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Burge rs turbule n ce subje ct to a force  f (x, t ) = θj f j (x) / (t – tj ), w h e re  th e  tj's are  
"k ick ing tim e s" and th e  "im pulses" f j (x) h ave  arbitrary space  d epend ence , com bines 
fe ature s  of th e  pure ly de caying and th e  continuously forced  case s . W ith  large -scale  
forcing th is "k ick ed" Burge rs turbule n ce  pre s e nts m any of th e  re gim e s proposed by E, 
Kh anin, M az e l and Sinai (19 9 7) for th e  case  of random  w h ite -in-tim e  forcing. It is also 
am e nable  to e fficie n t num e rical sim ulations in th e  inviscid lim it, using a m odification  
of th e  Fast Le gendre  Transform  m e th od de ve loped  for de caying Burge rs turbule n ce  by  
Noulle z  and Ve rgassola (19 9 4). For th e  k ick ed  case , conce pts such  as "m inim iz e rs" and 
"m ain sh ock ", w h ich  play crucial roles in rece n t de ve lopm e nts for forced  Burge rs 
turbule n ce , b ecom e  e le m e ntary since  e ve ryth ing can  b e  constructed  from  sim ple  tw o-
dim e nsional are a-pre s e rving Eule r-Lagrange  m aps. 

 
Th e  m ain  results are  for th e  case  of ide n tical de te rm inistic k ick s w h ich  are  pe riodic 
and analytic in space  and are  applied periodically in tim e . W h e n  th e  space  inte grals of 
th e  initial ve locity and of th e  im pulses vanish , it is proved  and illustrated num e rically 
th at a space - and tim e -pe riodic solution is ach ie ved  expon entially fast.  In  th is re gim e , 
probabilitie s  can  b e  d efined by ave raging ove r space  and tim e  pe riods. Th e  probability 
densitie s  of large  n e gative  ve locity gradie n ts and of (not-too-large ) n e gative  ve locity 
incre m e n ts follow  th e  pow e r law  w ith -7/2 e xpon ent proposed by E et al. (19 9 7) in th e  
inviscid lim it, w h os e  e xiste n ce  is still controve rsial in th e  case  of w h ite -in-tim e  
forcing.  Th is pow e r law , w h ich  is se e n  ve ry cle arly in th e  num e rical sim ulations, is 
th e signature  of nasce n t sh ock s (pre s h ock s) and h olds only w h e n  at le ast on e  n e w  
sh ock  is born  b etw e e n  successive  k ick s.  

It is sh ow n  th at th e  th ird-orde r structure  function  ove r a spatial s eparation  ?x is 
analytic in ?x  alth ough  th e  ve locity fie ld is ge n e rally only pie ce w ise  analytic (i.e . 
b etw e e n  sh ock s). Structure  functions of orde r p ? 3 are  n onanalytic at ?x = 0. For e ve n  
p th e re  is a le ading-orde r te rm  proportional to | ?x|  and for odd p >  3 th e  le ading-
orde r te rm   a ?x h as a nonanalytic corre ction  a ?x ? ?x ? ste m m ing from  sh ock  m e rge rs.
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1 Introduction

The driven Burgers equation

@tu+ u@xu = �@2xu+ f; (1)

u(x; t0) = u0(x); (2)

with a force f(x; t) has a much richer structure than the decaying problem with f = 0.

Indeed, by the Hopf (1950) and Cole (1951) transformation the latter is mapped into the

heat equation, while the former goes into a kind of imaginary-time Schr�odinger equation

with a potential F such that f = �@xF . Actually, the randomly forced Burgers equation

appears in a number of problems in statistical mechanics. This includes the Kardar, Parisi

& Zhang (1986) equation for interface dynamics (see also Barab�asi & Stanley 1995) and the

problem of directed polymers in random media (Bouchaud, M�ezard & Parisi 1995).

From the point of view of turbulence dynamics, the forced Burgers equation can be used

in the same spirit as the forced Navier{Stokes equation, namely to investigate universality

with respect to the forcing of various statistical properties. For Navier{Stokes turbulence,

when the force is con�ned to large spatial scales and the Reynolds number is very high,

small-scale (inertial range) statistical properties are generally conjectured not to depend on

the forcing, except through overall numerical factors. Similar conjectures have been made for

Burgers turbulence with large-scale forcing. For example, there is little doubt that, because

of the presence of shocks, all the structure functions of order p > 1 have a universal exponent

equal to unity (see, e.g., Bouchaud, M�ezard & Parisi 1995; E et al. 1997). More controversial

is the behavior of the probability density function (pdf) p(�) of the velocity gradient � at

large negative values, in the limit of zero viscosity when the force is a white-noise process in

time. If it is generally believed that this pdf follows a power law,

p(�) / j�j�; for � ! �1; (3)

the conjectured values of � di�er markedly. Polyakov (1995) and Boldyrev (1997), using

a �eld-theoretical operator product expansion, predict � = �5=2; E et al. (1997), using

a semi-heuristic approach in which nascent shocks (preshocks) are key, predict � = �7=2;
Gotoh & Kraichnan (1998), using a Fokker{Planck equation approach, predict � = �3; more

recent work by Kraichnan (1999) favors � = �7=2. E & Vanden Eijnden (1999a,b) develop

a probabilistic formalism adapted to solutions with shocks, which gives insight into many

aspects of the problem and makes a good case for � = �7=2. The question of the correct

law for the case of white-noise forcing remains however open (we shall come back to this in

x5). There are simpler situations for which the arguments in favor of � = �7=2, originally
developped by E et al. (1997), can be made rigorous, such as decaying Burgers turbulence

with smooth random initial conditions (Bec & Frisch 1999).

It may be thought that numerical experimentation on the one-dimensional forced Burg-

ers equation should be able to easily obtain the correct scaling laws. This is actually rather

diÆcult if one tries to use standard numerical schemes of the kind also applicable to the

Navier{Stokes equation, such as spectral methods with dissipation explicitly taken into ac-

count. Indeed, it has been shown by Gotoh & Kraichnan (1998; see also Gotoh 1999) that,

in the presence of a small but �nite viscosity, there is a range of large negative values of the

gradient for which the pdf p(�) / �j�j�1, which decreases rather slowly at large j�j. This

is a direct consequence of the hyperbolic-tangent internal structure of shocks. As a result,

the behavior of the pdf at negative values of � smaller in absolute value is contaminated and

may display power laws somewhat shallower than predicted by the theory in the inviscid
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limit. See, for example, �gure 3 of Gotoh & Kraichnan (1998) in which a power-law range

with exponent -3 is seen over a little more than one decade of �-values. Such artefacts will

disappear if much higher resolution is used (Gotoh and Kraichnan were using between 217

and 220 collocation points). It is, however, much more eÆcient to use alternative numerical

schemes where one works directly with the inviscid limit. We shall see that such schemes,

which were previously used only for the decaying case can be readily extended to the forced

case and are particularly well suited for the case of kicked Burgers turbulence, in which the

force is concentrated at discrete times.

The paper is organized as follows. Section 2 introduces the general concept of kicked

Burgers turbulence and gives an explicit representation of the solution which is a simple

generalization of the so-called \minimum representation" for the decaying case. Section 2.1

presents the concepts of \minimizers" and \main shocks" for the case when the dynamics are

started at t0 = �1. Section 2.2 presents the Fast Legendre Transform numerical scheme for

space-periodic kicked Burgers turbulence with spatially smooth forcing. The next two sections

are about the case of deterministically kicked Burgers turbulence when the kicks are periodic

in space and time. Section 3 presents numerical results on exponential convergence to a

periodic solution and shows how this is related to properties of minimizers (the rigorous results

on convergence to a unique periodic solution are derived in the Appendix). Section 4 presents

the main results about pdf's of velocity derivatives and increments (x4.1) and about structure
functions (x4.2). Section 5 presents concluding remarks and some possible extensions to

Navier{Stokes turbulence.

2 The inviscid limit for kicked Burgers turbulence

We shall be concerned here with the initial-value problem for the one-dimensional Burgers

equation (1) when the force is concentrated at discrete times:

f(x; t) =
X
j

fj(x) Æ(t � tj); (4)

where Æ is the Dirac distribution and where both the \impulses" fj(x) and the \kicking times"

tj are prescribed (deterministic or random). The kicking times are ordered and form a �nite

or in�nite sequence. In this paper the impulses are always taken smooth, i.e. acting only at

large scales. (Kraichnan (1999) has considered a simple model in which there are non-smooth

impulses creating directly sawtooth pro�les in the velocity.) The precise meaning we ascribe

to the Burgers equation with such forcing is that at time tj , the solution u(x; t) changes

discontinuously by the amount fj(x)

u(x; tj+) = u(x; tj�) + fj(x); (5)

while, between tj+ and t(j+1)� the solution evolves according to the unforced Burgers equa-

tion. Without loss of generality, we can assume that the earliest kicking time is tj0 = t0,

provided we set fj0 = u0 and u(x; t) = 0 for t < t0.

It is clear that any force f(x; t) which is continuously acting in time can be approximated

in such a way by choosing the kicking times suÆciently close.

We shall also make use of the formulation in terms of the velocity potential  (x; t) and

the force potentials Fj(x)

u(x; t) = �@x (x; t); fj(x) = �
d

dx
Fj(x): (6)
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The velocity potential satis�es

@t =
1

2
(@x )

2 + �@xx +
X
j

Fj(x) Æ(t � tj); (7)

 (x; t0) =  0(x); (8)

where  0(x) is the initial potential.

