction part. The rigorous estimation of the Lyapunov exponents is carried out in

a forthcoming paper [12].

Our aim here was to explain a simple approach which leads to a proof. The method is

simple mathematically but not from the point of view of numerical studies. It is actually

possible to use a more advanced scheme for a computer assisted proof but this will be

explained in a forthcoming publication [12].

Acknowledgements. We are very grateful to Carlangelo Liverani for a suggestion

which improved our original approach substantially. This suggestion was made at a con-

ference which was part of the European Science Foundation's PRODYN (Probabilistic

methods in non-hyperbolic dynamics) programme. We thank the European Science Foun-

dation for the opportunity to participate in this programme. We also wish to thank Vi-

viane Baladi and Arnaldo Nogueira for useful discussions. The �rst author is supported

by the Engineering and Physical Sciences Research Council of the UK.

2 The ordered Jacobi-Perron algorithm

The ordered Jacobi-Perron algorithm (OJPA) was �rst introduced by Podsypanin [23] in

two dimensions. It was then considered by Schweiger in arbitrary dimension [26]. We

will de�ne a slight variation of this which is, however, equivalent to Schweiger's version.

In the papers by Podsypanin, Schweiger and others ([23, 26, 14, 11, 20]) this algorithm

was called the modi�ed JPA. However we think that the name ordered JPA describes its

nature more accurately.

Consider the d-dimensional simplex

�d = f! = (!1; : : : ; !d) 2 I
d : 1 � !1 � !2 � � � � � !d � 0g:

De�ne a transformation T : �d ! �d by the following two steps. Firstly, given ! =

(!1; : : : ; !d) 2 �d form the numbers !2

!1
; : : : ;

!d

!1
and f 1

!1
g = 1

!1
� [ 1

!1
] (where fxg and [x]
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denote the fractional and integer parts of x respectively, so that fxg = x� [x]). Secondly,

put f 1
!1
g in the position in the sequence !2

!1
; : : : ;

!d

!1
prescribed by the ordering in the

simplex. More precisely,

T (!1; : : : ; !d) =

8><
>:
(f 1

!1
g; !2

!1
; : : : ;

!d

!1
) if f 1

!1
g > !2

!1
;

(!2
!1
; : : : ;

!j

!1
; f 1

!1
g; !j+1

!1
; : : : ;

!d

!1
) if

!j

!1
> f 1

!1
g > !j+1

!1
;

(!2
!1
; : : : ;

!d

!1
; f 1

!1
g) if !d

!1
> f 1

!1
g.

(3)

De�nition 1. The transformation T is called the ordered Jacobi-Perron transformation

in dimension d.

It can be shown that T is a locally expanding mapping and consequently has nice

ergodic properties. Speci�cally, T , like all other transformations producing Jacobi-Perron

type algorithms, has a unique absolutely continuous invariant probability measure which

is ergodic [26]. One of the main advantages of the ordered Jacobi-Perron algorithm is

that an explicit expression for the density of the invariant measure is known. Indeed, one

can check that the probability measure

�(d!) =
1

K

�(!) d!; (4)

�(!) =
X
�2Sd

1

1 + !�(1)

1

1 + !�(1) + !�(2)

: : :

1

1 + !�(1) + !�(2) + � � �+ !�(d)

is invariant under T . Here Sd is the group of permutations of d symbols and K =R
�d �(!) d!. The fact that we have control over the invariant density is very important

for our method.

We now explain how T can be used to construct rational approximations. Note that

the main reason it can be used for this purpose is that it is expanding and all branches

of T�1 preserve the set of rational vectors (p1
q
; : : : ;

pd

q
).

First de�ne a map m : �d ! N by m(!) = [1=!1]. Also, let j(!) = i where the ith

coordinate of T (!) is f1=!1g.
Consider the trajectory of a point !1 under T , i.e.

!1
T! !2

T! � � � T! !n

T! � � � : (5)

If the sequence (m1; j1); : : : ; (mn; jn) is known, where

mi = m(T i�1
!1); ji = j(T i�1

!1);

then for 1 � i � n it is possible to �nd the point !i�1 for which T (!i�1) = !i. Let S(mi;ji)

denote the inverse of T on the branch speci�ed by (mi; ji). Take the vector (
0
1
; : : : ;

0
1
) as

an approximation to !n, and consider the image of this vector under S(m1;j1) Æ S(m2;j2) Æ
� � � ÆS(mn;jn). Then we obtain a vector (

p1(n)

q(n)
; : : : ;

pd(n)

q(n)
) which is the nth approximation to

!1.

This procedure leads to the following formal description. For eachm 2 N , j = 1; : : : ; d,

let us de�ne a matrix ~
A
(m;j) 2 GL(d+1;Z). The �rst row of ~

A
(m;j) has only two nonzero

entries:

a1;1 = m; a1;j+1 = 1:
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All other rows have only one nonzero entry, which is equal to 1. In fact, ai;i�1 = 1 for

i = 2; : : : ; j + 1 and ai;i = 1 for i = j + 2; : : : ; d+ 1. In short,

~
A
(m;j) =

0
BBBBBBBBBBBBB@

m 0 : : : 0 1 0 : : : 0 0

1 0 : : : 0 0 0 : : : 0 0

0 1 : : : 0 0 0 : : : 0 0
...

...
. . .

...
...

...
...

...

0 0 : : : 1 0 0 : : : 0 0

0 0 : : : 0 0 1 : : : 0 0
...

...
...

...
...

. . .
...

...

