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The Fundamental Differential Form and Boundary
Value Problems

A.S.Fokas * M. Zyskin T

Abstract

Recently a new method for solving linear and integrable nonlinear PDE’s in
2 dimensions has been introduced. This method is based on the construction
of appropriate integral representations for both the solution and the spectral
function. Here we present an alternative approach for constructing these inte-
gral representations. This approach is based on the introducing of what we call
a fundamental differential form, and on a generalization of Green’s formula.
The new approach is illustrated for the Laplace and the modified Helmholtz
equations in a convex polygon, for a general dispersive equation on the half-line,
and for the heat equation in a domain involving a moving boundary.

1 Introduction

A new approach for solving linear and integrable nonlinear PDE’s was announced in
[1] and further developed in [2]-[5]. For linear PDE’s it involves 3 steps: 1. Given a
PDE, construct two compatible linear eigenvalue equations [6], called a Laz pair [7].
2. Given a domain, perform the simultancous spectral analysis of the Lax pair. This
yields an integral representation of the solution ¢(x1, z2) in terms of a function ¢(k),
called the spectral function, and an integral representation of ¢(k) in terms of ¢ and
of its derivatives on the boundary of the domain. 3. Given appropriate boundary
conditions, analyse the global relation satisfied by the spectral function; this gives
G(k) in terms of the given boundary conditions.
As an illustration of the above steps, consider the modified Helmholtz equation

Qzz + Quy — 4ﬂ2q - 07 (11>
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where (3 is a constant.
A Lax pair of equation (1.1) is given by

. . 32
Mz — Z(k - T)M - %(QI - ZQy) + %%

(1.2)

2 . 2

py + (k+ ) = §ige + ¢,) + Fra.
Indeed, it is straightforward to verify that the compatibility of equations (1.2) yields
equation (1.1).

Let ¢ satisfy equation (1.1) in a convex polygon with corners zi, ... z,, Z,11 = 21,

z =z + 1y, see Fig. 1.

Figure 1.

It is shown in [3] that ¢(x,y) can be expressed in the form

1 & g 822 dk
= — WEERE pa(k) — 1.3
0(o.9) = g 32 [ e E i) (13)
where [; are the rays in the complex k& plane
lij={kec: arglk) =—arg(z; — zjs1)}, j=1,...n, (1.4)

oriented from zero to infinity, and the spectral function {p;(k)}7, is defined by the
line integrals

i3?

K —ikz ﬁi 1 . >
p;(k) —/ e ket [E(qx —iqy)dz + — 4 dz| . (1.5)

J+1

Let g be real and let ¢ satisfy the boundary conditions

iqe + Biqy + 759 = [ (1.6)



on each side of the polygon, where o, 3;,v; are real constants and f; is a real smooth
function. Substituting equation (1.6) into equation (1.5), it follows that each p,
involves one unknown function, denoted by ;(k). The final step of the method
involves determining {wj(k:)};; by analysing the global relation

ipj(k) —0,kecC. (1.7)

A general procedure for using the single equation (1.7) to determine the n unknown
functions 1;(k) is discussed in [3] and further illustrated in [8].

The most difficult step of the above method is step (3). For evolution equations in
a polygonal domain this step involves only algebraic manipulations [4]; for evolution
equations in a time-dependent domain it involves the solution of a system of Volterra
integral equations [5]; for elliptic equations in a polygonal domain it involves the
solution of a matrix Riemann-Hilbert problem [3], [8].

The aim of this paper is to introduce an alternative approach for constructing
integral representations for linear PDE’s. This approach, instead of using the simul-
taneous spectral analysis of the Lax pair, makes use of a certain generalization of
Green’s formula, as explained below.