As it is well-known, the solution to the unforced Burgers equation with positive viscosity

�, has an explicit integral representation obtained by Hopf (1950) and Cole (1951) which

can be used to investigate the limit of vanishing viscosity. We are here exclusively inter-

ested in this limit. Generically, shocks appear then after a �nite time from smooth initial

data. (The correct solution may also be obtained by solving the inviscid equation with a

variational formulation and the condition that, at a shock, the right velocity is less than the

left velocity (Lax 1957; Oleinik 1957).) Use of Laplace's method then leads to the following

\minimum representation" for the potential in the limit of vanishing viscosity (henceforth

always understood) which relates the solutions at any two times t > t0 between which no

force is applied:

 (x; t) = �min
y

"
(x� y)2

2(t� t0)
�  (y; t0)

#
: (9)

It is known that, when t0 is the initial time, the position y which minimizes (9) is the

Lagrangian coordinate associated to the Eulerian coordinate x. The map y 7! x is called the

Lagrangian map. By expanding the quadratic term it is easily shown that the calculation

of  (�; t) from  (�; t0) is equivalent to a Legendre transformation. For details on all these

matters, see She, Aurell & Frisch (1992) and Vergassola et al. (1994).

We now turn to the forced case with impulses applied at the kicking times tj . Let tJ(t)
be the last such time before t. (Henceforth we shall often just write tJ .) Using (9) iteratively

between kicks and changing the potential  (y; tj+1) discontinuously by the amount Fj+1(y)

at times tj+1, we obtain

 (x; t) = � min
yJ ;yJ�1;:::;yj0

[A(j0;x; t; fyjg)�  0(yj0)] ; (10)

A(j0;x; t; fyjg) �
(x� yJ)

2

2(t� tJ)
+

J�1X
j=j0

"
(yj+1 � yj)

2

2(tj+1 � tj)
� Fj+1(yj+1)

#
; (11)

where A(j0;x; t; fyjg) is called the action.

For the Burgers equation with a continuous-in-time force deriving from a potential F (x; t),

E et al. (1997, 1998) give a minimizer representation of the solution:

 (x; t) = �min
y(�)

[A(t0;x; t; y(�)) �  0(y(t0))] ; (12)

A(t0;x; t; y(�)) �
Z t

t0

"
_y2(s)

2
� F (y(s); s)

#
ds; (13)

where the minimum is taken over all curves y(s) satisfying y(t) = x. Note that this repre-

sentation, which actually goes back to work by Oleinik (1957) on general conservation laws,

is just a continuous limit of (10)-(11), obtained by taking tj = j�t and letting �t! 0.

Returning to the case of kicked Burgers turbulence, from (10), we shall now introduce

the concept of \minimizers" and \main shock" (x2.1). Eq. (10) will also be our starting

point for the numerical method (x2.2). For the rest of the paper, we shall assume that the
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force potential and the initial condition are periodic in the space variable. For convenience,

the period is taken to be unity in the theory, while 2�-periodicity is assumed in numerical

studies.

2.1 Minimizers and main shocks

For the case of the kicked Burgers equation with an initial condition at tj0 a \minimizing

sequence" associated to (x; t) is de�ned as a sequence of yj's (j = j0; j0+1; : : : ; J(t)) at which

the r.h.s. of (10) achieves its minimum. Di�erentiating the action (11) with respect to the

yj's one gets necessary conditions for such a sequence, which can be written as a sequence of

(Euler{Lagrange) maps

vj+1 = vj + fj(yj); (14)

yj+1 = yj + vj+1(tj+1 � tj) = yj + (vj + fj(yj))(tj+1 � tj); (15)

where

vj �
yj � yj�1

tj � tj�1
: (16)

These equations must be supplemented by the initial and �nal conditions:

vj0 = u0(yj0); (17)

x = yJ + vJ+1(t� tJ): (18)

It is easily seen that u(x; t) = vJ+1 = (x� yJ)=(t� tJ). Observe that the \particle velocity"

vj is the velocity of the 
uid particle which arrives at yj at time tj and which, of course, has

remained unchanged since the last kick (in Lagrangian coordinates). Eq. (14) just expresses

that the particle velocity changes by fj(yj) at the the kicking time tj.

Note that (14)-(15) de�ne an area-preserving and (explicitly) invertible map.

The presence of a force, deterministic or random, allows a formulation of the Burgers

equation in the semi-in�nite time interval ]�1; t] without fully specifying the initial condition

u0(x) but only its (spatial) mean value hui �
R 1
0 u0(x)dx. Heuristically, this follows from the

observation that, for a force of zero spatial mean value, as assumed here, hui is a �rst integral,
and hence does not depend on time, while all the other information contained in the initial

condition is eventually forgotten.

Actually, the construction of the solution in a semi-in�nite time interval is done by ex-

tending the concept of minimizing sequence to the case of dynamics starting at t0 = �1.

For a semi-in�nite sequence fyjg (j � J), let us de�ne the action A(�1;x; t; fyjg) by (11)

with j0 = �1. Such a semi-in�nite sequence will be called a \minimizer" (or \one-sided

minimizer") if it minimizes this action with respect to any modi�cation of a �nite number of

yj's. Speci�cally, for any other sequence fŷjg which coincides with fyjg except for �nitely

many j's (i.e. ŷj = yj, j � J � k; k � 0), we require

A(J � k;x; t; fŷjg) � A(J � k;x; t; fyjg): (19)

Of course, the Euler{Lagrange relations (14)-(15) still apply to such minimizers. Hence, if

for a given x and t we know u(x; t) we can recursively construct the minimizer fyjg backwards
in time by using the inverse of (14)-(15) for all j < J and the �nal condition { now an initial

condition { (18) with vJ+1 = u(x; t). This is well de�ned except where u(x; t) has a shock and

thus more than one value. Actually, solutions in a semi-in�nite time interval are constructed

from minimizers and not the other way round.
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One way to construct minimizers is to take a sequence of initial conditions at di�erent

times t0 ! �1. At each such time some initial condition u0(x) is given with the only con-

straint that it have the same prescribed value for hui. Then, (�nite) minimizing sequences

extending from t0 to t are constructed for these di�erent initial conditions. This sequence

of minimizing sequences has limiting points (sequences themselves) which are precisely min-

imizers (E et al. 1998). The uniqueness of such minimizers, which would then imply the

uniqueness of a solution to Burgers equation in the time interval ]�1; t], can only be shown

by using additional assumptions, for example for the case of time-periodic forcing (x3 and

Appendix).

If hui = 0, the sequence fyjg minimizes the action A(�1;x; t; fyjg) in a stronger sense.

Consider any sequence fŷjg such that, for some integer P we have ŷj = yj+P , j � J�k; k � 0

and which di�ers arbitrarily from fyjg for j > J�k. (In other words, in a suÆciently remote

past the hatted sequence is just shifted by some integer multiple of the spatial period.) We

then have

A(�1;x; t; fŷjg) � A(�1;x; t; fyjg): (20)

Indeed, for hui = 0, the velocity potential for any initial condition is itself periodic. In this

case a particle can be considered as moving on the circle S1 and its trajectory is a curve

on the space-time cylinder. The yj's are now de�ned modulo 1 and can be coded on a

representative 0 � yj < 1. The Euler{Lagrange map (14)-(15) is still valid provided (15) is

de�ned modulo 1.

The condition of minimality implies now that yj and yj+1 are connected by the shortest

possible straight segment. It follows that jvj+1j = �(yj ; yj+1)=(tj+1 � tj), where � is the

distance on the circle between the points yj; yj+1, namely �(a; b) � minfja� bj; 1� ja� bjg.
Hence, the action A can be rewritten in terms of cyclic variables:

A(�1;x; t; fyjg) =
�2(x; yJ)

2(t� tJ)
+
X
j<J

"
�2(yj+1; yj)

2(tj+1 � tj)
� Fj+1(yj+1)

#
: (21)

We now introduce the concept of \global minimizers" (or \two-sided minimizers") limiting

ourselves to the case hui = 0 for simplicity. We �rst observe that any minimizer fyj; j �
Jg can be continued for all j � J and hence times t0 > t by using the system (14)-(15).

However, this procedure, when extended too far in time, will not usually generate a minimizer

associated to time t0. Nevertheless, for any time t there always exist positions x such that the

corresponding minimizers fyj; j � J(t)g can be continued to the bilateral sequence fyj;�1 <

j < +1g while keeping the minimizing property. Such global minimizers correspond to

trajectories of 
uid particles which, from t = �1 to t = +1, have never been absorbed in

a shock.

We then observe that any shock existing at time t can be continued for all times s > t :

shocks can merge but they cannot otherwise disappear. However, since new shocks can be

produced, it is not always possible to trace back an existing shock for arbitrary times s < t.

A shock with this property of having always existed in the past is called a \main shock".

In E et al. (1998) it is shown that for the case of random forcing which is 1-periodic

in space and white noise in time rather than impulsive, the solution of Burgers equation in

] � 1; t] is unique for hui = 0. It is also shown that at time t, the set of points x 2 S1

with more than one minimizer, that is shock locations, is �nite and that the main shock

and the global minimizer are unique. The global minimizer forms a hyperbolic trajectory of

the Euler-Lagrange equations and all other minimizers approach the global one, as t! �1
exponentially fast. In particular the two minimizers associated to the main shock approach

the global minimizer in the remote past but it may be shown that they do so from opposite
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directions on the circle S1. We shall see below in x3 that the same picture holds in the case

of generic time-periodic kicking.

2.2 A Fast Legendre Transform numerical method

The numerical method used here solves the kicked Burgers equation directly in the inviscid

limit. The basic ideas are very simple: at each kicking time tj the potential is changed by

the amount Fj(x); between two successive kicks (or between the last kick and the output

time) the decaying Burgers equation is solved using the minimum representation (9); this

procedure is repeated as many times as the number of kicks between the initial time and the

output time.