0 0 : : : 0 0 0 : : : 1 0

0 0 : : : 0 0 0 : : : 0 1

1
CCCCCCCCCCCCCA
: (6)

Now de�ne A(m;j) = ( ~A(m;j))t where At denotes the transpose of A. De�ne

Cn = A
(mn ;jn) � � �A(m2;j2)

A
(m1;j1)

; (7)

where mi = m(T i�1
!1), ji = j(T i�1

!1). Then the �rst row of Cn gives the numerators

and the denominator of the approximation of the nth step described above. More precisely,

if the �rst row of Cn is (c
(n)
1;1 ; : : : ; c

(n)

1;d ; c
(n)

1;d+1) then�
p1(n)

q(n)
; : : : ;

pd(n)

q(n)

�
=

�
c

(n)
1;2

c

(n)
1;1

; : : : ;

c

(n)

1;d+1

c

(n)
1;1

�
:

The other rows of Cn correspond to approximations which were obtained previously, i.e.,

approximations (
p1(n

0)

q(n0)
; : : : ;

pd(n
0)

q(n0)
) where n0 < n. The d+1 rows of Cn give d+1 points in

�d which form a simplex �(n) which contains !1. In some sense the whole simplex �(n)

is the rational approximation to !1.

We introduce a matrix valued function A : �d ! GL(d + 1;Z) de�ned by A(!) =

A
(m(!);j(!)). Then

Cn = A(T n�1
!1) � � �A(T!1)A(!1):

Since the approximations are constructed through the product of matrices along the tra-

jectory of an ergodic dynamical system, it is clear that the typical quality of approxi-

mations will depend crucially on the corresponding Lyapunov exponents. This will be

explained in more detail in section 3.

We �nish this section with two de�nitions which are used in the rest of the paper. For

x = (x1; : : : ; xd) 2 Rd we set kxk =Pd

j=1 jxjj.

De�nition 2. A sequence of rational vectors xn = (
p1(n)

q(n)
; : : : ;

pd(n)

q(n)
) is said to be conver-

gent to ! in the weak sense if

k! � xnk ! 0 as n!1: (8)

The sequence is exponentially convergent to ! in the weak sense if there exist constants

K > 0; � > 0 such that

k! � xnk � Kq(n)��: (9)
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De�nition 3. A sequence of rational vectors xn = (
p1(n)

q(n)
; : : : ;

pd(n)

q(n)
) is said to be strongly

convergent to ! if

kq(n)! � (p1(n); : : : ; pd(n))k ! 0 as n!1: (10)

The sequence is exponentially strongly convergent to ! if there exist constants K > 0; � >

0 such that

kq(n)! � (p1(n); : : : ; pd(n))k � Kq(n)��: (11)

As we will see later, the denominators q(n) grow exponentially with n for almost all

!, and this explains the word exponential in the above de�nitions.

In section 4 we prove that for almost all ! 2 �d the OJPA provides approximations

which are exponentially convergent to ! in the weak sense. The geometrical meaning of

convergence in the weak sense and in the strong sense is the following. Weak convergence

means that (q(n); p1(n); : : : ; pd(n)) converges to (1; !1; : : : ; !d) in the directional sense,

i.e. the angle between the two vectors converges to 0 as n ! 1. Strong convergence

means that the vector (q(n); p1(n); : : : ; pd(n)) itself converges to the ray

�! = f�(1; !1; : : : ; !d) : � > 0g

de�ned by the vector (1; !1; : : : ; !d) (see [6, 18]).

3 Lyapunov exponents and strong convergence

In this section we prove a general theorem which is similar to Theorem 4.1 of [18]. How-

ever, our aim is to establish conditions for exponential strong convergence while Lagarias

studies exponents which characterise the quality of approximations. We will comment on

the connections with Lagarias' Theorem in more detail in the conclusions.

The result which we prove in this section is quite general. It applies not just to the

OJPA, but to general approximation schemes based on the product of matrices A(!) 2
GL(d+1;Z) along the trajectory of a transformation T of 
 � [0; 1]d. As in the previous

section, we write Cn(!) = A(T n�1
!) � � �A(T!)A(!) and set

x
(n)

j
=

�
c

(n)
j;2

c

(n)
j;1

; : : : ;

c

(n)

j;d+1

c

(n)
j;1

�
:

We consider x
(n)
1 as the nth approximation to ! and sometimes denote it by

xn =

�
p1(n)

q(n)
; : : : ;

pd(n)

q(n)

�

where q(n) = c

(n)
1;1 and pi(n) = c

(n)

1;i+1.

We will suppose that T and the matrix valued function A(!) satisfy the following

conditions:
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(P1) T is ergodic with respect to an invariant probability measure �(d!).

(P2) � is equivalent to Lebesgue measure.

(P3) The matrices A(!) are nondegenerate and have non-negative entries for �-almost

all !.

(P4)
R


log(max(kA(!)k; 1))�(d!) <1.

(P5) For �-almost all ! 2 
, a11(!) > 0 and for all 2 � i � d + 1 there exists

1 � k � d+ 1 such that

aij(!) =

(
0 if j 6= k;

1 if j = k.

(P6) There exists a matrixM 2 GL(d+1;Z) with strictly positive elements such that

l(! 2 
 : 9k > 0 such that Ck(!) = M) > 0 (12)

where l denotes Lebesgue measure on 
.

(P7) There exists a constant c0 > 1 such that for almost all ! there exists n0(!) such

that for all n � n0(!)

max
1�j�d+1

k! � x
(n)

j
k � c

�n

0 : (13)

Condition (P5) is technical and it holds for most algorithms which are considered in

this area. It implies that the denominator q(n) = c

(n)
1;1 of xn is the largest element of the

�rst column of Cn. As we will see (P5) and (P6) imply that for almost all ! for large

enough n all rows of Cn correspond to some approximation xm = x
(m)
1 , where m < n.