Definition 1.1. Let p(0,,,0.,) be a polynomial differential operator with constant
coefficients. We call a 1-form Q(x1, x9, k1, ko) a fundamental differential form asso-

ciated with the PDE
p(alpaﬂcz) C](9€1,$2) — 07 (18)

iff the equation (1.8) can be represented in the form

A = pliky, iks)g(y, a)e BT oy A day, (1.9)

As an illustration of this definition we note that a fundamental differential 1-form
associated with the modified Helmholtz equation (1.1) is

Qz,y, ki, ko) = {[qu + qy + (k1 +ika)qldx + [—qz + gy + (—iky + k2)q]dy}67i(l€1x+k2y)'
(1.10)
Indeed,
A = —[que + qyy + (k12 + ko?)q] e " E1=HR29) g A dy,

which using equation (1.1) and p(iky,iks) = —(ki? + ko® +4/3?), becomes an equation
of the form (1.9).



Observation 1.1. Let Q) be a fundamental differential form associated with the PDE

p(al‘wam) Q(Ih ZI;Q) =0.

Let q(xy,13) satisfy this equation in the domain (x1,33) € M, where M C R? is a
compact domain in R? with the boundary OM, given by a piecewise smooth curve.
Then, if q(x1, xq) exists, it can be represented in the form

X ei(k]x1+k2:m) Q($1/ $2/ kl k2)
| 1 dk dk / : : ) ) )
q(1,x9) (2n)? Jr? P2 J o1t waryeom p(iky, iky)

(1.11)

Indeed, the Stokes formula together with the definition of €2 imply

/ 2= // dir = // p(iky,iks) q(z, 2y e "1 TR0 e, A day,
oM M M

and (1.11) follows using

1 ik(z—a') __ o
27T/]dee = d(x — 2').

We note that equation (1.11) is formal; the regularisation of the right-hand side of
this equation will be discussed in §3-6. For general considerations regarding this
regularisation, see [12].

As an illustration of (1.11), consider the modified Helmholtz equation (1.1) in a
convex polygon with corners zy, ... z,, see Fig. 1. Equation (1.11) together with the
fundamental form (1.10) imply

1 b di zj  eilki(zo—2)+k2(yo—y))
Q(-T07y0> - (277')2 ]z:% /R2 1 2/Zj+l ]{312 i ]{}22 i 452

{lig: + qy + (k1 + tk2)qldx + [—qu + iq, + (—iki + ka)q]dy} .
(1.12)

It will be shown in §5 that using an appropriate contour integration, this equation
yeilds equations (1.3)- (1.5).

This paper is organised as follows: In §2 we construct € for an arbitrary polynomial
differential operator p and discuss the question of non-uniquness of 2. We also discuss
the relation of equation (1.11) with the classical Green’s formula. In §3 we apply (1.11)
to the general dispersive evolution equation

g+ a;(—id,)q =0, (1.13)

J=0



where the coefficients «a; are real, 0 < z < oo, 0 <t < T, and T is a finite positive
constant. This will reproduce the integral representation obtained in [4]. In §4, using
(1.11), we rederive the integral representation of the solution of the Laplace equation
in an arbitrary convex polygon, presented in [8]. In §5 we derive equations (1.3)- (1.5).
In §6 we discuss the heat equation in the domain I(t) < z < o0, 0 < t < T, where
[(t) is a smooth function with a monotonic first derivative. In §7 we compare the use
of equation (1.11) with the spectral analysis of the Lax pair and discuss further these
results.

We conclude this introduction by noting that the fundamental form (2 yields both
the Lax pair as well as the global relation satisfied by the spectral function:

Observation 1.2. Let Q2 be a fundamental 1-form associated with the equation

p(al‘]?axz) Q(Ih x?) =0.
(a) If Q is written in the form
2
Q(Il, T, ]{31, ]{32) = Z Aj([l?l, €I, ]{?1, ]{ig)eii(k]x]+k2x2)dl'j, (114)

j=1
then an associated Lax pair is given by

oy — thipp = A
S (1.15)

where ki and ko satisfy the equation p(iky,iks) = 0.

(b) If (x1,25) € M, M C R? is a compact domain, then the following global relation
15 valid

/BMQ(1'1, o, ]ﬁ, kg) = 0, (116)

provided P (iky, iky) = 0.

Indeed, if p(iky,iky) = 0, 2 is a closed 1-form and equation (1.16) follows. Also
on a simply connected domain, a closed 1 form is exact, therefore if p(iky,1ky) = 0,
there exists a function v(x1, 29, ki, ky), such that Q = dv. Taking v = pe "(F171+ke22),
this equation implies equations (1.15).