Speci�cally, the space periodic interval, here taken to be [0; 2�[, is discretized on a regular

grid of N collocation points xk � 2k�=N . For each of these positions, (9) is used to determine

the potential at a time t in terms of the potential just before the last kicking time tJ , time

at which the potential has discontinuously changed by FJ(x). Hence, we have :

 k(t) �  (xk; t) = �min
`

"
(xk � y`)

2

2(t� tJ)
�
�
 `(tJ

�

) + FJ (y`)
�#
; (22)

where  `(tJ�) is the value of the velocity potential at x = y`, just before the kick. We note

y`k the minimizing position corresponding to xk. This procedure is, in principle, applied

recursively, starting from tj0 .

The problem is that naive application of (22) yields an algorithm with O(N2) operations

between two successive kicks. She, Aurell & Frisch (1992) observed that the minimizing

position y is actually a monotonic non-decreasing function of x. This is indeed a simple con-

sequence of the convexity of the parabolic term involved in (9). Hence, the determination of

the y`k 's can be performed using a binary-subdivision search which requires only O(N log2N)

operations. This kind of algorithm is known under the name Fast Legendre Transform (FLT),

since the minimum representation is equivalent to a Legendre transform (Hopf 1950). (An

even faster algorithm requiring only O(N) operations has been developed by Trussov (1996).)

We use an adaptation of the method of Noullez and Vergassola (1994; see also Vergassola

et al. 1994) who developed an FLT algorithm using a binary-subdivision search combined

with a reorganization of the search, permitting the use of very low in-core storage. We �rst

determine the minimizing y`0 for the point x0 � 0. As the velocity-potential at the time tJ+ is

periodic, it is easy to show that y`0 is within the interval [��;+�[. The minimizing location

corresponding to xN � 2� is then given by periodicity and reads y`N = y`0 + 2� = y`0+N .

The search for all the other minimizing locations y`k can then be restricted to indices `k such

that `0 � `k � `0+N . We then compute y`N=2 , corresponding to x = �. We can then further

subdivide the x-interval by considering k = N=4 and k = 3N=4, for which the corresponding

`k's satisfy `0 � `N=4 � `N=2 � `3N=4 � `0 +N . At the next stage, we compute y`N=8 , y`3N=8 ,

y`5N=8 and y`7N=8 for which we need `0, `N=4, `N=2 and `3N=4 as search boundaries. We repeat

this subdivision procedure log2N times to obtain the N values of y`k .

The method just described is optimal for non-smooth solutions of the kind considered

by Vergassola et al. (1994) who had initial conditions of Brownian type. For the case

of smooth solutions considered here, a more accurate determination of the solution is re-

quired to obtain reliable results on space derivatives of the velocity. We now describe an

improvement of the method allowing to calculate �rst- and second-order derivatives. We

observe that in (22), when the discrete location y` is replaced by an arbitrary real num-

ber y, the minimum, for a given xk is, in general, not achieved exactly on the grid at

y`k , but at a neighboring location y(k) within less than one mesh. This location satis�es
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xk = y(k) + (t � tJ) [u (y(k); tJ�) + fJ(y(k))], obtained by requiring that the derivative of

the r.h.s. of (22) vanish. For this, the velocity u(y; tJ�) and the force fJ(y(k)) ) are Taylor

expanded to second order to obtain the improved location y(k). When required, the �rst and

second space derivatives of the velocity u(x; t) are calculated, not from the potential by �nite

di�erences, but by using exact expressions of these derivatives in terms of the Lagrangian

map from the preceding kicking time, which holds for the unforced Burgers equation (E et

al. 1997; Bec & Frisch 1999).

This FLT, implemented on a grid of 217 � 105 collocation points takes about 1 s of CPU

on a 100MFlops computer. Without use of the binary-subdivision search the CPU time

would be several thousands times larger. Among the other advantages of FLT is that no

viscosity is needed and that the solution can be calculated directly at the required output

times without need to obtain it at many intermediate times (other than the kicking times).

3 Deterministic periodic kicking

From now on we shall consider exclusively the case where the kicking is periodic in both

space and time. Speci�cally, we assume that the force in the Burgers equation is given by

f(x; t) = g(x)
+1X

j=�1

Æ(t� jT ); (23)

g(x) � �
d

dx
G(x); (24)

where G(x), the kicking potential, is a deterministic function of x which is periodic and

suÆciently smooth (e.g. analytic) and where T is the kicking period. The initial potential

 init(x) is also assumed smooth and periodic. This implies that the initial velocity integrates

to zero over the period. (The case where this assumption is relaxed will be considered brie
y

in the Conclusion in relation with the Aubry{Mather theory.)

The numerical experiments reported hereafter have been made with the kicking potential

G(x) =
1

3
sin 3x+ cos x; (25)

and a kicking period T = 1. Other experiments where done with (i) G(x) = � cos x and (ii)

G(x) = (1=2) cos(2x)� cos x. The former potential produces a single shock and no preshock.

As a consequence it displays no �7=2 law in the pdf of gradients. The latter potential gives

essentially the same results as reported hereafter but has an additional symmetry which we

avoided by the choice (25).

The number of collocation points chosen for our simulations is generally Nx = 217 �
1:31 � 105, with a few simulations done at Nx = 220 (for the study of the relaxation to the

periodic regime presented below). Since our numerical method allows us to go directly to the

desired output time (from the nearest kicking time) there is no need to specify a numerical

time step. However, in order to perform temporal averages, e.g. when calculating pdf's or

structure functions, without missing the most relevant events (which can be sharply localized

in time) we need suÆciently frequent temporal sampling. We have taken for the total number

of output times Nt � 1000 chosen such that the increment between successive output times

is roughly the two-thirds power of the mesh (this is related to the structure of preshocks, see

x4.1).
Figure 1 shows snapshots of the time-periodic solution at various instants. It is seen that

shocks are always present (at least two) and that at each period two new shocks are born at
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Figure 1: Snapshots of the velocity for the unique time-periodic solution corresponding to

the kicking force g(x) shown in the upper inset; the various graphs correspond to six output

times equally spaced during one period. The origin of time is taken at a kick. Notice that

during each period, two new shocks are born and two mergers occur.

t?1 � 0:39 and t?2 � 0:67. There is one main shock which remains near x = � and which

collides with the newborn shocks at tc1 � 0:44 and tc2 � 0:86. Figure 3 shows the evolution

of the positions of shocks during one period.

We �nd that, for all initial conditions u0(x) used, the solution u(x; t) relaxes exponentially

in time to a unique function u1(x; t) of period 1 in time. Figure 2 shows the variation ofR 2�
0 ju(x; n�) � u1(x; 1�)j dx=(2�) for three di�erent initial conditions as a function of the

discrete time n.

The phenomenon of exponential convergence to a unique space- and time-periodic solution

is something quite general: whenever the kicking potential G(x) is periodic and analytic and

the initial velocity potential is periodic (so that the mean velocity hui =0 at all times), there is

exponential convergence to a unique piecewise analytic solution. This is proved rigorously in

the Appendix for functions G(x) which have a unique point of maximum with a nonvanishing

second derivative (Morse generic functions). Here, we just explain the main ideas of the proof

and give some additional properties of the unique solution.

One very elementary property of solutions is that, for any initial condition of zero mean

value, the solution after at least one kick satis�es ju(x; t)j � (1=2)+maxx jdG(x)=dxj. Indeed,
at a time t = n� just before any kick we have x = y+u(x; n�) where y is the position just after

the previous kick of the 
uid particle which goes to x at time n�. It follows from the spatial

periodicity of the velocity potential that the location y which minimizes the action is within

less than half a period from x. Thus, ju(x; n�)j � 1=2. The additional maxx jdG(x)=dxj term
comes from the maximum change in velocity from one kick. It follows that the solution is

bounded. Note that if the spatial and temporal periods are L and T , respectively, the bound

on the velocity becomes L=(2T ) + maxx jdG(x)=dxj.
The convergence at large times to a unique solution is related to properties of the two-

dimensional conservative (area-preserving) dynamical system de�ned by the Euler{Lagrange

9
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Figure 4: Sketch of a hyperbolic �xed point P with stable (�(s)) and unstable (�(u)) manifolds.

The dashed line gives the orbit of successive iterates of a point near the stable manifold.

map (14)-(15) of x2.1. By construction, we have u(x; 1+) = û(x)� dG(x)=dx, where û(x) is

the solution of the unforced Burgers equation at time t = 1� from the initial condition u(x)

at time t = 0+. The map u 7! û(x)+g(x), where g(x) � �dG(x)=dx, will be denoted Bg and

is just the map which solves the kicked Burgers equation over a time of one. The problem is

to show that the iterates Bn
g u0 converge for n!1 to a unique solution.

If it were not for the shocks it would suÆce to consider the two-dimensional Euler{

Lagrange map. Note that, for the case of periodic kicking, this map has an obvious �xed

point P , namely (x = xc; v = 0), where xc is the unique point maximizing the kicking

potential. It is easily checked that this �xed point is an unstable (hyperbolic) saddle point

of the Euler{Lagrange map with two eigenvalues � = 1 + c +
p
c2 + 2c and 1=�, where

c = �@2xxG(xc)=2.
Like for any two-dimensional map with a hyperbolic �xed point, there are two curves

globally invariant by the map which intersect at the �xed point: the stable manifold �(s), the

set of points which converge to the �xed point under inde�nite iteration of the map, and the

unstable manifold �(u), the set of points which converge to the �xed point under inde�nite

iteration of the inverse map, as illustrated in �gure 4 (see, e.g., H�enon 1983, Manneville 1990).

It follows that any curve which intersects the stable manifold transversally (the tangents of the

two curves are distinct) will, after repeated applications of the map, be pushed exponentially

against the unstable manifold at a rate determined by the eigenvalue 1=�. In the language

of Burgers dynamics, the curve in the (x; v) plane de�ned by an initial condition u0(x) will

be mapped after time n into a curve very close to the unstable manifold. In fact, for the

case studied numerically, 1=� � 0:18 is within one percent of the value measured from the

exponential part of the graph shown in �gure 2. Note that if the initial condition u0(x)

contains the �xed point, the convergence rate becomes (1=�)2 (even higher powers of 1=� are

possible if the initial condition is tangent to the unstable manifold).

