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Abstract

Our earlier arguments (Berry, M V & Robbins, J M 1997, Proc.

Roy. Soc. Lond. A453 1771-1790) leading to the spin-statistics relation

are summarized and then revisited. Constructions are described that

satisfy all our previous requirements but lead to the wrong exchange

sign (one such alternative is the replacement of commutators by

anticommutators in the Schwinger representation of the spins of the

particles); we suggest why these might be unacceptable.
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1. Introduction

Following our earlier exploration (Berry and Robbins, 1997)

(hereinafter called I) of the connection between spin and statistics for

identical quantum particles in nonrelativistic quantum mechanics, and

comments from several ppople, we wish to elaborate and extend our
I

arguments. In this letter e concentrate on one point: construction of

the transported basis on hich our scheme depends.

In section 2, we s arize the scheme for two particles with spin

S (integer or half-integer), state the problem of the construction of the

transported basis, and describe the construction based on Schwinger's

representation of spin. In section 3 we present an argument, independent

of the Schwinger representation, in which a correctly-transported basis

emerges from simple additional mathematical assumptions. But there

exist alternative constructions that satisfy the conditions in I yet lead to

the wrong spin-statistics connection; in section 4 we describe two of

these. Section 5 gives some speculations about principles that might

exclude constructions leading to the wrong statistics. Appendix A

corrects a minor logical error in the derivation of the exchange sign in

I, and Appendix B gives technical details of one of the alternative

constructions.

We should mentioll several related topics that we hope to discuss

elsewhere but not here. rst, the extension of our construction to N>2

particles, where (Atiyah, 000) has provided an explicit construction

completing the progr e outlined in section 6 of I, with far-reaching

mathematical generalizations. Second, the relation between our

nonrelativistic treatment and the more familiar arguments (Duck and

Sudarshan, 1997, Duck and Sudarshan, 1998) based on relativistic

quantum field theory (however, see (Anandan, 1998) for a relativistic
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extension of I). Third, tht extension of our construction to include

identical particles with additional properties such as isospin and colour.

2. Reprise

In I, the state of tht particles is represented by

3

l\f(r)) =L lfIM(r)IM(r)).
M

(1)

Here, r == r1 - r2 is the relative position vector for the particles (the

dependence on the centre of mass is implicit); therefore exchange of

positions corresponds to r~ - r. M=={m1, m2} labels the spin state of the

particles, with m denoting the z component of spin; exchange of spins

corresponds to M~M=={m2,md. IM(r)) is the transported spin basis,

that is, a basis for representing spins in a way that depends on the

relative position of the particles. We require the transported basis to be

singlevalued, smooth, and also parallel-transported, that is

(2)

By introducing IM(r)), we can incorporate the indistinguishability

of the particles by identifying rand -r. For this, it is necessary to

exchange the spins along with the positions, leading to the exchange

requirement

IM(-r)) = (_l)KI (r)), (3)

involving the exchange s gn (_l)K (K integer). Parallel transport

excludes the possibility 0 a more general exchange phase, depending on

r (see Appendix A): the hase is a multiple of n, ensuring that the



physics associated with it does not depend on relative position of the

particles.

The basis is a set of (25+1) spinors; each is a singlevalued

function of r. The basis inhabits a larger ambient space, within which it

is smoothly transported. This enlargement is a necessary consequence of

the parallel transport requirement; without enlargement, (2) would

imply that IM(r)) is independent of r and so unable to satisfy the

fundamental exchange requirement (3). For further discussion of this

requirement, and of the augmented spin space, see Robbins (2000).

With the basis IM(r)), the inversion r~ - r corresponds to

complete exchange of the particles, motivating the central step, which is

to impose singlevaluedness on I'P(r)), regarded as a function taking

values in the Hilbert space of the two spins, and whose domain is the

product of the projective plane (sphere with identified antipodes) with

the radial coordinate Irl. Thus
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1'P(r)) =I'P(-r)). (4)

With (1) and (3), singlevaluedness implies that the exchange phase

acquired by the basis IM(r)) is inherited by the coefficients 1I'M(r), that

IS

(5)

We emphasize that this is a natural extension to two identical particles of

the requirement of singlevaluedness of wavefunctions familiar in one­

body quantum mechanics: because of the way we define the

configuration space, r and -r are the same point. (Some other

nonrelativistic accounts of the spin-statistics relation (Broyles, 1976,

Bacry, 1995) also invoke r0tions of singlevaluedness; these and other



treatments are discussed in comprehensive reviews (Duck and

Sudarshan, 1997, Duck and Sudarshan, 1998) of previous studies of the

spin-statistics relation.)