As an illustration of equations (1.15) and (1.16) we note that if Q is given by
(1.10), then equations (1.15), (1.16) become equations (1.2) and (1.7), where we have
parametrised the equation

ki? + ke® + 482 =0
by 2 2
ki =k — %,kz —z’k—{—i%.



2 The construction of the fundamental differential
form

Proposition 2.1. Let p(0,,,0.,) be defined by

N1 N2

p=> D i 071052, (2.1)

n1=0mn2=0
where oy, n, € C are constant coeffficeinets. A fundamental differential 1-form asso-
ciated with the PDE
p(al‘m axz) Q(l'l, $2) = 07
18

No ) no ) )
Q=> eTitkiethe) g > (iko)? 1022 g day —

no=1 j=1

Ny n;
—i(k1z1+k 1 Ni—lani—j
3 g, S Oy dat
n1=1 j=1

Nq No n9 n]

+ Z Z efz‘(k1:x1+kzac2)am’n2 [Z (ikg)j_lﬁgfﬁggqud% _ (ik2>n2 Z (ik1)j_18§f’jqu2

n1=1ng=1 j=1 j=1

(2.2)
Proof: We will verify that

dQ = p(llﬁ s ZkQ) q($1 s xg)e_"(k”” +k2x2)d1‘1 A dl’g, (23)

N Na
where p(tki,ika) = — > D Qg (tke)" (ko)™ .

n1=0mn2=0
Indeed,

n2 . .
d (ei(klzﬁkzxz)%m S (ko) O dl‘1) =

J=1

n2 . . n2 . .
— Qg e 1z haT2) Z (ikg)]f]ﬁgﬂﬂq — Z (ikg)]8§§]q> dzy N\ dxe =
=1 =1

= —qq e etkeze) (r2g — (iky)"2q) dxy A das,

where in the first equality, the first term comes from differentiating ¢, and the second
comes from differentiating the exponent.



Similarly,

n1 . .
—d (e_i(k;lq;l—i-k‘gxg)anho Z (ikl)J_lagf —Jq dry | =
j=1
— —q, g mthe) (PG (i V" q) dxy A day,

ng 3 . n1 3 .
d (e‘i(klwﬁk”?)am o Z (ikg)ﬂ_lagf 02 qday — (iky)™ Z (ikl)J_lﬁgf _Jqug) =
j=1 j=1
= —e hmthe)a, (08 052q — (i)™ (ik2)™q) dai A dzs.
Collecting these terms, we obtain

dQ) = —eikmithozs) Z Qg (Opy Oz2q — (iky)"™ (ika)"q) dxyAdxa,

0<n1<N1,0<n2<Na,(n1,n2)#(0,0)

and using (2.1), equation (2.3) follows.
QED.

Example 2.1 A fundamental differential 1-form associated with equation (1.13) is

Q= (q(x, 0)dz — G, t, ky)dt) e k), (2.4)
where

Gt k) = 3 0 [(=i0,) ™!+ ki (=i0,) 7 4 k% (—i0,) 4+ kT g,
j=1
Example 2.2 A fundamental differential form associated with the equation

where « is a constant, is

Q = [(gy + ikaq)dz + (—qu — ikyq)dy] e 121 HH2w2), (2.6)

Remark 2.1(On the Nonuniqueness of 2). A fundamental form 2 is not unique.
Indeed, ©2 + f is also a fundamental form iff f is identically a closed 1-form. For

7



example, the modified Helmholtz equation(1.1) is associated with the fundamental
forms (1.10) and (2.6). These 1-forms differ by the exact form

/= {(lqz + kiq)dz + (iq, + kgq)dy} i(k1z1+kaw) d(iqe*ikltf*iby).