The �xed point P gives rise to a very simple global minimizer: (yj = xc; vj = 0) for

all positive and negative j's. It follows indeed by inspection of (21) that any deviation

from this minimizer can only increase the action; actually, it minimizes both the kinetic

and the potential part of the action. Note that the corresponding 
uid particle is at rest

forever and will never be captured by a shock (it is actually the only particle with this

11
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Figure 5: Unstable manifold �(u) on the (x; v)-cylinder (the x-coordinate is de�ned modulo 1)

which passes through the �xed point P = (xc; 0). The bold line is the graph of u1(x; 1�).

The main shock is located at xl = xr. Another shock at x1 corresponds to a local zig-zag of

�(u) between A and B.

property). It is shown in the Appendix that any minimizer is attracted exponentially to

such a global minimizer as t ! �1. Thus, any point (yj ; vj) on a minimizer belongs to

the unstable manifold �(u) and, hence, any regular part of the graph of the limiting solution

u1(x) belongs to the unstable manifold �(u). This unstable manifold is analytic but can be

quite complex. It can have several branches for a given x (see �gure 5) and does not by itself

de�ne a single-valued function u1(x). The solution has shocks and is only piecewise analytic.

Consideration of the minimizers is required to �nd the position of the shocks in the limiting

solution: two points with the same x corresponding to a shock, such as A and B on �gure 5

should have the same action.

Finally, we give the geometric construction of the main shock, the only shock which

exists for an in�nite time. Since � is positive, locally, minimizers which start to the right of

xc approach the global minimizer from the right, and those which start to the left approach

it from the left. Take the rightmost and leftmost points xr and xl on the periodicity circle

such that the corresponding minimizers approach the global minimizer from the right and left

respectively (see �gure 6). These points are actually identical since there cannot be any gap

between them that would have minimizers approaching the global minimizer neither from the

right nor the left. The solution u1(x) has then its main shock at xl = xr.

4 Statistical properties for the periodically kicked case

We are here working with time- and space-periodic deterministic solutions of the kicked

Burgers equation. We thus choose to de�ne our statistical averages as averages over the two

periods, here assumed to be both unity. Speci�cally, let F(u) be an observable (functional

of the solution u) and let Tx;t denote the space-time translation operator which shifts the

12
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uid particles) on the (x; t)-cylinder. Time starts at

�1. Shock locations at t = 0� are characterized by having two minimizers (an instance is

at x1). The main shock is at xl = xr. The fat line x = xc is the global minimizer.

solution u by a spatial amount x and a temporal amount t. We de�ne

hF(u)i �
Z 1

0

Z 1

0
F (Tx;t u) dx dt: (26)

For example, with the observable F(u) � [u(�x; 0)� u(0; 0)]p, we obtain the structure func-

tion of order p over a separation �x:

Sp(�x) �
Z 1

0

Z 1

0
[u(x+�x; t)� u(x; t)]p dx dt: (27)

Such averages are easily calculated numerically. For example, pdf's are obtained from

space-time histograms over all collocation points and a suitably large number of output

times.

4.1 Pdf's of velocity derivatives and increments

For the periodic solution of x3 we calculate �rst and second space derivatives of the veloc-

ity; the corresponding pdf's are then determined as normalized space-time histograms after

binning of derivative values (the bins are in geometric progression ; there are 100 bins per

decade for the �rst derivative and 50 for the second). Figures 7 and 8 show the pdf's of the

�rst and second space derivatives in log-log coordinates. Negative values are shown for the

former and positive values for the latter. It is seen that clean power laws are obtained. More

quantitative information about the values of the exponents of the power laws are obtained by

measuring the \local scaling exponent", i.e. the logarithmic derivative of the pdf, calculated

here using least-square �ts on quarter decades. The results are shown as upper right insets

on �gures 7 and 8. It is seen that, over one decade, the local exponent for the pdf of the

gradient is within less than �ve percent of the value �7=2 predicted by a simple theoretical
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arguments given hereafter; for the second derivative there are about four decades within �ve

percent of the value �2.
The presence of a power-law pdf with �7=2 exponent is easily understood. It is just the

signature of the preshocks which appear when new shocks are created during the unforced

phase between two successive kicks. These preshocks are the only structures giving large

�nite negative gradients: shocks give in�nite negative gradients unless a �nite viscosity is

introduced and the gradients in the immediate spatial neighborhood of a mature shock are

not particularly large. The theory of the �7=2 law at large negative values � of the veloc-

ity gradient, developed by Bec & Frisch (1999) for the unforced case with random initial

conditions is readily adapted to the deterministic case, provided we use space-time averages

instead of ensemble averages. A simpli�ed presentation, following in part E et al. (1997),

is given hereafter for the case of a single preshock. The contributions of several preshocks

to the pdf are just additive and it is proved in the Appendix that the periodic solution has

�nitely many preshocks.

We de�ne a velocity in Lagrangian coordinates u(L)(a; t0) with the origin of time just after

a kick and a = 0 at a (negative) minimum of @xu. Without loss of generality, we assume

u(L)(0; 0) = 0 (otherwise we perform a Galilean transformation to bring it to zero). We then

have, locally, u(L)(a; 0) = �c1a + c2a
3 + h:o:t:, where c1 and c2 are positive constants and

\h.o.t." stands for higher-order terms. No generality is lost by assuming c1 = 1 (otherwise

make a linear change on the a-coordinate). The 
uid particle initially at a will be at time

t0 at x = a + t0u(L)(a; 0) = a(1 � t0) + t0c2a
3 + h:o:t: This \Lagrangian map" becomes

singular at t0 = t? = 1, the instant of preshock (formation of a shock). We then have

a = (x=c2)
1=3 + h:o:t: (The cubic root is here de�ned both for positive and negative values

of its argument.) Since the Lagrangian velocity has not changed, the Eulerian velocity is

given by u(x; t?) = �(x=c2)1=3 + h:o:t:, which has a cubic root structure and a gradient

�(x=c2)�2=3=(3c2). Hence, the gradient takes large negative values for small x. Just before

t?, at time t0 = 1 � � , we have, x = �a + c2a
3 + h:o:t: It follows that the cubic relation

between a and x still holds, except in a region of Lagrangian width � �1=2 and thus of

Eulerian width � �3=2, where the relation becomes linear to leading order. (It is because of

this �3=2 dependence that the time � between successive outputs and the mesh Æx = 2�=N

must be related by Æx � �3=2.)

The question is now: what is the fraction of space-time where the velocity gradient

@xu < �, where � is a large negative number ? Because of the cubic root structure, x must

be in a small interval of width � j�j�3=2. The time must be suÆciently close to t? for this

interval still to be in the region of validity of the cubic relation, that is, within� jxj2=3 � j�j�1.
Hence, the relevant space-time fraction or, in other words, the cumulative probability to have

@xu < � is � j�j�5=2. This gives a pdf � j�j�7=2 at large negative �'s.
Actually, there is another contribution, also proportional to j�j�7=2 stemming from a small

time interval � � jxj2=3 � j�j�1 just after t? when small-amplitude shocks are present which

have not yet completely destroyed the cubic root structure (Bec & Frisch 1999). For the case

studied numerically, where the kicking potential is given by (25), there are two preshocks,

each giving a contribution to the pdf of the gradient proportional to j�j�7=2.
This argument is readily adapted to second space derivatives, yielding a pdf � j�j�2 as

observed in �gure 8. (The same law holds also at large positive values since the second

derivative near a preshock is an even function.)

We now turn to the pdf of (spatial) velocity increments over a separation �x. We de�ne

�u(�x;x; t) � u(x+�x; t)� u(x; t): (28)

Its pdf's for various values of �x are again calculated from space-time histograms. One

15



10
−4

10
−3

10
−2

10
−1

10
0

−4

−2

0

2

4

|Velocity Increments|

Lo
ca

l s
ca

lin
g 

ex
po

ne
nt

10
−4

10
−3

10
−2

10
−1

10
0

10
−6

10
−4

10
−2

10
0

10
2

10
4

pd
f

−7/2 

+1 

−7/2 

0

∆ x = 27 (2π/N) ∆ x = (2π/N) 

Figure 9: Upper part: Pdf of (negative) velocity increments in log-log coordinates for various

values of the separation �x in geometric progression from 2�=N to 27(2�=N). Lower part:

the corresponding local scaling exponents.

hundred bins per decade are used. �x is given the values 2�2p=N , where 2�=N is the

numerical mesh and p is varied from zero to seven. Figure 9 gives log-log plots of the pdf's of

increments for the eight separations chosen. We limit ourselves to negative increments. The

corresponding local scaling exponents are shown in �gure 9. It is seen that, for moderately

large increments, the pdf's have the same power-law behavior with exponent �7=2 as the pdf
of the gradient. This universal behavior was also predicted by E et al. (1997) for white-in-

time forced Burgers turbulence. Phenomenologically, this range is obtained simply by Taylor

expanding the increment as �x@xu. At larger increments (in absolute value) the local scaling

exponent rises quickly to positive values but does not saturate to the value +1 predicted by

E et al. (1997) by the following argument, based on the consideration of nascent shocks and

which applies also to the periodically kicked case: The probability (as fraction of space)

to have a shock in an interval of length �x is / �x. Since the shock amplitude grows as

(t � t?)
1=2, where t? is the time of the preshock, the fraction of time for which the shock

amplitude does not exceed a value j�uj is proportional to (�u)2. Hence, the cumulative

probability to have a velocity increment (in absolute value) less than j�uj is proportional to
�x(�u)2 and the pdf is proportional to �xj�uj. By equating the contributions from the

�7=2 and the +1 ranges, the transition between the two ranges is predicted to happen around
an increment �uc which scales as (�x)1=3, in good agreement with our data. A clean +1

range is not seen and would require a resolution of well over one million collocation points.