In I, the coefficients 1I'M(r) were shown to be the same as those in

the conventional formul~ion, in which the state is represented in terms

of the fixed-spin basis states 1M), that is

l\{Ifixed (r)) = L 11'M(r)IM). (6)
M

Therefore equation (5) isl a generalized spin-statistics relation, with

exchange sign (_I)K origipating in the behaviour of the transported basis

under exchange. Obviously, the central problem in our formalism is the

determination of this sign.

In section 4 of I an explicit construction was given for the

transported basis, leading to the exchange sign

5

K=2S ,

that is

so that (5) becomes

This is the correct form of the spin-statistics relation.

(7)

(8)

(9)

The construction of the basis in I made use of the Schwinger

representation (Schwinger, 1965, Sakurai, 1994). In this, each of the

spins 1 and 2 is regarded as made from two harmonic oscillators, aI' b i

for the spin 1 and 3,z, b2 for the spin 2, with associated annihilation and

creation operators a1, a/, etc; operators corresponding to different



oscillators commute. As parallel transport requires, the resulting

transported basis IM(r)) inhabits an augmented space of spins, with

dimension d=(4S+1)(4S+2)(4S+3)/6 (the number of ways that 4S quanta

can be distributed among four oscillators) that is larger than the

dimension (2S+ 1)2 of the 'fixed spin space. We can state this another

way, in terms of the unitary operator U(r) generating the transported

basis from the fixed basis by

6

IM(r)) =U(r)IM), (10)

as follows: the (2S+ 1)2 vectors 1M) do not span the space of states on

which U(r) acts.

We argued (at the end of section 7 of I) that this enlargement is

physically natural, even though the expansion of IM(r)) seems to

involve fixed-basis states where the two particles would have different

spins. Indeed, the formalism guarantees that these unphysical values of

spin are never realized. The reason is that in the transported basis the

two spins must be represented not by the fixed matrices SI' 8 2 but by

the transported operators

(11)

whose squared magnitudes always have the physically correct eigenvalue

S(S+I).

Let us exhibit this enlargement explicitly for two spin-lI2
,

particles, by writing the ur transported basis states in terms of the ten

states in the augmented s in space. The frrst four states are the original

fixed-basis states of the t 0 particles, which in an obvious notation are

1+ +), 1+ -), 1-+),1- ). (12)



The remaining six correspond to fixed-spin states in which one spin is

zero and the other spin is one, that is, using the notation 151,52;ml ' m2 ) ,

7

10,1;0, 1),10,1;0, 0),.1 0, 1;0, -1),

11,0; 1, 0),11,0;0,0),.11,0; -1,0).
(13)

Then the transported states, as functions of the polar angles e, ¢> of r,

are

1+ + (r)) =~ sine(exp{i¢>}I0, 1;0, 1) - exp{-i¢>}ll, 0;1, 0))

+cosel++)

1+ - (r)) = -1- [sin e(-exp{-i¢>}ll, 0; 0, 0) + exp{i¢>}1 0, 1; 0, 0))]

+ -1- [(cose+ 1)1 + - ) + (cose- 1)1- +)]

1- + (r)) =-1- [sin e(-exp{-i¢>}ll, 0;0, 0) + exp{i¢>}I0,1;0,0))]

+ -1- [(cose- 1)1 + -) + (cose+ 1)1- +)]

1- - (r)) =~ sin8(exp{i¢>}I0, 1;0,-1) - exp{-i¢>}ll,O;-I, 0))

+cosel- .....)·

(14)

It is easy to confrrm that these states are orthonormal, and

singlevalued and smooth functions of r. They also satisfy the parallel-

transport requirement (2): the derivatives of each state with respect to 8

and ¢> are orthogonal to all four states.

At the end of I we conjectured that any singlevalued, smooth and

parallel-transported transported basis would yield the correct exchange

phase (6). That is wrong, as we will demonstrate in section 4.



3. Supplementary assumptions yielding the correct sign

There is a simple mathematical argument, independent of the

Schwinger construction, that yields the correct exchange sign, at least

for two particles. The argument is based on the following two additional

assumptions. (i) There no degeneracies in the augmented space of

spins; that is, each comb nation of 51,52, m l , m2 is represented by at

most one state among th se spanning the space acted on by U(r). (ii) In

the augmented space of s ins, the magnitude of the total spin is

conserved as r varies.