Remark 2.2. It is sometimes convenient to obtain an integral representation for
L q, where L is some linear operator, instead of an integral representation for q. For
example, let ¢ satisfy the Laplace equation and let € be defined by

0O — {(qu + qy)dm + ( s + qu)dy} i(k1z1+koxo) (27)

Then ‘
dQ = (g, — iqy)(iky — ko)e "= 2T gy A dy, (2.8)

Thus, if (z,y) € M,

1 z(k1:z+k2y) Q(I y kl ]{?2)
p—igy = =g [ dkdks [ : 2.9
e "y (27T)2 /R2 1 (z',y")eoM Zl{il ]{32 ( )

This equation involves ik; — ko, while the analogous equation for ¢ involve k12 + ko2,
thus equation (2.9) is more convenient for performing a contour integration with
respect to ki or ko, see §4.

Remark 2.3 (Relationship with Green’s formula). We will illustrate the relationship
between the classical Green’s formula and the fundamental differential form intro-
duced here using the example of the modified Helmholtz equation (1.1). Recall that
using Green’s formula, the solution of equation (1.1) can be represented in the form

q(z0,y0) = /BM{—(qayG — GOyq)dz + (q0,G — GO,q)dy}, (2.10)

where G = G(x,y; g, yo) is the Green’s function, defined by

0? 0? 9
P(0e,0)G = 0(x — 20,y — Yo),  P(0u, 0,) := 02 o2 — 45"

Using the Fourier representation of the Green’s function, i.e.

—ik1(z—xz0)—ika2(y—yo)
G(z, v: 7o, / / dky dk
(z,y; 70, Yo) 27r R p(iky, iky) 1aK2

in equation (2.10), we obtain the representation (1.11), where the fundamental 1-form
Q2 given by (2.6).



3 A general dispersive evolution equation

Proposition 3.1. Let q(z,t) satisfy equation (1.13) in the domain 0 < x < oo,
0 <t<T, where T is a finite positive constant. If a solution q(x,t) exists, is smooth
up to the boundary of the domain, and has sufficient decay as © — oo, then q(x,t) is
given by

1) = o [ G Rk g [ RO k), (3.1)
211 J - oD,
where .
w(k) =" ajk’, (3.2.a)
j=0
0D is the boundary of the domain D
Dy={kec:Imwk)>0Imk>0}, (3.2.b)
+o0o .
do(k) = / e~ g (2 0)da, (3.2.)
0

Q(k) = g 0 (Qjo1 (k) + kQja(k) + ... + K 72Qu(k) + 7' Qo(k)),  (3.2.d)

A T .
Ou(k) = / w9 Vq(0,0)dt, 1 =0,1,...n—1, keC. (3.2.¢)
0
Furthermore, the following relation is valid:

A

~ iw(k)T oo —ikx _
Q(k) + qo(k) — e / e "q(z,T)dx =0, Im k <0. (3.3)
0

Proof: Equation (1.11) yields

/ Jdi / ei(k1(zo—z)+ka(to—t)) Q(x’ t, ki, k2) (3 4)
Rz (2,£)€dM ko 4+ w(ky) —i0 ’ '

Q($07 tO) -

1
i(2m)°
where Q = eih1zth200Q) and Q is defined by (2.4). The boundary OM consists of the
union of Mj;,j = 1,2, 3, see Fig. 2, where



M :{ t=T, 0<z<x }
My,:{ 0<t<T, r = }
Ms:{ t=0, 0<zr<oo }.

S
T - =
(%0, Lo}
Y ‘
M
X

= N

Figure 2.

Along M, since t = T and ty < T, the coefficient of iky in the exponential
appearing in equation (3.4) is negative, thus we can perform the ko integration by
integrating along a semicircle |ko|] = R, with R — oo, in the lower half complex
ko-plane ; this yields a zero contribution. Along M3, since t = 0, the coefficient of ik,
is positive, thus by integrating in the upper half complex ko-plane, we obtain the first
term in the equation (3.1) ( we have renamed k; as k). Along Ms, since z = 0, the
coefficient of ky is positive, thus we can integrate in the upper half complex k;-plane.
We first consider the particular equation ¢; — ig,, = 0, and then discuss the general
case. For this particular equation, w(k) = k2, thus equation (3.4) contains the term
ko + k? — i0. Performing the integration over k; yields the integral

i/ |k2lwotika(to—t) (;, _
0 T e 1, k
_i / de/ (iq |k2lq) di—
—o 0 24/ | k2] (3.5)
_L /+oo dk2 /T e ‘k2|I0+ik2(t0‘*t) (qu _ Z\/Eq)
0 0 2iv/ks

dt.