Denote


M;k = f! 2 
 : Ck(!) =Mg:
De�ne nM;k(!) to be the number of visits to the set 
M;k by the trajectory T

i(!), 0 �
i � n� 1, i.e.

nM;k(!) =

n�1X
i=0

�M;k(T
i
!); (14)

where �M;k(!) is the indicator function of the set 
M;k:

�M;k(!) =

(
1 if ! 2 
M;k;

0 if ! =2 
M;k.

Lemma 1. Suppose (P1), (P2) and (P6) hold. Then there is k > 0 such that for almost

all ! 2 


lim
n!1

nM;k(!)

n

= �(
M;k) > 0: (15)

Proof. It follows from (12) that there exists k > 0 such that l(
M;k) > 0. Hence, by (P2),

�(
M;k) > 0. By Birkho�'s Ergodic Theorem, for almost all ! 2 


lim
n!1

nM;k(!)

n

= �(
M;k) > 0:
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Denote

k(!) = minfk : A(T k�1
!) � � �A(T!)A(!) is strictly positiveg

and set k(!) = +1 if no such k exists.

Corollary 1. If (P1)-(P3) and (P6) hold then k(!) is �nite for almost all !.

Proof. Notice that if T i
! 2 
M;k then all entries of the matrix

Ck+i(!) = Ck(T
i
!)Ci(!)

are positive.

If (P1) and (P4) hold then one can de�ne Lyapunov exponents �1 � �2 � � � � � �d+1

in the usual way (see [30]). The following theorem is connected to Theorem 4.1 of [18].

Theorem 1. Suppose (P1)-(P7) hold. Then:

(i) the largest Lyapunov exponent �1 is greater than 0 and is simple, i.e., it has mul-

tiplicity 1;

(ii) for almost all ! 2 
,

lim
n!1

1

n

log q(n) = �1;

(iii) for Lebesgue almost all ! the sequence of approximations xn is exponentially

strongly convergent to ! if and only if �2 < 0.

Proof. The proof of (i) is the same as in the proof of Theorem 4.1 of [18]. It also follows

from this proof that for almost all ! the vector e1 = (1; 0; : : : ; 0) 2 Rd+1 does not belong

to the space E2(!) corresponding to the Lyapunov exponents �2 � �3 � � � � � �d+1.

Since the �rst column of Cn, 0
BBBB@

c

(n)
1;1

c

(n)
2;1
...

c

(n)

d+1;1

1
CCCCA = Cne1

we get 











0
BBBB@

c

(n)
1;1

c

(n)
2;1
...

c

(n)

d+1;1

1
CCCCA












= exp(�1n(1 + o(1))): (16)

As was mentioned above, property (P5) implies that q(n) = c

(n)
1;1 is the largest element of

the �rst column. Hence, for Lebesgue almost all !,

q(n) = exp(�1n(1 + o(1))): (17)
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Statement (ii) follows immediately from (17). The following formula was also proved in

[18]:
d+1X
i=1

dX
j=1

jc(n)
i;1 !j � c

(n)

i;j+1j = exp((�2 + o(1))n): (18)

It follows from (18) that for all i

dX
j=1

jc(n)
i;1 !j � c

(n)
i;j+1j � exp((�2 + o(1))n): (19)

This, together with (17), immediately implies

kq(n)! � (p1(n); : : : ; pd(n))k � q(n)
�2+o(1)

�1(1+o(1)) = q(n)
�2+o(1)

�1 : (20)

This implies statement (iii) in the case �2 < 0. Moreover, the constant � in De�nition 3

can be taken as ��2

�1
� � for any � > 0.

Finally, if �2 � 0 then from (18), for at least one i,

dX
j=1

jc(n)
i;1 !j � c

(n)

i;j+1j = exp((�2 + o(1))n): (21)

Conditions (P5) and (P6) imply that for n large enough every row of Cn corresponds to

some approximation xm(n), m(n) � n. Corollary 1 implies that m(n) ! 1 as n ! 1.

Moreover one can show that with probability 1 for n large enough m(n) � �n, 1 > � > 0.

Indeed it follows from Lemma 1 that

nM;k �
3

4
�(
M;k)n

for n large enough. Denote

in;M;k = maxfi : 0 � i � n� k; T
i
! 2 
M;kg:

It is easy to see that m(n) > in;M;k. Notice that in;M;k � nM;k � k. Hence for n large

enough

m(n) > nM;k � k > �n;

where � = �(
M;k)=2. It follows from (21) that

kq(m(n))(xm(n) � !)k = exp((�2 + o(1))n):

Since q(m(n)) = exp(�1(1 + o(1))m(n)) one has

kq(m(n))(xm(n) � !)k = q(m(n))
(�2+o(1))n

�1(1+o(1))m(n)
: (22)

It follows from (22) that with probability 1 there is no exponential strong convergence.

Indeed if �2 > 0 then the exponent

Æ =
(�2 + o(1))n

�1(1 + o(1))m(n)

is also positive for n large enough. If �2 = 0 then Æ = o(1) since 1 � n

m(n)
� 1

�
for n large

enough.
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We �nish this section by checking that conditions (P1)-(P7) are satis�ed for the OJPA.

(P1) follows from [26] (see also [19]). (P2) follows immediately from the formula (4) for

the invariant measure �. (P3) is obvious since j detA(!)j = 1. In order to check (P4)

notice that kA(!)k = [ 1
!1
] + 1 where

kAk = max
1�j�d+1

d+1X
i=1

aij:

Using the explicit formula for � we can easily check thatZ
�d

log

�
1

!1

�
�(d!) <1:

(P5) is obvious. Property (P6) is considered in the following lemma.