These assumptions imply the exchange sign (_1)25. To show this,

we represent the transported basis using not the z components

M == {m1,m2} of the separate spins but the magnitude j and the z

component}: of the total spin SI+S2' Defining J==UJz}, we denote states

in this representation by IJ), and the corresponding transported states

by IJ(r)). From the Clebsch-Gordan coefficients, or otherwise, it is

possible to show that under spin exchange IM)~IM) the states IJ)

transform as

8

IJ)~(_1)2s-i IJ). (15)

Then the exchange rule (3) for the transported basis, which can also be

written in the form

becomes

IJ(-r)) =(_I)K+2s-i IJ(r)).

(16)

(17)

To determine the exchange sign K, we need consider only one of

the states J, since K is the same for all of them. We choose the singlet



state J=U=O,jz=O}. By assumption (i), there is only one such state in the

basis of fixed states spanning U(r). By assumption (ii), this state remains

isolated when transported, and so can be written in the simple form

9

IU = O,jz = O}(r)) = exp{i8(r)}IU = O,jz = OJ).

Parallel-transport (equation 2) now gives 8(r)=O immediately.

Therefore the singlet is tnvariant under transport and therefore also

under exchange. ApplyiI)g this invariance to (17) with j=O gives the

correct sign K=2S.

(18)

I

4. Alternative constrtctions yielding the wrong sign

There are constructions that satisfy the conditions in I but yield

the wrong exchange sign. Here we describe two illustrative examples,

The fITst such construction applies to spin-O particles. It is very

simple: the single transported state is represented as the unit vector

IM(r)) = I{O,O}(r)) = r / Irl· (19)

This is singlevalued, smooth, and parallel-transported, and involves the

extended spin space spanned by the three basis states ex, ey and e~, of

which only one (e.g. ez) corresponds to the fixed-spin state I{O,O}). The

operator U(r) is then rotation from e~ to r. Under r-+-r, IM(r))

changes sign fermionic1y, rather than being bosonically invariant.

In the second cons ruction, we modify the Schwinger construction

(section 4 of I) by repla 'ng all commutators involving the operators ai'

a/, b1, b/, a2, a2t, b2, t by anticommutators. Because

anticommutation implies 8 1
2=0, etc, this particular modification works



only for spin-l/2 particles. After some calculation (outlined in Appendix

B ) we find the following 'anti-Schwinger' transported basis, which

should be compared with the Schwinger-generated basis (14):

1++(r))=I++), 1--(r))=I--)

1+ - (r)) = tsin8(--exp{icj>}I0, 0;0,0\ + exp{-icj>}I0,0;0,0)2)

+cos2 t OI+-)+sin2 t81-+) (20)

1- + (r)) = -! sin 8(exp{icj>}I0, 0; 0, 0)1 - exp{-icj>}I0, 0; 0,0)2)

+sin2 ttJI+ -) + cos2t 81- +).

where 1°,0;0,0)1 and 10,0;0,0)2 are degenerate states where both

particles have (fixed) spin zero.

These states are singlevalued, smooth, and parallel-transported,

and they satisfy the fundamental requirement that position exchange

(r~-r) is equivalent to spin exchange (IM)~IM). But the sign is

wrong: a plus, that is the bosonic exchange ruleIM(-r)) = +IM(r)),

instead of the fermionic minus.

5. Discussion

Clearly, the existence of alternative constructions means that the

arguments in I, leading to the correct spin-statistics relation, cannot be

regarded as a derivation from first principles. Those arguments would

constitute a derivation if the implementation of exchange by the

Schwinger-constructed transported basis were incorporated as an

assumption. but the dependence on that particular formalism does not

seem fundamental. We d! not know a set of simple general assumptions

that imply the correct co nection. But all alternative constructions that

we have found so far, th t lead to the wrong spin-statistics connection,
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are unnatural or unsatisfactory in one way or another, and we offer the

following 'exclusion principles' as worth considering in the search for a

convincing general argument.

a. Constructions should work for all S. Why? Because our arguments

here relate to quantum Plhysics, not elementary particle physics, and

although quantum mech~nics is a fundamental theory, its application

(like that of newtonian physics) is not restricted to fundamental

particles. In particular, it can be applied to identical composites (e.g.

atoms and a-particles), whose statistics must be those calculated from

their constituents, which may combine to give any S. The Schwinger

construction naturally includes all S, and also any number of particles

N. On the other hand, anti-Schwinger (equation 20) fails this

'compositeness' test, because the restriction to spin-l/2 makes it

impossible to build up such composites. (It is possible to generalize anti­

Schwinger by representing each spin S in terms of 2S pairs of

annihilation and creation operators (Georgi, 1982); however this has the

disagreeable feature of introducing a different structure group SU(4SN)

for each S.)