We introduce the change of variables
k% +ky—i0 =0, ky €R, Imk > 0.

Then the above integral becomes

1 , , N
% . dkezkxofszto Q(k),

10



where 01 denotes the boundary of the first quadrant in the complex k-plane. In the
general case, one must first determine the zeroes of ky + w(k;) — 0 in the upper
half complex k;-plane, then compute the k; integral, and then change the variables
from the real ky to the complex k, defined by w(k) 4+ ko — i0 = 0 The first step is
cumbersome, particularly if there exist multiple roots. The step involving the change
of variables is straightforward: the contour of integration over k is defined by

Im w(k):lir%e, e>0,Imk >0, (3.6)

thus & is on the boundary of 9D, where D, is defined by (3.2.b). Thus in general
the integration along M, give rise to the second term in (3.1).
Equation (1.16) with © defined by (2.4) and M = L, M;, becomes equation
(3.3).
QED.

4 The Laplace Equation

Proposition 4.1. Let q(x,y) satisfy the Laplace equation in a convex closed polygon
with corners zi, ... zn, zZny1 = 21, 2 = ¢ +1iy. If q(x,y) exists and it is smooth up to
the boundary of the polygon, then q(x,y) admits the integral representation

. |,
Wy = 5 " pi(k)dk, 4.1
=ity = 532 [ (b (1.1

where l; are the rays in the complex k plane
lj={kec: arglk)=—arg(z; —zj11)}, j=1,...n, (4.2)

oriented from zero to infinity, and the spectral function {p;(k)}7_, is defined by the
line integrals

pi(k) = / T e (g, —ig,)dz, k € C. (4.2.b)

7+1

Furthermore, the spectral function satisfies the global relation

i pi(k) =0,k € C. (4.3)

11



Proof: Equation (2.9) becomes

i(k1(zo—z)+k2(yo—y)) 3 d d
Zj41 Zk] - k2

Figure 3.

Let us investigate the term in this equation corresponding to the integral along
the side (zj41, 2;), see Fig. 3. For convinience of notation we drop the subscript j.
Let er be the unit vector along this side, and ey the unit vector perpendicular to
this side and pointing outwards. Let k7 and ky denote the components of the vector
(k1, ko) along er and ey,

kr = kicos© + kosin®, ky = k1sin® — ko cos ©. (4.5)

Similarly, let (X7, Xn) denote the components of the vector (zo — z,y0 — y) along kr
and ky. Then

]{?1(1'0 — l‘) + ]{?Q(yo — y) = kTXT + kNXN- (46)
Since (zo,yo) is a point inside the convex polygon, and ey is pointing outwards, it
is easy to show that Xy < 0. Therefore, we can compute the above integral by
integrating in the lower half complex ky-plane. Using

ik] — kg = (kN + ikT)eie,

12



we find | oo .
—/ dkT/ ’ ek XTTENEN (g —iq,) (dx 4 idy)e . (4.7)
27T 0 Zj+1

Introducing the change of variables k; = ke’®, the above becomes

1

— [ &, (k)dE.
27Ti/lje pi(k)

Equation (1.16) yields equation (4.3).
QED.

5 The modified Helmholtz equation

Proposition 5.1. Let q(z,y) satisfy equation (1.1) in a convex closed polygon with
COTNETS Z1, ... 2n, Zny1 = 21, 2 = x +iy. If q(x,y) exists and it is smooth up to the
boundary of the polygon, then q(x,y) admits the integral representation (1.3), (1.5).
Furthermore, the global relation (1.7) is valid.

Proof: Equation (1.11 ) together with the fundamental form (1.10) yield

zj  eilki(zo—2)+k2(yo—y))

1 n
Zo, o) = ——— dk dk/ X
o) =~ X fadidte [ S 65.)
[i(qz — iqy) (dz + idy) + (ki + ike)q(dx — idy)].