Finally, the 
at range seen in �gure 9 for j�uj � �x, is a universal contribution/ (�x)�1

from extremal points of the velocity (not predicted by E et al. (1997)). This range extends also

to positive values of �u� �x but there is no other universal range for positive increments;

this is why pdf's are not shown for such increments.
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Figure 10: Structure functions Sp(�x) for p = 2; 3; 4; 5 as labelled. Note the linear behavior

at small �x.

4.2 Structure functions

We now study the structure functions for the limiting (unique) solution u1(x; t) of the period-

ically kicked Burgers equation. For numerical studies 2�-periodicity in space and 1-periodicity

in time are assumed. Hence, the structure function of (integer) order p is given by

Sp(�x) �
1

2�

Z 1

0
dt

Z 2�

0
dx [u1(x+�x; t)� u1(x; t)]p : (29)

The 2�-periodicity of u1(x; t) immediately implies that Sp(�x) is 2�-periodic in �x and is

an even/odd function for even/odd p.

Figure 10 shows the structure functions of order 2, 3, 4 and 5 (as labelled) in linear

coordinates. It is seen that all these structure functions behave proportionally to �x at

small arguments (more precisely as �x (sign (�x))p+1). This is a well-known consequence of

the presence of shocks (E et al. 1997). In the next two sections we shall show that all the

structure functions except S3(�x) are nonanalytic functions of �x.

4.2.1 Analyticity of the third-order structure function

For notational convenience in this and the next sections we assume 1-periodicity in space

and time. Space averages over the period are denoted h�ix. Averages over both space and

time are denoted h�i. We shall prove that, when the kicking potential G(x) is analytic, the

third-order structure function is also analytic.
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This will be established as a consequence of the following relation for the unforced Burgers

equation with space-periodic solution in the limit of vanishing viscosity. Let u � u(x; t) and

u0 � u(x+�x; t), we have

@t


u0u

�
x
=

1

6
@�x

D
(u0 � u)3

E
x
: (30)

It is here assumed that �x is not an integer multiple of the spatial period and that no pair

of shocks remains separated by exactly �x for a �nite amount of time (this holds for almost

every �x).

Proof. Let us denote by Xi(t) (i = 1; : : : ; N(t)) the (Eulerian) ordered positions of shocks

and by j[u]ji � u(Xi(t)+; t) � u(Xi(t)�; t) the (negative) velocity jump at the i-th shock.

(N(t) may change in time.) Except at shocks we can use the inviscid Burgers equation

@tu+ u@xu = 0. At shocks this has to be supplemented by the conditions

_Xij[u]ji � j[
u2

2
]ji = 0; (31)

which follow from momentum conservation. We have



u0u

�
x =

NX
i=1

Z Xi+1(t)

Xi(t)
u0u dx; (32)

where XN+1(t) � X1(t) + 1. Di�erentiating with respect to t, we obtain

@t


u0u

�
x

=


u@tu

0 + u0@tu
�
x
�

NX
i=1

_Xi(t)j[u]ji u(Xi(t) + �x; t) (33)

= �
NX
i=1

Z Xi+1(t)

Xi(t)

�
uu0@xu

0 + u0u@xu
�
dx�

NX
i=1

_Xi(t)j[u]ji u(Xi(t) + �x; t) (34)

= �
NX
i=1

Z Xi+1(t)

Xi(t)

�
1

2
u@�xu

02 �
1

2
u2@�xu

0

�
dx

�
NX
i=1

_Xi(t)j[u]ji u(Xi(t) + �x; t) +
NX
i=1

j[
u2

2
]ji u(Xi(t) + �x; t): (35)

In going from (33) to (34) we used the inviscid decaying Burgers equation; from (34) to (35)

we have performed an integration by parts and used @xu
0 = @�xu

0. From (31) follows that

the last two terms in (35) cancel. Hence, we obtain

@t


u0u

�
x
=

1

2
@�x

D
�uu02 + u2u0

E
x
=

1

6
@�x

D
(u0 � u)3

E
x
; (36)

which completes the proof.

We now return to the case of the periodically kicked Burgers equation, with the unique

solution u1(x; t). Using (30), integrated in time between two successive kicks, say at t = 0

and t = 1, we have

1

6
@�xS3(�x) =

1

6
@�x

D
[u1(x+�x; t)� u1(x; t)]3

E
= hu1(x+�x; 1�)u1(x; 1�)ix � hu1(x+�x; 0+)u1(x; 0+)ix : (37)

Next, we use

u1(x; 0+) = u1(x; 0�) + g(x) = u1(x; 1�) + g(x); (38)
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which follows from (5) and (23); here, g(x) = �dG(x)=dx where G(x) is the kicking potential.
Substituting this in (37), we obtain

1

6
@�xS3(�x) = hg(x)g(x +�x)ix� hg(x)u1(x+�x; 0+)ix � hg(x+�x)u1(x; 0+)ix : (39)

We now assume that the kicking potential and, hence, g(x) are analytic functions and we

�nd that all three terms on the r.h.s. of (39) are analytic functions of �x. This follows

indeed from the observation that the analyticity of g(x) and the boundedness of h(x) imply

the analyticity in �x of the integral
R 1
0 g(x)h(x + �x) dx, which is basically a convolution

integral. We have thus proved the analyticity of the third-order structure function in the

separation �x.

When the kicking potential G(x) has only a �nite number of Fourier harmonics a stronger

result holds: the third-order structure function has exactly the same harmonics as the kicking

potential. This follows because the r.h.s. of (39) is a convolution integral. For the case of the

kicking potential given by (25), which has the harmonics of wavenumber 1 and 3, we thus

have

S3(�x) = � sin(�x) + � sin(3�x): (40)

(The presence of only sine functions is due to the odd character of the third-order structure

function.) We have indeed checked that the structure function S3(�x) calculated numerically

at the beginning of x4.2 has a global �t of this form with � � �10:9953 and � � �1:1463
with an error of less than 10�5.

We �nally observe that the analyticity result for the third-order structure function is quite

general and has been proved also for the case of white-noise forcing (E & Vanden Eijnden

1999b).

4.2.2 Nonanalyticity of the structure functions of order p 6= 3

We now concentrate on integer values of p > 1. Indeed, for non-integer values, the structure

function is not de�ned, unless we take the absolute value of the velocity increment which

results trivially in nonanalyticity and, for p = 1, the structure function vanishes. We intend

to show that

Sp(�x) =

�
Apj�xj+Bp(�x)

2 + o
�
(�x)2

�
; for even p;

Ap�x+Bp�xj�xj+ o
�
(�x)2

�
; for odd p,

(41)

where the constant Ap never vanishes and the constant Bp vanishes for p = 3 and never

vanishes for p > 3 (the expressions of these constants will be given below). This will then

imply (i) that all structure functions are proportional to the �rst power of the separation

(a well-known result; see, e.g. E et al. 1997) and (ii) that all structure functions of order

p 6= 3 are nonanalytic functions of �x. Actually, we shall establish (41) only for �x > 0;

the extension to �x < 0 follows then from the even/odd character of structure functions of

even/odd orders.

The idea of the proof is to observe that the only possible sources of nonanalyticity are

singularities of the solution in the space-time domain, namely, preshocks, shocks and shock

mergers. The contributions from the analytic regions to Sp(�x) is clearly O ((�x)p) and must

therefore be retained in (41) only for p = 2. Let us now concentrate on the contributions

from singularities.

It is easily shown that preshocks contribute at most terms O
�
(�x)(p+5)=3

�
which are

only higher order corrections to (41). This follows from the scaling properties of the pdf of
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increments as discussed in x4.1 and in Bec & Frisch (1999) which is itself a consequence of

the cubic root structure of preshocks.

As to the contribution of (mature) shocks, we obtain it by �rst calculating the contribu-

tion, denoted Sshock
p (�x), coming from the neighborhood of individual shocks, ignoring shock

mergers; then we determine the correction due to mergers, denoted �Smerge
p (�x).

Let Xj(t) denote the positions of the various shocks (their number may change in time).

Let u+j (x; t) and u
�

j (x; t) denote the velocity in the immediate right and left neighborhood

of the j-th shock. Let Cj(t) � u+j (Xj(t); t) � u�j (Xj(t); t) denote the (negative) jump at

Xj(t). (The jump Cj(t) is taken equal to zero when a shock has not yet been born or has

disappeared by merger.) Since we take �x > 0 the requirement that x and x+�x straddle

the j-th shock limits the domain of x-integration to the interval ]Xj(t)��x;Xj(t)[. Hence,

we have

Sshock
p (�x) =

Z 1

0
dt
X
j

Z Xj(t)

Xj(t)��x
dx

h
u+j (x+�x; t)� u�j (x; t)

ip
: (42)

Since u+j (x; t) and u
�

j (x; t) are smooth functions of x, we can Taylor expand them near Xj(t).

