
 

Geometric Analysis of Optical Frequency 
Conversion and its Control in Quadratic  
Nonlinear Media 
 
G.G. Luther, M.S. Alber1, 
J.E. Marsden2, J.M. Robbins 
Basic Research Institute in the Mathematical Sciences 
HP Laboratories Bristol 
HPL-BRIMS-2000-07 
6th March, 2000* 
 
 
 

 

 

Frequency conversion and its control among three light waves 
is analyzed using a geometric approach that enables the 
dynamics of the waves to be visualised on a closed surface in 
three dimensions. It extends the analysis based on the 
undepleted-pump linearization and provides a simple way to 
understand the fully nonlinear dynamics. The Poincaré sphere 
has been used in the same way to visualise polarization 
dynamics. A geometric understanding of control strategies that 
enhance energy transfer among interacting waves is 
introduced, and the quasi-phase-matching strategy that uses 
microstructured quadratic materials is illustrated in this 
setting for both type-I and -II second harmonic generation, and 
for parametric three-wave interactions. 

 

1 Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556 
2 Control and Dynamical Systems 107-81, Caltech, Pasadena, CA 91125 
∗ Internal Accession Date Only 
 Copyright Hewlett-Packard Company 2000 



Geometric Analysis of Optical Frequency Conversion and its Control in

Quadratic Nonlinear Media

G. G. Luther

The Basic Research Institute in the Mathematical Sciences (BRIMS), Hewlett-Packard

Laboratories, Filton Road, Stoke Gi�ord, Bristol BS12 6QZ, UK

Control and Dynamical Systems 107-81, Caltech, Pasadena, CA 91125

Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556

Engineering Sciences and Applied Mathematics Department, McCormick School of Engineering

and Applied Science, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208

M. S. Alber

Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556

J. E. Marsden

Control and Dynamical Systems 107-81, Caltech, Pasadena, CA 91125

J. M. Robbins

The Basic Research Institute in the Mathematical Sciences (BRIMS), Hewlett-Packard

Laboratories, Filton Road, Stoke Gi�ord, Bristol BS12 6QZ, UK

School of Mathematics, University Walk, Bristol BS8 1TW UK

January 29, 2000

Abstract

Frequency conversion and its control among three light waves is analyzed using a ge-

ometric approach that enables the dynamics of the waves to be visualized on a closed

surface in three dimensions. It extends the analysis based on the undepleted-pump
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linearization and provides a simple way to understand the fully nonlinear dynamics.

The Poincar�e sphere has been used in the same way to visualize polarization dynam-

ics. A geometric understanding of control strategies that enhance energy transfer

among interacting waves is introduced, and the quasi-phase-matching strategy that

uses microstructured quadratic materials is illustrated in this setting for both type-I

and -II second harmonic generation, and for parametric three-wave interactions.

1. INTRODUCTION

Energy conversion among light waves occurs in optical materials where the interaction of

the light with the material is well characterized by expanding the polarizability up to at

least second order in the electric �eld. Over a �xed length the conversion e�ciency depends

on a resonance condition among the frequencies and one among the wave numbers. Con-

version e�ciency also depends on the coupling strength among the waves. The magnitude

of this coupling is given by the quadratic coe�cient, �(2), in the amplitude expansion of the

polarizability.1{3 The dynamical evolution of three waves resonantly coupled in this way is

captured by the three-wave equations for their slowly-varying envelopes. Because optical

materials tend to have relatively weak nonlinear response there has been great interest in

improving the e�ective response by microstructuring them. Here we view this as a nonlinear

control problem and introduce a simple geometric picture for the dynamics and control of

resonant wave interactions.

Solutions of the three-wave equations have been known in nonlinear optics almost since

its inception in the early 1960's.4 Since this early work, an extensive literature on the analysis

and application of these solutions in nonlinear optics has developed. In previous investiga-

tions, the dynamics of the three-wave system was reduced with the aid of the Manley-Rowe

relations to a single nonlinear oscillator.4{8 Features of the canonical Hamiltonian struc-

ture of the three-wave system have also been exploited.6{8 In what follows we introduce a

di�erent approach.
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The present approach is based on a systematic theory of Hamiltonian systems with

symmetry,9 called reduction. For the three-wave equations, the symmetries are just the

phase invariances associated with the Manley-Rowe relations, and the reduction procedure

leads to a two-dimensional reduced phase space, the three-wave surface, in which the three

wave amplitudes and their relative phase are incorporated simultaneously. In contrast, the

standard approach reduces the three-wave system to a phase space for the modulus of a

single wave amplitude.

The three-wave surfaces are deformed spheres, and the dynamics on them is described

using a simple geometrical construction.10;11 This construction provides a means of visual-

izing the dynamics of three-wave interactions, analogous to the use of the Poincar�e sphere

for polarization dynamics,12{14 and it enables existing analysis to be readily comprehended

in geometrical terms. In this way, recent techniques of geometric mechanics provide fresh

insight into the dynamics of second harmonic generation and parametric frequency conver-

sion in quadratic, or �(2), media. In particular, this geometrical treatment facilitates the

analysis of the control of three-wave interactions.