Lemma 2. Property (P6) holds for the JPA and the OJPA.

Proof. Consider the \golden" vector !G which is de�ned by the properties T (!G) = !G,

m(!G) = 1 and j(!G) = d. It is easy to show that !G = (!; !2
; : : : ; !

d) where 0 < ! < 1

is the only positive root of the equation !d+1+!�1 = 0. Notice that in a neighbourhood

of !G the transformations corresponding to the JPA and the OJPA coincide. Using the

fact that Cn(!G) = (A(1;d))n, one can check that all the elements of C2d(!G) are positive.

Take M = C2d(!G). Since for all ! in a small enough open neighbourhood of !G,

C2d(!) = C2d(!G) = M we have

l(! 2 
 : C2d(!) =M) > 0:

In the next section we will prove that property (P7) holds for the OJPA.

4 Exponential convergence in the weak sense

Since q(n) grows exponentially, property (P7) is equivalent to the exponential convergence

in the weak sense of x
(n)
j
, 1 � j � d + 1, to the vector !. We will show in this section

that convergence in the weak sense is a Perron-Frobenius type property which basically

follows from the positivity of the matrices

Ck(!) = A(T k�1
!) � � �A(T!)A(!)

for large k. However, there is a small problem connected to the fact that the matrices

A(!) are only non-negative. This diÆculty can be overcome by the use of condition (P6).

Consider n large enough so that the �rst column of Cn is positive, i.e.,

min
1�j�d+1

c

(n)

j;1 > 0:
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Then the approximations

x
(n)
i

=
1

c

(n)
i;1

(c
(n)
i;2 ; c

(n)
i;3 ; : : : ; c

(n)

i;d+1); 1 � i � d+ 1;

are de�ned. The points x
(n)
i
2 I

d, 1 � i � d+ 1, are the vertices of the simplex

�n = fy 2 Rd : y =

d+1X
i=1

�ix
(n)
i
; �i � 0;

d+1X
i=1

�i = 1g: (23)

Denote

diam�n = max
1�i;j�d+1

kx(n)

i
� x

(n)

j
k:

Theorem 2. Suppose that (P1)-(P6) hold. Then there exists a constant 0 < 
 < 1 such

that, for almost all !,

diam�n � 

n (24)

for all n large enough.

Proof. The simplex �n is formed by the rows of the matrix

Cn(!) = A(T n�1
!) � � �A(T!)A(!): (25)

We write Ai = A(T i
!), 0 � i � n� 1. It follows from Lemma 1 that for almost all ! and

for n large enough nM;k(!) > �n where � = �(
M;k)=2. De�ne

In = fi : 0 � i � n� 1; T i(!) 2 
M;kg:

Then for n large enough, the set In contains at least �n elements. Denote t1 = minfi :
i 2 Ing and tl+1 = minfi : i 2 In; i � tl + kg for l � 1. Suppose there are n0 + 1 elements

in the sequence ftlg, n0 � [�n
k
] � 1. For each tl, except for the last one, we replace the

matrices Atl+k�1; : : : ; Atl
in the product (25) by the single matrix M . Then

Cn = Bm�1 � � �B0; m = n� n
0(k � 1); (26)

where each Bs, 0 � s � m� 1, is equal either to some matrix Aj, 0 � j � n� 1, or to M .

Clearly, there are n0 matrices M in the product (26). Denote the matrix elements of Bs

by bs(i; j), 1 � i; j � d + 1. For each 0 � s � m consider the index j as a spin variable

js taking values 1; 2; : : : ; d+ 1. De�ne a probability distribution

P (jm; jm�1; : : : ; j0) =
1

Z

m�1Y
s=0

bs(js+1; js); (27)

where

Z =
X

1�j0;j1;:::;jm�d+1

m�1Y
s=0

bs(js+1; js): (28)

11



Denote by Pt(jt; : : : ; j0jjm = j) the conditional distribution for the �rst t+ 1 spins under

the condition jm = j. It is easy to see that up to normalization the jth row of Cn(!) is

equal to P0( � jjm = j):

P0(j0jjm = j) =
c

(n)

j;j0P
d+1

i=1 c
(n)

j;i

; 1 � j0 � d+ 1: (29)

Denote by 0 < dt(j; j
0) < 1 the variational distance between Pt( � jjm = j) and Pt( � jjm =

j
0):

dt(j; j
0) =

1

2

X
1�jt;:::;j0�d+1

jPt(jt; : : : ; j0jj)� Pt(jt; : : : ; j0jj 0)j: (30)

Statements (31) and (32) below are well known (see [9]). For �xed j; j
0 the sequence

dt(j; j
0) satis�es

dt�1(j; j
0) � dt(j; j

0); 1 � t � m� 1: (31)

Suppose now that Bt = M . Then there exists a constant 0 < Æ < 1 such that

dt(j; j
0) � Ædt+1(j; j

0): (32)

It follows from (31) and (32) that

d0(j; j
0) � Æ

n0 � Æ

�n
k
�2 =

1

Æ
2
Æ
n

1 ; (33)

where Æ1 = Æ

�
k . The vertices of �n correspond to the vectors

x
(n)
j

=
1

c

(n)
j;1

(c
(n)
j;2 ; : : : ; c

(n)

j;d+1); 1 � j � d+ 1: (34)

Consider the (d+ 1)-dimensional vectors

y
(n)
j

= (1;x
(n)
j
); z

(n)
j

=
c

(n)

j;1P
d+1

i=1 c
(n)

j;i

y
(n)
j
: (35)