For our interest only the �rst two terms are relevant. We thus obtain

Sshock
p (�x) =

Z 1

0
dt
X
j

Z Xj(t)

Xj(t)��x
dx

(
u+j (Xj(t); t) +

h
@xu

+
j (Xj(t); t)

i
(x+�x�Xj(t))

�u�j (Xj(t); t)�
h
@xu

�

j (Xj(t); t)
i
(x�Xj(t))

)p

+ o
�
(�x)2

�
: (43)

We then use the following relation which governs the evolution of shock jumps:

d

dt
Cj(t) = �

h
@xu

+
j (Xj(t); t) + @xu

�

j (Xj(t); t)
i Cj(t)

2
: (44)

(This relation is obtained by using the inviscid Burgers equation on both sides of the shock

and the fact that the shock velocity is half the sum of the right and left velocities.) Using

(44) in (43), performing all the space integrals and keeping only terms up to O
�
(�x)2

�
, we

obtain

Sshock
p (�x) =

Z 1

0
dt
X
j

�
C

p
j (t)�x�

p

p� 1

d

dt

�
C

p�1
j (t)

�
(�x)2

�
+ o

�
(�x)2

�
: (45)

We turn to the contributions of the �nite set fMkg of shock mergers taking place in the

periodic space-time domain. (We only consider mergers of two shocks since events with more

than two shocks merging are not generic; furthermore, it may be checked that they do not

change our conclusions.) Associated with each event Mk, we de�ne: ~tk, the time of merger,

Xkl(t) and Xkr(t), the positions of the left and the right shocks about to merge and Ckl(t)

and Ckr(t), the respective jumps across these merging shocks. Let �k be the �rst instant of

time t when the distance Xkr(t) � Xkl(t) becomes less than �x. It is clear that, for small

�x, we have ~tk � �k = O(�x) (see �gure 11). Furthermore, we have

Xkr(t)�Xkl(t) = �x+ (t� �k)
Ckl(~tk) + Ckr(~tk)

2
+ o(�x): (46)

After �k, an interval ]x; x + �x[ may either straddle a single of the two merging shocks or

both. The calculation above did not take into account the possibility of straddling two shocks.
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Figure 11: Merger of two shocks Xkl(t) and Xkr(t) on the (x; t)-cylinder. The merger (event

Mk) takes place at t = ~tk. At the earlier time t = �k the shocks are within a distance �x.

For �k < t < ~tk, this happens when Xkr(t)��x < x < Xkl(t). We therefore must introduce

a correction to (45). To leading order we obtain

�Smerge
p (�x) = �(�x)2

X
k

�
Ckl(~tk) + Ckr(~tk)

�p � C
p
kl(

~tk)� C
p
kr(

~tk)

Ckl(~tk) +Ckr(~tk)
+ o

�
(�x)2

�
: (47)

We now assemble the various contributions. The second term in the integral on the r.h.s.

of (45) can be integrated explicitly as a sum of terms coming from the birth and death of

shocks. Preshocks do not contribute because they have vanishing jumps. Shock mergers

give three contributions: two from the incoming shocks with jumps Ckl(~tk) and Ckr(~tk) and

one from the merged shock with jump Ckl(~tk) + Ckr(~tk). We �nally obtain the following

expressions for the coeÆcients in the expansion (41) of the structure functions in terms of

the shock jumps Cj(t):

Ap =
X
j

Z 1

0
C

p
j (t) dt; for all p > 1 (48)

Bp = �
X
k

(
p

p� 1

h
C

p�1
kl (~tk) + C

p�1
kr (~tk)�

�
Ckl(~tk) + Ckr(~tk)

�p�1i

+

�
Ckl(~tk) + Ckr(~tk)

�p � C
p
kl(
~tk)� C

p
kr(

~tk)

Ckl(~tk) + Ckr(~tk)

)
; for all p > 2: (49)

For p = 2, we must add to the expression given by the r.h.s. of (49) the contribution from

the analytic regions which give also terms O
�
(�x)2

�
. It is readily seen that Bp given by (49)

vanishes for p = 3 and only for that value.

It must be stressed that, for structure function of order p > 3, the / (�x)2 corrections

to the leading / �x terms come entirely from mergers. For cases which have a single shock

with no mergers and no preshocks (an instance is G(x) = � cos x) this correction is absent.

5 Concluding remarks

We have shown that Burgers turbulence in the inviscid limit with periodic large-scale kicking

is characterized by universal properties originally conjectured to hold for the case of random
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forcing. In particular, there is a power-law tail with exponent �7=2 in the pdf of negative

velocity gradients. This law was proposed by E et al. (1997) for the case of random forcing

which is smooth in space and white noise in time. The validity of the �7=2 law for the

latter case is still an open question. It is clear, that the �7=2 law is unescapable as soon as

preshocks are present and well separated. Some hypothetical fractal clustering of preshocks

could invalidate the �7=2 law for the white-in-time case. Careful numerical experimentation

using a sequence of random forces which approach white-in-time forcing should be able to

shed some light on this issue. This can in principle be done using kicked Burgers turbulence in

which the instants of kicking are taken closer and closer and the successive spatial impulses are

taken random and independent. Obtaining suÆciently clean power-law scaling to distinguish,

e.g. between an exponent �3 and �7=2 in the random case may require extremely large

computational resources. It is probably simpler to just investigate the statistical distribution

of preshocks, a question we leave for future work.

Let us brie
y now address the question of the e�ect of a �nite small viscosity. Basically,

this will broaden the shocks giving them a hyperbolic tangent structure of width / �. From

this it is easily inferred that the maximum negative gradient is j�jmax = O(��1) and that the

shoulders of such viscous shocks contribute a term / �j�j�1 to the pdf of (negative) gradients
(Gotoh & Kraichnan 1998). This term will dominate over the inviscid contribution / j�j�7=2

beyond a crossover value of the gradient j�jc / ��2=5. A small viscosity will also regularize

preshocks, giving them a �nite velocity gradient j�jmax pr / ��1=2 (Crighton & Scott 1979).

This gives only subdominant contributions for all �'s.

The Burgers equation constitutes a dissipative dynamical system because of the presence

of shocks which introduce an essentially irreversible element into the dynamics. Many features

of our periodically kicked Burgers problem are actually in exact correspondence with those of

a conservative (Hamiltonian) dynamical system, namely the equilibrium positions of a one-

dimensional chain of (classical) atoms connected by elastic springs in the presence of a space-

periodic external potential (Frenkel{Kantorova model). This problem has been investigated

by Aubry (1983) and Mather (1982). The potential energy which has to be minimized to

obtain the ground state has the following form:

H(fyjg) =
X
j

1

2
(yj+1 � yj � a)2 � "G(x); (50)

where the yj's are the positions of the atoms, a is the unstretched length of the springs and

" > 0 measures the depth of the periodic external potential "G(x). Nontrivial properties of

the ground states re
ect the competition between the tendency of the atoms to sit at the

minimum of the potential �"G(x) and to be within a distance a from each other. It is easily

checked that the action (in the sense of x2) for the kicked Burgers equation with periodic

forcing is exactly given by the Aubry{Mather Hamiltonian (50) if we take a forcing potential

"G(x) and a mean velocity hui = a. The velocity in the Burgers equation is now the analog

of the distance between adjacent atoms. Note that j is a space index in the chain model,

whereas it is a time index in the Burgers equation. In this paper we have assumed a vanishing

mean velocity (a = 0). In this case there is no competition between the aforementioned two

tendencies, and the global minimizer yj = xc corresponds to a trivial ground state minimizing

both parts of the Hamiltonian. More delicate e�ects arising in the case hui 6= 0 and in more

than one dimension will be discussed in forthcoming work. We note that the connection

between Aubry{Mather theory and Burgers equation for the case of time-periodic potentials

with continuous time was discussed for the �rst time in Jauslin, Kreiss & Moser (1997) and in

E et al. (1998). The theory has been recently developed further in E (1999) and in Sobolevski

(1999).
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Finally, we discuss some possible extensions of the ideas of the present paper to Navier{

Stokes turbulence. Obviously, the method of forcing by kicks applied at discrete instants

of time can also be used for Navier{Stokes. One of the things which made this method

particularly valuable for the Burgers case is the existence of an eÆcient numerical algorithm

to solve the purely decaying Burgers equation in the inviscid limit. At the moment there is

nothing comparable for Navier{Stokes. Note that periodic kicking will not result in a unique

time-periodic solution for Navier{Stokes since periodicity-breaking bifurcations leading to

chaos will unavoidably occur.

The results concerning analyticity of structure functions are likely to be the same for

Burgers turbulence and isotropic 3-D Navier{Stokes turbulence (in the limit of vanishing vis-

cosity). Indeed, in the latter case all structure functions of order p 6= 3 are generally believed

to have scaling properties at small separations with nontrivial (and certainly noninteger)

exponents. As to the third-order structure function, our proof of analyticity for analytic-

in-space forcing can be extended if one assumes that Kolmogorov's four-�fths law is valid

(Kolmogorov 1941; see also Chapter 6 of Frisch 1995).

Burgers turbulence presents an algebraic tail for the pdf of the velocity gradient but

nothing similar is known for Navier{Stokes turbulence. This may be telling us something

about the possible singularities associated to the Navier{Stokes and Euler equations. A

remarkable feature for the Burgers equation is that only preshocks but not mature shocks

contribute to the power-law tail. There is indeed a basic di�erence between the two types

of singularities. For analytic forcing, near a mature shock, the solution is not only piecewise

analytic (i.e. on each side of the shock) but uniformly so: the radius of convergence of the

Taylor series remains �nite as one approaches a mature shock. In contrast, when approaching

a cubic root preshock singularity, the radius of convergence goes to zero and gradients become

very large. It is the algebraic behavior of their strength which causes the power-law tail. If

the Navier{Stokes equation, in the limit of vanishing viscosity, were to develop any singularity

of this kind (accompanied by algebraically large gradients) it should also display a power-

law-tail pdf. Further increases in the quality of experimental and numerical turbulence or

convection data are needed to �nd if such singularities are really ruled out.
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APPENDIX

Statement of the results for periodic kicking

Here, we formulate and prove formally the statements presented in x3. The kicking is assumed

1-periodic in both space and time. The force in the Burgers equation is given by

f(x; t) = �
d

dx
G(x)

+1X
j=�1

Æ(t� j); (A.1)

where G(x) is a deterministic function of x which is 1-periodic and three times continuously

di�erentiable (G 2 C3). For some of the statements below it is assumed that G is analytic.