Using the notations of §4, see (4.5) -(4.6), we find that X < 0, and
ki2 4 ky? +45°% = kp? + kn? + 4582

Performing the integration over ky, we obtain

X

1 /+oo " /zj eikTXT+\/kT2+4ﬁ2 XN
I — T
27T2 Zj+1 2 /kT2+4/82

(i((b: —iqy) (dz +idy) + i(kr — \/ky? +452) q € (dz — @dy))
(5.2)

—0o0

Making the change of variables

62

— k R, (\e®) e R
(/\619), T € 7(6 )E +3

kr = (Ae™®) —

13



we find

LB o) o)

2

2
(g—iqy) (dx+z‘dy)+% g (dz—idy)),

(5.3)
where [; are the rays defined in (1.4).
QED.

6 The heat equation in a time-dependent domain

Proposition 6.1. Let q(x,t) satisfy the heat equation in the following time dependent
domain:
G — Gz =0, l(t) <z <00, 0<t<T, (6.1)

where T is a positive constant, and l(t) is a smooth function with a monotonic first
derivative and with 1(0) = 0. If a solution q(x,t) exists, is sufficiently smooth up to
the boundary of the domain, and has sufficient decay as x — oo, then q(x,t) can be
represented as follows:

() I"(1) <0

1 [e'e]
q(I,t) _ %/_ zka: k2 dl{?+—/ zka: k2tQ (62&)

+o0
q(k) = / exp(—ikz)q(z,0)dz, Imk <0,
0

T (6.3.a)
Q) = | exp(k*t — ikl (1) ((1'(1) + ik)g(U(8),0) + g (1(2).1) )dt,k € .

and L(t) is defined by:

/ / 2
L(t)={k=a+i8,—0 < a < 0, ﬁ—@Jr a2+@, a,3€R }, (6.4.a)

see Figure 4.

14



k= c+ i B "B L{ t)

o
-
Figure 4.
(b) 1"(1) > 0
g(z, 1) = % 1 gike=kitg dkz+— / / ko=KL o, B)dadp, (6.2.b)

where k = a + 13,

—+00

q(k) = / exp(—ikz)q(z,0)dz, Imk <0,

0
a? + 2iafB + 5% 12 s
pla, B) = KR ((

B2 1"(r(a, B)) 8 (@0)=(U(r(@,0)),7(e,0))
(6.3.b)
t =7(a, ) is the solution of the equation
I'(t) ., ()
9 +1\/a®+ 1 B,
and the domain D 1is given by
I'(0 1(0))? (T (T2
D:{(a,ﬁ)i—OO<Oé<OO, (2)+ a2+%<ﬂ<g+ OéQ—F%}.
(6.4.b)

15



k= o+ i B ‘

Thecasel " =0, 1" (Ty <0

Figure 5 a

k=w+i B "B

|

Thecasel " =0, I' (T} -0

Figure 5h

16



Moreover, the following global relation holds in both cases:

(S) t ,
/ q(z,0) exp(—ikz)dr — / R TR (g + (I + ik) ) (I(7), T)dT =
0 9 —+00 0 (65b)
=ck t/ exp(—ikz)q(z, t)dz,
10
where k € C, Imk<0and0<t<T.
Proof: A fundamental 1-form asssociated with the heat equation is
Q = (qdz + (qo + ikaq)dt) e ™27, (6.6)
The integral representation (1.11) yields

oik1 (to—t)+ika (o) (qu + (qe + ik2¢])dt)

1
q(l'o,to) = W /]RQ dl{?ldkg

(z,t)cOM ki — iky® '
(6.7)
The boundary OM consists of My, Ms, M3, see Fig. 6, where
M :{ t=T, It)<x<oo }
My:{ 0<t<T, x=1(t) } (6.8)
Ms:{ t=0, 0<zr<oo }.
i i

17



Along My, since t = T, and t < T, the coefficient of ik; in the exponential is
negative, thus by integrating in the lower half complex ki-plane, we obtain a zero
contribution. The contribution of the Mj integral yields the first term in equations.
In order to compute the contribution of the M, integral, we distinguish two cases.