It is easy to see that

z
(n)
j

= (P0(1jj); P0(2jj); : : : ; P0(d+ 1jj)): (36)

Hence

kz(n)
j
� z

(n)

j0 k = 2d0(j; j
0) � 2

Æ
2
Æ
n

1 ; 1 � j; j
0 � d+ 1: (37)
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Denote c
(n)
j

=
P

d+1

i=1 c
(n)
j;i
. Since y

(n)
j

=
c
(n)
j

c
(n)
j;1

z
(n)
j

we have

ky(n)
j
� y

(n)

j0 k =





c

(n)
j

c

(n)
j;1

z
(n)
j
�

c

(n)

j0

c

(n)

j0;1

z
(n)

j0







�

c

(n)

j

c

(n)

j;1

kz(n)
j
� z

(n)

j0 k+
�����c

(n)

j

c

(n)

j;1

�
c

(n)

j0

c

(n)

j0;1

�����
=

c

(n)

j

c

(n)

j;1

kz(n)
j
� z

(n)

j0 k+
�����c

(n)

j0;1

c

(n)

j0

�
c

(n)

j;1

c

(n)

j

����� c
(n)

j

c

(n)

j;1

c

(n)

j0

c

(n)

j0;1

�
c

(n)
j

c

(n)
j;1

�
c

(n)

j0

c

(n)

j0;1

+ 1

�
kz(n)

j
� z

(n)

j0 k:

(38)

In the last inequality we have used the following trivial fact:�����c
(n)
j;1

c

(n)
j

�
c

(n)

j0;1

c

(n)

j0

����� � kz(n)
j
� z

(n)

j0 k:

It follows from (P5) that c
(n)
1;1 = exp(�1n(1+o(1))). Since c

(n)
1 > c

(n)
1;1 and c

(n)
1 � exp(�1n(1+

o(1))) we conclude that c
(n)
1 = exp(�1n(1 + o(1))). Hence

0 <
c

(n)
1;1

c

(n)
1

= e
no(1)

< 1:

Since �����c
(n)
1;1

c

(n)
1

�
c

(n)
j;1

c

(n)

j

����� � kz(n)1 � z
(n)

j
k � 2

Æ
2
Æ
n

1 ; (39)

we have

0 <
c

(n)

j;1

c

(n)

j

= e
no(1)

< 1; 1 � j � d+ 1: (40)

Using (37), (38) and (40) one has

kx(n)

j
� x

(n)

j0 k = ky(n)
j
� y

(n)

j0 k � e
no(1)

e
(log Æ1)n = e

n(log Æ1+o(1))
: (41)

This implies (24) for all Æ1 < 
 < 1.

The estimate (24) implies (P7) if ! 2 �n for all n large enough. As it is proved

below, this property holds for all Jacobi-Perron type algorithms. In order to prove it in

the general setting one has to impose additional conditions on the transformation T and

the matrix valued function A(!) which will guarantee that ! 2 �n when �n is de�ned.

We make the following assumptions about the transformation T (see [27]). Suppose

T (!1; : : : ; !d) =

�
L1(!) + b1

L0(!) + b0

; : : : ;

Ld(!) + bd

L0(!) + b0

�
(42)
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where b0; b1; : : : ; bd are piecewise constant functions on 
 and L0; L1; : : : ; Ld are linear

forms on 
 with piecewise constant coeÆcients, i.e.,

Li(!) =

dX
j=1

lij!j; 0 � i � d;

where lij are piecewise constant functions. Denote T (!) = (!01; : : : ; !
0
d
). Clearly, (42) can

be written in the form

(L0(!) + b0)

0
BBB@

1

!
0
1
...

!
0
d

1
CCCA = D(!)

0
BBB@

1

!1

...

!d

1
CCCA (43)

where D(!) = (dij) is the piecewise constant matrix valued function on 
 given by

dij =

(
bi�1 if j = 1;

li�1;j�1 if j 6= 1,
1 � i; j � d+ 1.

The matrices A(!) have to be connected with D(!) in order to produce good rational

approximations. We will formulate this connection as condition (P8):

(P8) T satis�es (42) and A(!) = (D�1(!))t.

This condition is clearly satis�ed for the JPA and the OJPA, since the construction

of A is based on the procedure explained above. In both cases L0(!) = !1 and b0 = 0.

Notice that (P5), (P8) imply L0(!) + b0 > 0.

Let �n denote the closed cone in Rd+1 generated by the rows of Cn(!):

�n = f(z1; : : : ; zd+1) 2 Rd+1 : (z1; : : : ; zd+1) =

d+1X
j=1

�j(c
(n)
j;1 ; : : : ; c

(n)

j;d+1); �j � 0g: (44)

Denote ~! = (1;!) = (1; !1; : : : ; !d) 2 Rd+1 .

Lemma 3. Suppose that (P5) and (P8) hold. Then, for almost all ! 2 
, ~! 2 �n for

all n � 1.

Proof. Denote !(i) = T
i(!) and ~!(i) = (1;!(i)) for i � 0. It follows from (43) that for

i � 1

~!(i)
A(!(i�1)) =

1

L0(!(i�1)) + b0

~!(i�1)
:

Hence

~!(n)
A(!(n�1)) � � �A(!(0)) =

n�1Y
i=0

�
1

L0(!(i)) + b0

�
~!(0)

: (45)

Denote �(n)(!) =
Q

n�1

k=0(L0(!
(k)) + b0). Then (45) can be rewritten as

�
(n)(!)~!(n)

Cn(!) = ~!(0)
: (46)
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It follows from (46) that

~! = ~!(0) =

d+1X
j=1

�
(n)(!)~!