23



We shall also assume that the kicking potential G(x) is generic in the Morse sense. This

implies that G(x), considered on the circle 0 � x < 1, has a unique point of maximum xc
and that G(x) is non-degenerate at xc, i.e. @xxG(xc) < 0. Without loss of generality we can

assume that G(xc) = 0. We denote by c = �@xxG(xc)=2 > 0. The initial potential  0(x)

is also assumed 1-periodic. This implies that
R 1
0 u0(x)dx = 0, where u0(x) = u(x; 0+) is the

initial velocity.

We now solve the unforced Burgers equation between the times t = 0 and t = 1 and get

û(x) � u(x; 1�). Then, we determine u(x; 1+) = û(x)+g(x), where g(x) = �@xG(x). Denote
by Bg the transformation from u(x; 0+) to u(x; 1+) : Bgu = û + g. Clearly, Bg transforms

L1
0 = fu(x) 2 L1[0; 1];

R 1
0 u(x)dx = 0g into itself. Then, the following statements hold.

S1 The functional transformation Bg has a unique �xed point u1: Bgu1 = u1,

maxx ju1(x)j � 1=2 + maxx jg(x)j. The �xed point u1 is a function of bounded vari-

ation, it is continuous everywhere except at the set of shock points, which is at most

countably in�nite.

S2 Let x be a point of continuity for u1. Then, for all u0 such that
R 1
0 u0(x)dx = 0,

Bn
g u0(x)! u1(x) as n!1: (A.2)

S3 The unique global minimizer 
c corresponds to a particle with zero velocity sitting at

the point xc of maximum kicking potential.

S4 There exists a unique entropy weak solution u1(x; t) to the kicked Burgers equation in

the semi-in�nite domain ]�1; T ] with zero mean velocity. This solution is 1-periodic

in time and it is generated by u1(x): u1(x; k+) = u1(x) for all integer k. The

solution u1(x; t) satis�es the estimate: maxx;t ju1(x; t)j � 1=2 +maxx jg(x)j.

S5 For arbitrary t there exists a unique main shock.

S6 Convergence in (A.2) is exponentially fast in n. If u1 is di�erentiable at x, then there

exists a constant C(x) which does not depend on u0 such that

jBn
g u0(x)� u1(x)j � C(x)��n; (A.3)

where � = 1 + c +
p
c2 + 2c > 1. If xc is a point of continuity for u0 and u0(xc) 6= 0

then there exists a constant c(u0) > 0 such that for all x the following estimate holds:

jBn
g u0(x)� u1(x)j � c(u0)�

�n: (A.4)

S7 If the kicking potential G(x) is analytic, then for any t the solution u1(x; t) is a piece-

wise analytic function of x. The number of pieces is �nite and is equal to the total

number of shocks at time t. The number of preshock events between time 0 and 1 is

also �nite.

Proof

Uniqueness of the solution

Denote by T the Euler{Lagrange di�eomorphism of the phase-space cylinder C � f0 � y <

1;�1 < v <1g generated by the system of equations (15), i.e. T (y; v) = (y0; v0), where

v0 = v + g(y) (A.5)

y0 = y + v + g(y) (mod 1):
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Since G 2 C3, the di�eomorphism T 2 C2. The global minimizer in the sense of x2.1 is a

sequence fyj = xcg for all j. Here, it is trivial and it corresponds to a �xed point P = (xc; 0)

for the di�eomorphism T , i.e. the corresponding trajectory of T is a stationary trajectory

(yj; vj) = (xc; 0) = P . Let fy0j ; j � J; y0J = xg be an arbitrary minimizer. Then y0j ! xc
as j ! �1. Indeed, if it were not the case, then a sequence fy00J = x; y00j = xc; j0 �
j � J � 1; y00j = y0j; j � j0 � 1g would have smaller action than fy0jg for any j0 which is

suÆciently negative. (The action is given by (21).) Convergence y0j ! xc implies that the

corresponding trajectory of T , f(y0j ; v
0

j = ��(y0j; y
0

j�1))g converges to P as j ! �1. Here,

� denotes the distance between two points on the circle. Easy calculation shows that P is a

saddle point for the di�eomorphism T with the eigenvalues �1 = � = 1 + c +
p
c2 + 2c > 1

and 0 < �2 = 1 + c �
p
c2 + 2c < 1. It follows that there exist two C2-smooth curves �(s)

and �(u) which are stable and unstable manifolds for the point P . Both curves pass through

P and consist of all points (y; v) whose trajectories approach P as j tends to +1 and �1,

respectively (see �gure 4). In fact, convergence is exponentially fast and the rate is given

by 1=�. Since (y0j ; v
0

j) ! P as j ! �1, a point (y0J ; v
0

J ) belongs to �(u). Let us associate

a minimizing curve 
x;J on the space-time cylinder M = f0 � y < 1; �1 < t < +1g
with an arbitrary minimizer fy0j; j � Jg. To construct 
x;J we just connect all the pairs

of points (y0j; j); (y
0

j�1; j � 1) for j � J by straight segments of minimal length. Denote by

y0x;J(t) a piecewise linear function such that 
x;J = f(y0x;J(t); t); �1 < t < +1g. Clearly,

y0x;J(j) = y0j. Denote also by 
 the minimizing curve f(xc; t); �1 < t < +1g corresponding
to a global minimizer fyj = xcg.

We have shown above that any minimizing curve 
x;J is asymptotic to 
 as t! �1. By

a standard argument this implies that any two minimizing curves do not intersect each other,

except if they start from the same point x. It follows that for all but at most countably many

x and all J there exists a unique minimizing curve 
x;J . Denote by S the exceptional set

of x's where a minimizer is not unique. Obviously, for �xed x and di�erent J 's minimizing

curves 
x;J are connected by a time shift. It follows that the set S does not depend on

J . Hence, for all x outside of S one can de�ne a function v(x) � dy0x;J(t)=dt jt=J
�

=

��(y0J ; y
0

J�1). It is easy to see that for any solution u(x; t); t � T to the kicked Burgers

equation in the semi-in�nite domain ] �1; T ] one has: u(x; k�) = v(x) for all integer k �
T and x outside of S. This implies that the solution to the kicked Burgers equation in

the semi-in�nite domain ] � 1; t] is unique and is generated by v(x). It also follows that

u1(x) = v(x) + g(x) is a unique �xed point for Bg. The set S is a set of shocks at integer

moments of time. It follows from the closeness of the set of minimizers that v(x) is continuous

outside of S. The non-intersecting property implies that for arbitrary x 2 S there exist

v(x�) = limy!x
�

v(y); v(x+) = limy!x+ v(y), and that v(x�) > v(x+). It also follows

that v(x) is a function of bounded variation. Clearly, v(x�) and v(x+) are the velocities

of two minimizing curves which start at (x; J) for any integer J . Notice that there can be

more than two minimizing curves starting at a shock point x; their velocities are between

v(x+) and v(x�). This happens, e.g., at shock mergers. Since jv(x)j = �(y0J ; y
0

J�1), we

have: maxx jv(x)j � 1=2; maxx ju1(x)j � 1=2 + maxx jg(x)j. We have seen above that the

points of continuity of u1, and hence of v, are exactly the points of uniqueness of minimizing

curves. Since any limiting point of a sequence Bn
g u0(x)�g(x) gives a velocity of a minimizing

curve starting at (x; J), we have limn!1(Bn
g u0(x) � g(x)) = v(x), or Bn

g u0(x) ! u1(x) as

n ! 1 for any x outside of S. Suppose now that there exists another global minimizer

f�yjg. The same argument as above shows that necessarily limj!1 �yj = limj!�1 �yj = xc.

If �yi 6= xc for some i, then one can construct a sequence with smaller action by taking

~yj = xc; jjj � j0; ~yj = �yj; jjj > j0 for suÆciently large j0. Such construction contradicts to

global minimality of f�yjg and proves uniqueness of the global minimizer. Statements 1 - 4

25



are thus proved.

Uniqueness of the main shock

Till now we have not used the hyperbolicity properties of the �xed point P . We have seen

above that if v is a velocity of a minimizer which starts at (x; J), then the point (x; v) belongs

to �(u). Denote by s the natural parameter of length along �(u), i.e.

�(u) = (x(s); v(s)); s 2 IR; (dx=ds)2 + (dv=ds)2 = 1; (x(0); v(0)) = (xc; 0): (A.6)

The orientation of s is �xed by the condition x(s) " x(0) as s " 0. De�ne (xj(s); yj(s)) �
T j(x(s); v(s)); j � 0 and the C2 function

A(s) �
X
j�0

"
�2(yj; yj�1)

2
�G(yj)

#
: (A.7)

The series above converges since G(xc) = 0. It is easy to see that a point (x(s); v(s))

corresponds to a minimizer if and only if A(s) = min~s:x(~s)=x(s)A(~s). Denote by �A(x) �
min~s:x(~s)=xA(~s). Notice that for any � > 0 there exists Æ(�) > 0 such that A(s) > Æ(�) for all

jsj > �. Fix � small enough, so that x(s) is a monotone function for jsj � �. Now, choose �0
so small that max

jsj��0 A(s) < Æ(�). Then for all jsj � �0, a point (x(s); v(s)) corresponds to

the unique minimizer at x(s). Hence, we have shown that there are no shocks inside some

neighborhood of xc.

We now construct the main shock. Fix an arbitrary time t. Consider the situation on the

space-time cylinderM . All minimizing curves approach the global minimizing curve 
 either

from the right or from the left (see �gure 6). Denote by Br(t) and Bl(t) the sets of points x

on the circle such that there exists a minimizing curve starting at (x; t) which approaches 


from the right and from the left, respectively. Since minimizing curves do not intersect, Br(t)

and Bl(t) are closed intervals, Br(t)
S
Bl(t) = S1 = [0; 1[ and Br(t)

T
Bl(t) consists of just

two points. One of them is xc. Denote the other one xmsh(t). It follows immediately from the

construction that xmsh(t) is a shock point; moreover it is the main shock. To prove uniqueness

consider any other shock at time t = J at point x. Then, (x; v(x�)) and (x; v(x+)) either

belong both to the negative-s part of �(u) or both to its positive-s part; that is, there exists

s1; s2 such that (x; v(x�)) = (x(s1); v(s1)) and (x; v(x+)) = (x(s2); v(s2)) with s1s2 > 0.