b. Constructions should be indecomposable: it should not be possible to

express IM(r)) as a tensor product IMa(r))®IM,B(r)), where IMa(r))

satisfies the properties required of the transported basis (exchange under

r~-r, smoothness, parallel transport), unless the second factor 1M p(r))

is a constant vector (that is, independent of M and r). The Schwinger

construction is indecomposable in this sense, but (19) (and

generalizations thereof) are not.

c. Constructions should be intrinsically related to spin. This excludes

(19) (and generalizations thereof), where the augmented spin space

contains states arbitrarily appended to those representing spins. The

11



Schwinger construction satisfies this condition, because it is based on a

representation of spin.

d. The physical hypothesis can be made that quantum spins are built

from Schwinger's oscillators. The spin-statistics connection follows

from this hypothesis, by a slight rephrasing of the arguments in I. But

for this to be convincin& there should be some other consequence, in

addition to spin-statistic, of the existence of these 'atomic spin bosons'.
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Appendix A. Effect of double exchange

The most general exchange involving a phase is

12

IM(-r)) = exp{iy(r)}IM(r)) (AI)

(the further generalization, to a phase depending on the state M, is

excluded by the obvious requirement that the exchange is preserved for

superpositions of the sta~es M, e.g. those corresponding to rotations of

the quantization directio ).

In section 2 of I argued that singlevaluedness of the

transported basis, embo ied in a double application of r~-r, requires

the exchange phase fact<1>r to be a sign, that is exp{iy(r)}=(-l)K. This

was wrong. In fact, sing~evaluedness under double exchange requires



IM(r)) = IM(-(-r))) = exp{ir(-r)}/M(-r))

= exp{i[r(-r) + r(r)]}IM(r)),

implying

r(r) = nK + j.l(r),

where K is an integer and j.l(-r)=-j.l(r).

The exchange rule generated by (A3) is

IM(-r)) = (_I)K exp{ij.l(r)}IM(r)).

However, the parallel-transport requirement (2) ensures that j.l(r)

vanishes. This is because

so that satisfying (2) for all r, M, M' requires that j.l be a constant,

(A2)

(A3)

(A4)

(AS)
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which must vanish since the function j.l(r) is odd. Thus the exchange

phase factor is indeed a sign as in (3), and the resulting physics (spin­

statistics relation) is isotropic, that is independent of the relative position

of the particles, as it must be.

We emphasize that parallel transport (as well as the exchange sign

(7» is a consequence of the Schwinger construction of I; it does not

have to b~ imposed sepa(ately.

Appendix 2. Anti-Sc construction

The logic of this c nstruction follows closely that of section 4 of

I: in terms of the creatio and annihilation operators 8., 8 1t, b1, b1t, 82,



a2
t , b2, b/ for the four oscillators, spins are defined by (4.1) of I,

fixed-basis states are defined in terms of the vacuum state of the

oscillators by (4.11) of I, exchange angular momentum E=Ea+Eb by

(4.4) and (4.5) of I, transport by the exchange rotation operator U(r)

(4.10) of I, and its action on the fixed basis by (4.19) of I.

The crucial difference is that now the operators anticommute.

Thus

In particular, the last equalities imply that each oscillator can be

occupied by at most one quantum. In terms of the vacuum state 10)

(where all four oscillators are unoccupied) the fITst four fixed-basis

states are

14

1+ +) = a1a110); 1+ -) = a1b!IO);

1-+) = b1a110); 1--)=b1b!IO).

Each + or - corresponds to a spin-half (up or down).

(B2)

There cannot be any fixed-spin-one states, as in the six additional

Schwinger basis states, because these would correspond to oscillators

occupied by more than one quantum. Instead, there are only two more

basis states. namely, in the notation 151,52 ; m l ,m2)'

(B3)

(B4)

The fact that these states correspond to spin-zero, rather than spin-one,

is a consequence of the anticommutation relations, which imply the

following formula for the operator for the magnitude of a single spin:

S·S =i(ata+bt~-2atabtb).



Calculation of the action of the exchange rotation operator U(r)

depends on the fact that the operators Ea and Eb commute, even though

the individual a and b operators do not, and the relation (4.19) of I

remains valid in the anti-Schwinger construction. With these

observations, the derivation of the anti-Schwinger transported basis (20)

is straightforward.
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