(a) I"(t) <0

Let ep(ty), and ey (ty) be unit vectors along the tangent and the outward normal
of the curve (I(t),t) at t = ty. Let kpr and ky denote the components of the vector
(kr,ky) along er(to) and eyn(to), that is

]{?T == ]{31 COS @0 -+ ]{32 sin @0, ]{JN == ]{31 sin @0 — ]{32 COS @0, tan @0 == l/(to). (69)

Similarly, (X7, X) denote the components of the vector (zg — x,ty —t) along ez (o)
and ey (o)

)

Xr = (ty—t) cos ©g+(zg—I(t)) sin Oy, Xy = (to—t) sin Og— (zo—I(t)) cos O, (6.10)

here (xo,to) € M and (t,1(t)) € My C OM.
It can be shown that X < 0. Indeed, since (x¢,ty) € M, it follows that xo > (to).
Using the mean value theorem,

1(t) = U(to) = I'(7)(t — to),
where 7 is in between ¢ and to. Thus
Xy = (to—t)sinOg — (xg — I(t)) cos Oy < (tg — 1) sin Oy — (I(ty) — I(t)) cos Oy =
= cos Oq(to — t)(I'(to) — U'(7)).
Since I"(t) < 0, it follows that

l/(T) < l/(to),t > 1o,
l/(T) > l/(to),t < 1y,

and therefore Xy < 0.
We can compute the integral corresponding to M, by integrating in the lower
kn-plane. This yields

Foo v ekt XoHRNXN (g1' 4 (g, + i(kp sin ©g — ky cos Og)q)dt
_L/ dk;T/ di (q (g (kr 0~ kN O)Q)
0

. . . (6.11)
2 cos @0((kT sin ©g — ky cos Og) — 5 tan @0)

211 —00

where ky denotes the root of the quadratic equation

i(kr cos ©g + ky sin Og) + (krsin©g — kx cos @0)2 =0, kr €R, Im ky < 0. (6.12)
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Using the change of variables indicated below it follows that there exist only one such
root.
Introduce the complex variable k by

k = kpsin©g — ky cos Oy. (6.13)

Equation (6.12) yields .
ky cos ©g + ky sin Oy = ik>. (6.14)

Using equations (6.13) and (6.14) we can express k; and ky in terms of k:
(kT) B (Cos@o sin O ) (sz)
kny/)  \sin®; —cos®g k

‘ tan Oy .2  tan?®
kr = —2acosOq ( — ) +icosOg(a® — (3 — 5 °) + 1 -) (6.15)

kn = —(2a3sin ©g + a cos Og) + i((a? — 32) sin Oy — [ cos Oy).

Let kK = a + 143, then
tan ©q

From the conditions

Im ky = 0, Imky < 0, (6.16)
it follows that
a? = B(B —tan©y), B >0, /> tanOy. (6.17)
Thus
a = —sign(ky)\/B(B — tan Oy), : )
. tan@ 6.18
kr = sign(kr)\/B(6 — tan©y) (5 — 5 0).

tan Og

Since > 0 and [ > tan ©g, the function /3(8 — tan ©g) (S —

Using the change of variables from k- to k defined by equation (6.13) in the integral
(6.11), and noting that the Jackobian cancells with the denominator, we obtain the
second term of the equation (6.2.a):

) is monotonic.

1 T ) ‘
d/{/ dt —k*(to—t)+ik(zo—x) It 13 ), 6.19
) oo Ty € (') + ik)a + az) (6.19)
where
tan © tan? ©
Lit) ={k=a+if: 8= anQ 0 4y/a2+ an4 0 aer}. (6.20)

For ki = iko?, the form Q defined by equation (6.6) is closed, and therefore
for such k the integral of €2 over any closed path is zero; in particular, choosing
the path consisting of the rays {z > 0,t = 0}, {z > I({),t = t}, and the curve
{(1(1),1),0 < t < t}, we obtain the global relation (6.5.b).
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(b) I"(1) > 0 :

The main difference with the case (a) is that now we expand along the unit vectors
er(t) and ey (t) at a point ({(t),t) on the boundary, see Fig. 7.

A

Figure 7.