For j suÆciently negative, both (xj(s1); yj(s1)) = T j(x(s1); v(s1)) and (xj(s2); yj(s2)) =

T j(x(s2); v(s2)) belong to an �0-neighborhood of (x(0); v(0)) where there is no shock. Hence

a prehistory of an original shock is not longer than jjj. Statement 5 is thus proved.

Exponential convergence to the unique solution

Consider a small neighborhood U of the point P . It is well known (Hartman 1960; Belitskii

1973) that if U is small enough then, inside U , T is C1-smoothly conjugate to a linear

transformation. This means that there exists a local C1-smooth change of variables such

that in the new coordinates (X;V ) the map T becomes T� : (X;V ) 7! (�X; ��1V ) and P is

the origin in the coordinates X;V . Denote un(x) � Bn
g u0 and recall that

R 1
0 u0(x)dx = 0. For

arbitrary x consider a point (x; v) = (x; un(x)) on the cylinder C and its backward trajectory

(x(�j); v(�j)) = T �j(x; v); 0 � j � n. It is easy to see that there exists a neighborhood

U1 � U such that if two points of this backward trajectory belong to U1, then all points

in between belong to U . Notice, that there exists n1 which depends only on U1 such that,

uniformly in n, at most n1 points of the backward trajectory (x(�j); v(�j)); 0 � j � n;
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are outside of U1. This implies that for some j1; 0 � j1 � n1; and j2; n � n1 � j2 �
n; we have (x(�j1); v(�j1)) 2 U1; (x(�j2); v(�j2)) 2 U1. Hence, (x(�j); v(�j)) 2 U for

all j1 � j � j2 and j2 � j1 � n � n1. Then, there exists a constant C1 > 0 such that

the distance between (x(�j1); v(�j1)) and a piece of local unstable manifold inside U is

less than C1�
�n. Denote by ]s(1); s(2)[; s(1) < 0; s(2) > 0 an interval of the parameter

which corresponds to this piece of local unstable manifold. Then the Euclidian distance

dist ((x(�j1); v(�j1)); (x(s); v(s))) � C1�
�n for some sn 2 [s(1); s(2)]. Denote by �s(1) and �s(2)

the values of the parameter s corresponding to T n1(x(s(1)); v(s(1))) and T n1(x(s(2)); v(s(2))),

respectively. Then, there exists a constant ~C > 0 such that dist ((x; v); (x( �sn); v(�sn))) �
~C��n for some �sn 2 [�s(1); �s(2)]. It might happen that �sn does not correspond to a minimizer.

However, A(�sn)! �A(x) as n!1. More precisely, one can show that there exists a constant

C2 > 0 such that

A(�sn)� �A(x(�sn)) � C2n�
�n; j �A(x(�sn))� �A(x)j � C2�

�n (A.8)

Suppose now that u1 is di�erentiable at x (recall that it is di�erentiable almost everywhere).

Denote by sx the value of parameter s corresponding to the unique minimizer at x. Then,

dx(s)=ds js=sx 6= 0. Then, there exist �; Æ > 0 such that jdx(s)=dsj � Æ; j dy
dx(s)j � Æ�1 for all

s 2]sx � �; sx + �[. Denote by � � mins2[�s(1);sx��]
S
[sx+�;�s(2)] dist f(x; �A(x)); (x(s); A(s))g > 0.

Clearly, there exists N which depends only on � such that dist f(x; �A(x)); (x(�sn); A(�sn))g < �

for all n > N . Hence, �sn 2]sx � �; sx + �[ for all n > N . This and the estimates for the

derivatives immediately imply that there exists a constant C(x) > 0 such that jBn
g u0(x) �

u1(x)j � C(x)��n.

To prove an estimate from below, notice that, for any backward trajectory

(x(�j); v(�j)), 0 � j � n, the last point (x(�n); v(�n)) cannot be too close to P if u0(xc) 6=
0. Indeed, the initial potential  0 has non-zero slope at xc since we assumed u0(xc) 6= 0.

Hence, it is possible to make the action smaller by moving further from xc. It is easy to show

that there exist �(u0) > 0 such that dist f(x(�n); v(�n)); (xc; 0)g � �(u0). It follows that

a point (x; v) cannot be too close to (x(s); v(s)); s 2 [�s(1); �s(2)], i.e. there exists a constant

c(u0) > 0 such that jBn
g u0(x)� u1(x)j � c(u0)�

�n. Statement 6 is thus proved.

Analyticity and �niteness of the number of shocks

To prove Statement 7 we �rst notice that �(u) is analytic, provided G is analytic (see Moser

1956). Denote by fxig the (at most countable) set of shock points other than the main

shock at an integer time J . As we have already seen above, for every xi there exists an

open set ]s1(i); s2(i)[ of the parameter s, where the parameter values s1(i); s2(i) correspond

to the points (xi; v(xi�)) and (xi; v(xi+)), respectively. Since xi is not the main shock,

s1(i)s2(i) > 0. The non-intersecting property of minimizing curves implies that di�erent in-

tervals ]s1(i); s2(i)[ do not intersect. Also, ]s1(i); s2(i)[� [s2msh; s1msh], where s1msh and s2msh

are the parameter values corresponding to (xmsh; v(xmsh�)) and (xmsh; v(xmsh+)), respec-

tively. It is easy to see that all s 2 [s2msh; s1msh]�
S
i(s1(i); s2(i)) correspond to minimizers.

Clearly, for all i there exists s(i) 2 (s1(i); s2(i)) such that dx(s)=ds js=s(i) = 0. Suppose

that there be in�nitely many shocks. Then there exists an accumulation point s1 for the

sequence fs(i)g. It follows that all derivatives of x(s) vanish at s1. The analyticity of x(s)

then implies that x(s) is a constant function. This contradiction proves that the number of

shocks is �nite. The same argument works for all times t, since for all t the Lagrangian map

transforms �(u) into an analytic curve. Denote by �
(u)
t = (xt(s); vt(s)) for 0 � t � 1 the

image of �(u) under the Lagrangian map at time t, where s is a natural parameter along �
(u)
t .

Suppose that the number of non-main shocks at time t is K, so that the total number of
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shocks is K +1. As above, denote by ]s1(i); s2(i)[ the intervals of the parameter s generated

by the i-th shock, and by s2msh and s1msh the values of the parameter corresponding to the

main shock. The intervals ]s1(i); s2(i)[; 1 � i � K, divide [s2msh; s1msh] into K + 1 closed

intervals Ii; 1 � i � K + 1. It is easy to see that each of those intervals corresponds to an

analytic piece of u1(x; t), i.e. u1(x(s); t) = vt(s); s 2 Ii. Finally, we show that the number

of preshock events between time 0 and 1 is �nite. Suppose the number of preshocks were

in�nite. Denote by ti; si the time of the i-th preshock and the corresponding value of the

parameter s. Denote by (t�; s�) an arbitrary point of accumulation for a sequence (ti; si). It

is easy to see that all derivatives of xt�(s) vanish at point s�. This implies that xt�(s) is a

constant function. Again, we get a contradiction, which �nishes the proof of Statement 7.
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FIGURE CAPTIONS

Figure 1: Snapshots of the velocity for the unique time-periodic solution corresponding to the

kicking force g(x) shown in the upper inset; the various graphs correspond to six output

times equally spaced during one period. The origin of time is taken at a kick. Notice

that during each period, two new shocks are born and two mergers occur.

Figure 2: Exponential relaxation to a time-periodic solution for three di�erent initial velocity

data as labelled. The horizontal axis gives the time elapsed since t = 0.

Figure 3: Evolution of shock positions during one period. The beginnings of lines correspond to

births of shocks (preshocks) at times t?1 and t?2; shock mergers take place at times tc1
and tc2. The \main shock", which survives for all time, is shown with a thicker line.

Figure 4: Sketch of a hyperbolic �xed point P with stable (�(s)) and unstable (�(u)) manifolds.

The dashed line gives the orbit of successive iterates of a point near the stable manifold.

Figure 5: Unstable manifold �(u) on the (x; v)-cylinder (the x-coordinate is de�ned modulo 1)

which passes through the �xed point P = (xc; 0). The bold line is the graph of

u1(x; 1�). The main shock is located at xl = xr. Another shock at x1 corresponds to

a local zig-zag of �(u) between A and B.

Figure 6: Minimizers (trajectories of 
uid particles) on the (x; t)-cylinder. Time starts at �1.

Shock locations at t = 0� are characterized by having two minimizers (an instance is

at x1). The main shock is at xl = xr. The fat line x = xc is the global minimizer.

Figure 7: Pdf of the velocity gradient at negative values in log-log coordinates. Upper inset: local

scaling exponent. A power law with exponent �7=2 is obtained at large arguments.

Figure 8: Same as �gure 7 with the second space derivative of the velocity. The exponent is now

�2.

Figure 9: Upper part: Pdf of (negative) velocity increments in log-log coordinates for various

values of the separation �x in geometric progression from 2�=N to 27(2�=N). Lower

part: the corresponding local scaling exponents.

Figure 10: Structure functions Sp(�x) for p = 2; 3; 4; 5 as labelled. Note the linear behavior at

small �x.

Figure 11: Merger of two shocks Xkl(t) and Xkr(t) on the (x; t)-cylinder. The merger (event Mk)

takes place at t = ~tk. At the earlier time t = �k the shocks are within a distance �x.
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