(n)

j
(c

(n)

j;1 ; : : : ; c
(n)

j;d+1); (47)

where ~!
(n)

j
are the components of the vector ~!(n), i.e., ~!(n) = (~!

(n)
1 ; : : : ; ~!

(n)

d+1). Since

~!
(n)
j

� 0, 1 � j � d+ 1, and �
(n)(!) > 0, (47) implies the Lemma.

The following Corollaries are immediate consequences of Lemma 3.

Corollary 2. Suppose that (P5) and (P8) hold. If �n is de�ned, i.e. min1�j�d+1 c
(n)
j;1 > 0,

then ! 2 �n.

Proof. Consider the rays �j = f(z1; : : : ; zd+1) = �(c
(n)

j;1 ; : : : ; c
(n)

j;d+1) : � > 0g, 1 � j � d+1.

Notice that the vertices x
(n)
j

of �n correspond to the points of intersection of �j with the

hyperplane z1 = 1. Since ~! = (1;!) belongs to �n it follows that ! 2 �n.

Corollary 3. (P1)-(P6), (P8) imply (P7).

Proof. Since ! 2 �n, we have for almost all !

max
1�j�d+1

k! � x
(n)
j
k � diam�n � 


n
; 0 < 
 < 1:

Corollary 4. (P7) holds for the OJPA.

Remark. It follows from property (P7) that, for almost all !, the sequence of approxima-

tions xn exponentially converges to ! in the weak sense. Indeed, since k!�xnk � 

n and

q(n) = exp(�1n(1 + o(1))), we have k! � xnk � q(n)
log 


�1(1+o(1)) , which implies exponential

convergence in the weak sense.

5 Analysis of Lyapunov exponents

It follows from Theorem 1 that in order to have exponential strong convergence almost

everywhere one has to show that �2 < 0.

It is well known that the calculation of Lyapunov exponents is a hard problem. There

are no general formula to calculate them. However, there are several general methods

which give rigorous estimates of Lyapunov exponents.

We start with a method which is based on the extension of the matrices A to their

action on s-forms. It is well known (see [4, 10]) that the largest Lyapunov exponent

corresponding to such an extension is equal to �1 + � � � + �s where �1; : : : ; �s are the s

largest Lyapunov exponents for (T;A(!)). Below we will formulate this more precisely

for the case s = 2.

Consider the linear transformation in Rd+1 generated by A(!), i.e.,

x 7! A(!)x:
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Recall that a 2-form on Rd+1 is a bilinear skew-symmetric function on a pair of vectors,

�(x;y). Denote by F the (d+1)d=2-dimensional linear space of 2-forms on Rd+1 . Consider

the natural basis in F , ei;j = xi ^ xj for 1 � i < j � d + 1. We can de�ne a linear

transformation in F generated by A(!), namely

Â(!)�(x;y) = �(A(!)x; A(!)y):

We write Âi(!) = Â(T i�1
!) and Ai(!) = A(T i�1

!). De�ne

Ĉn(!) = Â1(!) Æ � � � Æ Ân(!):

Clearly,

Ĉn(!)�(x;y) = �(An(!) � � �A1(!)x; An(!) � � �A1(!)y):

Obviously the operator Ĉn(!) has the property

Ĉn+m(!) = Ĉn(!) Æ Ĉm(T
n
!): (48)

Take an arbitrary norm in F . This norm obviously generates a norm in L(F ;F). Denote

fn(!) = log kĈn(!)k:

Property (48) implies that fn(!) is a subadditive function, i.e.,

fn+m(!) � fn(!) + fm(T
n
!):

It follows from (P4) that f1 2 L
1(
; d�). Hence by Kingman's Subadditive Ergodic

Theorem, for almost all !, the following limit exists:

lim
n!1

fn(!)

n

= lim
n!1

1

n

log kĈn(!)k = F:

Moreover

F = lim
k!1

1

k

Z



fk(!)�(d!)

and, for arbitrary k > 0,

F � 1

k

Z



fk(!)�(d!):

Note that F does not depend on the choice of norm on F since all norms in L(F ;F) are
equivalent.

The following theorem is well known (see [4, 10]). However we will provide a proof.

Theorem 3. Suppose (P1), (P3) and (P4) hold. Then

F = �1 + �2:
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Proof. Take a measurable orthonormal basis fe1; : : : ; ed+1g of Rd+1 such that

lim
n!1

1

n

log kAn � � �A1eik = �i:

(We have dropped the dependence on ! in the notation). The existence of such a basis

follows from Oseledec's Multiplicative Ergodic Theorem. Here fe2; : : : ; ed+1g is a basis of
the space

E2 = fx : lim
n!1

1

n

log kAn � � �A1xk � �2g:

Fix a norm in F generated by the norm in Rd+1 � Rd+1 given by

k(x;y)k = max(kxk; kyk)

where kxk =
q
x
2
1 + � � �+ x

2
d+1; kyk =

q
y
2
1 + � � �+ y

2
d+1. Let x;y 2 Rd+1 be arbitrary

vectors with kxk = 1; kyk = 1. They can be uniquely written as x = ae1 + x1;y =

be1 + y1 where x1;y1 2 E2 and kx1k � 1; ky1k � 1; jaj � 1; jbj � 1. Then, since

�(An � � �A1ae1; An � � �A1be1) = 0, we have

j�(An � � �A1x; An � � �A1y)j � j�(An � � �A1ae1; An � � �A1y1)j
+ j�(An � � �A1x1; An � � �A1be1)j
+ j�(An � � �A1x1; An � � �A1y1)j