In particular,

X1 = (to—1t) cosO(1)+ (xg—1(t)) sinO(t), Xy = (to—1)sin O(t) — (xg—1(t)) cos O(1),

(6.21)
where X1 and Xy denote the components of the vector (zg — z,ty — t) along e(t)
and ey (t). As before, it can be shown that Xy < 0. Therefore, we can compute the
integral by integrating in the lower half ky plane. Similarly to the case (a), after the
change of variables kr = ik? cos ©(t) + ksin ©(t) we obtain

1 T ) .
— | dt dke™F (to—t)+ik(zo—z) ((1/(1) 1 jk . 6.22
el A, ke (Co+ikg+a), (622

where

20



a? +

@ 4 COF ey, (6.23)

L(t) = {k = a+i8,5 L

The condition I”(t) > 0 implies that the function

rw [,

Bla,t) = = ;

is monotonically increasing with respect to t for all fixed a:

) l// lth
f=5|1+——==|>0
o2 4 L)

Hence, there exist an inverse function ¢t = 7(a, 3). Changing the integration variables
from (t, k) to (a, B) we get

e 2+(z (T))2

7k2to+ikx0
q(wo, t0) = 27T/ ﬁ,(%w dj e ple, B),

where

pla, B) =

2 : 2
« QZ(Xﬂ ﬁ ek27_ ikl(T) ((

a?
32 1"(1(a; B)) —— +ia)q+ g )‘

6] (,0)=(U(r(c,0)),7(c,8))

(6.24)
QED.

7 Conclusions

This work is part of a larger program of study which investigates boundary value prob-
lems for linear and for integrable nonlinear PDE’s. For linear PDE’s , the method
announced in [1] suggests that one first constructs appropriate integral representa-
tions for both the solution and the spectral function, and then one analyses the global
relation satisfied by the spectral function. Untill now the relevant integral represen-
tations were constructed by performing the spectral analysis of the associated Lax
pair. In this paper we introduced an alternative approach for constructing these rep-
resentations, namely we analyse equation (1.11). The advantages and disadvantages
of these two approaches appear to be the following:

The direct approach: 1. It can be immedeately generalised to more then 2 di-
mensions 2. Involves only one contour integration. However: 1. In some cases, one
must first "regularise” the integral appearing in (1.11). 2. For equations containing
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derivatives of order higher then two, the integration is cumbersome, particularly for
non-polygonal domains.

The simultaneous spectral analysis approach: 1. Can be suitably "nonlinearised”,
i.e. it can be extended to nonlinear integrable PDE’s [2]. 2. It does not involve any
contour integration. However: 1. It has not yet been extended to multidimensions.
2. It requires expertise with the Riemann-Hilbert and the d-bar problems.

The above discussion indicates that for linear PDE’s containing only second order
derivatives, the direct approach is advantageous, while for linear PDE’s with higher
order derivatives, the simultaneous spectral analysis approach is more efficient. For
nonlinear PDE’s, only the Lax pair approach can be used.

We conclude with some remarks:

1. For some linear second order equations in simple domains, the direct approach was
used in [9], [10] to rederive some of the results of [1]. Here the direct approach is for-
mulated for any linear constant coefficients PDE in 2 dimensions, and its application
to complicated domains is illustrated.

2. The solution of a linear PDE in a given domain can be represented in several
different ways. We believe that the ”Ehrenpreis type representation” obtained in [1]
- [5] and in this paper has distinctive advantages: (a) For evolution equations, it
yields a representation with explicit = and ¢ dependence. This makes it possible to
obtain in a straightforward manner the long ¢ behaviour of the solution [11]. (b) The
integral representation expresses the solution in terms of the spectral data. Further-
more, these spectral data satisfy a global relation. Using these facts and exploiting
the analyticity properties of the integral representation, it is possible in some prob-
lems to analyse the global relation using only algebraic manipulations. This is always
possible for the case of evolution equations in a polygonal domain, and it is possible
for some elliptic equations in simple polygonal domains satisfying a particular class
of boundary conditions [8].

3. We emphasise that the derivation of appropriate integral representations for both
the solution and its spectral function, is the ”straightforward” part of the method of
[1]. The challenging problem is the analysis of the global relation. For linear PDE’s
a general approach to this problem is developed in [3].
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