� jajk�kkAn � � �A1e1kkAn � � �A1y1k
+ jbjk�kkAn � � �A1x1kkAn � � �A1e1k
+ k�kkAn � � �A1x1kkAn � � �A1y1k

� e
�1n(1+o(1))

e
�2n(1+o(1))

:

The last inequality is uniform in �;x;y with kxk = 1; kyk = 1; k�k = 1. Hence

lim
n!1

1

n

log kĈnk = lim
n!1

supk�k=1 supkxk=1 supkyk=1 log j�(An � � �A1x; An � � �A1y)j
n

� lim
n!1

(�1 + �2)(1 + o(1)) = �1 + �2:

To prove the inequality from the other side, consider the vectors

ei(n) = An � � �A1ei; 1 � i � d+ 1:

Let �n be the parallelepiped generated by (e1(n); : : : ; ed+1(n)) and let Pn be the paral-

lelogram de�ned by e1(n); e2(n). Denote the (d+1)-dimensional volume of �n by Vn and

the 2-dimensional area of Pn by Sn. It follows from Oseledec's Theorem that

Vn = det(An � � �A1) = e
(�1+���+�d+1)n(1+o(1))

:

Since

Vn � Snke3(n)k : : : ked+1(n)k;
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we have

Sn �
VnQ

d+1

i=3 kei(n)k
=

e
(�1+���+�d+1)n(1+o(1))Q

d+1

i=3 e
�in(1+o(1))

= e
(�1+�2)n(1+o(1))

:

Notice that X
1�i<j�d+1

jxi ^ xj(e1(n); e2(n))j2 = S
2
n
:

Hence for at least one xi ^ xj

jxi ^ xj(An � � �A1e1; An � � �A1e2)j �
Snq
(d+1)d

2

:

Clearly kxi ^ xjk = 1. Thus

kĈnk �
p
2Snp

d(d+ 1)
;

which implies

lim
n!1

log kĈnk
n

� lim
n!1

log e(�1+�2)n(1+o(1))

n

= �1 + �2:

We next show that if (P8) holds then �1 can be found explicitly. This fact is also well

known (see [14]).

Lemma 4. Under conditions (P1), (P3)-(P5), (P8),

�1 = �
Z



log(L0(!) + b0)�(d!): (49)

Proof. Consider again the sequence of vectors !(i) = T
i
!, i � 0, and the vectors ~!(i) =

(1;!(i)). Formula (45) implies that

n�1Y
i=0

1

L0(!(i)) + b0

=

d+1X
j=1

~!
(n)

j
c

(n)

j;1 = c

(n)
1;1 +

d+1X
j=2

!

(n)

j
c

(n)

j;1 : (50)

Since c
(n)
1;1 = max1�j�d+1 c

(n)
j;1 = exp(�1n(1 + o(1))), and 0 � !

(n)
j

� 1, 1 � j � d + 1, it

follows from (50) that

n�1Y
i=0

1

L0(!(i)) + b0

= exp(�1n(1 + o(1))): (51)

Properties (P3)-(P5) imply that 1
L0(!)+b0

2 L
1(
; d�). Hence, by Birkho�'s Ergodic

Theorem,
n�1Y
i=0

1

L0(!(i)) + b0

= exp(�n(1 + o(1))) (52)

where

� =

Z



log

�
1

L0(!) + b0

�
�(d!) = �

Z



log(L0(!) + b0)�(d!):

Comparing (51) and (52) we get �1 = �.
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Summarising the results of this section we can prove

Theorem 4. Suppose (P1)-(P6), (P8) hold. Then the algorithm is exponentially strongly

convergent almost everywhere if and only if there exists k such that

1

k

Z



fk(!)�(d!) < �1 = �
Z



log(L0(!) + b0)�(d!): (53)

Proof. If (53) holds then obviously

�1 + �2 = F � 1

k

Z



fk(!)�(d!) < �1:

Hence �2 < 0, which implies exponentially strong convergence.

On the contrary, if

1

k

Z



fk(!)�(d!) � �
Z



log(L0(!) + b0)�(d!);

for all k then

�1 + �2 = F = lim
k!1

1

k

Z



fk(!)�(d!) � �1

which implies �2 � 0.

6 Numerical results in dimension 3

In this section we will present numerical results which imply that in dimension 3 the OJPA

is exponentially strongly convergent with probability 1. As explained in the introduction,

this scheme can in principle be used to prove exponential strong convergence in any

dimension.

Basically, one has to �nd k such that

1

k

Z
�3

log kĈk(!)k�(d!) < �
Z
�3

log(!1)�(d!): (54)

The notation is that of the previous section applied to the OJPA in the case d = 3. Notice

that it is enough to prove this inequality for an arbitrary norm in the space of 2-forms.

Since �(d!) is known explicitly and kĈk(!)k is a well de�ned function on �3 one can

�nd the integrals in (54) with arbitrary precision.

Lemma 5.

�
Z
�3

log(!1)�(d!) = 0:4897219015� (0:5� 10�9):

Proof. The invariant measure is given by

�(d!) =
1

K

�(!1; !2; !3) d!1d!2d!3
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where

�(!1; !2; !3) =
1

1 + !1 + !2 + !3

�
1

(1 + !1)(1 + !1 + !2)
+

1

(1 + !1)(1 + !1 + !3)

+
1

(1 + !2)(1 + !2 + !1)
+

1

(1 + !2)(1 + !2 + !3)

+
1

(1 + !3)(1 + !3 + !1)
+

1

(1 + !3)(1 + !3 + !2)

�

and

K =

Z
�3

�(!1; !2; !3) d!1d!2d!3:

We have

�
Z
�3

log(!1)�(d!) = � 1

K

Z 1

0

Z
!1

0

Z
!2

0

log(!1)�(!1; !2; !3) d!3d!2d!1

= � 1

0:1668786238
��0:08172411697

= 0:4897219015:

(The calculations were performed using Maple V Release 5).

Consider the basis eij = xi ^ xj, 1 � i < j � 4 of the space F of 2-forms on R4 :

eij(ei; ej) = 1; eij(ej; ei) = �1 and eij(ek; el) = 0 if (k; l) 6= (i; j); (j; i)

where fe1; e2; e3; e4g is the standard basis of R4 . Any 2-form � 2 F can be written as

� =
X

1�i<j�4

�ijeij; �ij 2 R:

We use the standard norm on F which is de�ned by

k�k =
X

1�i<j�4

j�ijj:

By looking at the action of Â on the basis of F we can obtain a matrix representation of

Â. We write

Âekl =
X

1�i<j�4

�ijeij:

Note that �ij = Âekl(ei; ej). By the de�nition of Â, we �nd

Âekl(ei; ej) = ekl(Aei; Aej) = akialj � aliakj:

Thus

�ij = akialj � aliakj:

This allows us to �nd an explicit matrix representation of Â, and hence of Ĉk.
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Lemma 6. For k=20,

1

k

Z
�3

log kĈk(!)k�(d!) = 0:44� 0:01: (55)

We have found the integral above using a Monte-Carlo integration scheme. Lemmas

5 and 6 indicate that condition (53) is satis�ed. By changing the norm in (55), one can

probably reduce the value of k for which (53) is satis�ed from 20 to 15, but not much

further. As it was mentioned in the introduction, the rigorous calculation of (55) will

be carried out in [12]. Since Monte-Carlo methods do not provide rigorous bounds we

formulate our result as a

\Theorem" 5. In dimension 3, the OJPA is exponentially strongly convergent almost

everywhere.

7 Conclusions

In this paper we have presented a numerical scheme which in principle can provide a

rigorous proof of exponentially strong convergence of the OJPA in arbitrary dimension.

The scheme we present is simple from the theoretical point of view, although numerically

it can be substantially improved (see [12]). The main advantage of the OJPA in this

setting is the existence of a formula for the density of the invariant measure, but this

is not the only advantage. As we will explain in [12] the OJPA shares many other nice

properties with one dimensional continued fractions.

Our scheme could in principle be made to work for the JPA itself provided we have

a good approximation to the invariant measure. At the same time, almost everywhere

strong convergence of the JPA, OJPA and other algorithms seems to be a conceptual

fact and ideally a proof of this should not rely on the evaluation of concrete numbers.

Unfortunately, such a conceptual proof is lacking at present.

Lagarias has considered two exponents � and �
� which characterise the quality of ap-

proximations provided by multidimensional continued fraction algorithms [18]. Consider

an integer vector �u = (q; p1; : : : ; pd) 2 Zd+1
+ and denote by u the corresponding rational

vector (p1
q
; : : : ;

pd

q
) 2 Q d . The quality of the approximation by u of an irrational vector !

can be characterised by the exponent

�(u;!) = � log k! � uk
log q

: (56)

Note that

k! � uk = q
��(u;!)

: (57)

At the nth step of any approximation scheme such as the OJPA one gets a simplex with

rational vertices

ui(n) =

�
p

(i)
1 (n)

q
(i)(n)

; : : : ;

p

(i)

d
(n)

q
(i)(n)

�
; 1 � i � d+ 1:
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De�ne

�n(!) = max
1�i�d+1

�(ui(n);!) and �
�

n
(!) = min

1�i�d+1
�(ui(n);!):

We can now de�ne two approximation exponents which characterise the best and the

worst approximations of the OJPA or any other similar scheme. The best approximation

exponent for ! given by the OJPA is de�ned as

�OJP (!) = lim sup
n!1

�n(!):

The uniform approximation exponent is de�ned as

�
�

OJP
(!) = lim inf

n!1
�
�

n
(!):

Under conditions (P1)-(P4), (P7) plus the additional condition thatZ



k(!)�(d!) <1; (58)

Lagarias has shown that �OJP (!) = �OJP and �
�
OJP

(!) = �
�
OJP

are constant with proba-

bility 1. Moreover,

�
�

OJP
= 1� �2

�1

:

It can be shown that condition (58) holds for the OJPA (see [12]). According to a classical

result, for almost all !

�OJP (!) � 1 +
1

d

:

Obviously, ��
OJP

(!) � �OJP (!) which, provided �2 < 0, implies

j�2j
�1

� 1

d

:

Numerical simulations suggest that for the JPA �1 has a limit as d ! 1 and in the

case of the OJPA �1 scales like 1
d
. Based on our simulations the following conjecture

seems to be reasonable:

Conjecture. For the JPA,

�1(d)! �
JP

1 as d!1

and

�2(d)d! �
JP

2 < 0 as d!1:

For the OJPA,

�1(d)d! �
OJP

1 as d!1
and

�2(d)d
2 ! �

OJP

2 < 0 as d!1:
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Numerical simulations give the following values of the exponents �1; �2 in dimension

3:

�
JP

1 (3) = 1:18; �JP2 (3) = �0:23; �OJP1 (3) = 0:49; �OJP2 (3) = �0:11:
Notice that

j�OJP2 (3)j
�
OJP

1 (3)
>

j�JP2 (3)j
�
JP

1 (3)
:

We expect that the same holds in any dimension. It is an interesting question whether or

not this is true in the limit as d!1, i.e. whether

j�OJP2 j
�
OJP

1

>

j�JP2 j
�
JP

1

:
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