As early as 1962, Armstrong, Bloembergen, Ducuing and Pershan4 proposed that the


ow of energy among interacting light waves could be controlled by modulating the sign

of the susceptibility. In recent years these basic ideas have been implemented to simplify

frequency conversion15 and to improve optical parametric oscillators.16 By formulating the

dynamics in terms of the three-wave surface, we introduce a powerful and relatively sim-

ple method of analyzing control strategies for second harmonic generation and parametric

frequency conversion. The analysis described below extends the standard theory of quasi-

phase-matching4;5;7;15, in which the three-wave equations are linearized using the undepleted-

pump approximation. It complements the previous analysis of quasi-phase-matching that

allows pump depletion,5 by enabling a simple visual and qualitative understanding of the

results without explicit analysis of elliptic integrals.

The paper is organized as follows. First we review the Hamiltonian structure of the

three-wave system (Sec. 2), emphasizing the connection between the Manley-Rowe relations
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and phase symmetries. These phase symmetries are then used to reduce the three-wave

system to a system in three real variables X, Y , and Z, chosen to be invariant under the

phase symmetries (Sec. 3). The dynamics in (X; Y; Z)-space is shown to be con�ned to

a closed cubic surface of revolution, the three-wave surface. The trajectories are given by

intersections of the three-wave surface with a family of parallel planes, whose slope measures

the relative strength of the wave vector mismatch and the quadratic nonlinearity (Sec. 4).

This geometric realization of the three-wave dynamics is then used to analyze techniques

for controlling frequency conversion in �
(2) media, and approximations are obtained when

the phase mismatch dominates. Quasi-phase-matching of both type-I and type-II second-

harmonic generation, as well as generic parametric three-wave interactions are described

using the three-wave surface (Sec. 5).

2. THE THREE-WAVE EQUATIONS AND THEIR SYMMETRIES

The three-wave equations, written

dA1

dz
= �i
1A

�

2A3 exp(�i�kz) ; (1a)

dA2

dz
= �i
2A

�

1A3 exp(�i�kz) ; (1b)

dA3

dz
= �i
3A1A2 exp(i�kz) ; (1c)

are obtained as a slowly-varying amplitude approximation of Maxwell's equations for the

resonant interaction of three light waves propagating in a non-centrosymmetric material.4

Here the A
j
are the slowly-varying envelopes, and each has a di�erent carrier frequency.

The choice of the 

j
de�nes the optical interaction as well as the units or normalization of

the complex amplitudes. The amplitudes are typically related to units of power or intensity

both in the literature4 and in texts on nonlinear optics.1;2

Both second harmonic generation and parametric frequency conversion are modeled by

the three-wave equations, where each A
j
is a complex light-wave amplitude, �k = k1+k2�k3

is the wave-vector mismatch, and each 

j
is proportional to the second-order susceptibility,
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�
(2) of the process. For type-II second harmonic generation, waves one and two, having the

same frequency, propagate in di�erent polarization states and interact to generate a third

light wave at the second harmonic frequency. In the limit A1 = A2 and 
1 = 
2 the equations

for type-I second harmonic generation are obtained. If this condition is true for the initial

conditions, it continues to be the case for all time. Thus, the condition is dynamically

invariant, and type-I second harmonic generation is always a special case of the three-wave

system.

In what follows it is convenient to shift into a rotating frame and rescale the wave

amplitudes by making the transformation A
j
= j


j
jq

j
exp(�i�kz), so that the three-wave

equations become

dq1

d�
= i��q1 � isq

�

2q3 ; (2a)

dq2

d�
= i��q2 � isq

�

1q3 ; (2b)

dq3

d�
= i��q3 � isq1q2 ; (2c)

where � = z

q
j
1
2
3j is the scaled propagation length, and �� = �k=

q
j
1
2
3j is the

relative strength of the mismatch compared to the nonlinearity. Here s = �1 is the sign of

the coe�cient of the quadratic nonlinearity. Notice that along with the initial data, solutions

of this system depend only on the parameters �� and s. The parameter �� plays a crucial

role in determining the qualitative dynamics. The parameter s models the reversal of the

crystal orientation, and it will be used in the analysis of quasi-phase-matching. Written in

this form the three-wave system has the canonical Hamiltonian structure

dq
j

dz
= fq

j
; Hg = �2i

@H

@q�
j

; (3)

where the Hamiltonian,

H =
s

2
(q�1q

�

2q3 + q1q2q
�

3) �
��

2

3X
j=1

jq
j
j
2
; (4)

is cubic in the wave amplitudes. The Poisson bracket f; g produces
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fq
i
; q

j
g = 0 ; (5a)

fq
i
; q

�

j
g = �2i�

ij
: (5b)

In addition to the Hamiltonian itself, the Manley-Rowe relations

K1 =
1

2

�
jq1j

2
� jq2j

2
�
; (6a)

K2 =
1

2

�
jq2j

2 + jq3j
2
�
; (6b)

K3 =
1

2

�
jq1j

2 + jq3j
2
�
; (6c)

are constants of the motion. Since any two K
j
along with H form a complete and inde-

pendent set of conserved quantities, ie fK
i
; K

j
g = 0 and fK

i
; Hg = 0, the system can be

solved and solutions expressed in terms of elliptic integrals. This procedure is usually car-

ried out by transforming the complex envelope amplitudes to real coordinates �
j
, �

j
de�ned

by q
j
= �

�

j
exp(i�

j
), where � may be either 1 or 1=2. Using the Manley-Rowe invariants

(6a)-(6c), the system is reduced to a one degree of freedom potential equation and then to

quadratures by eliminating the dependence on each of the other variables.4;5;7;6;8

Analysis of this nonlinear oscillator and the associated elliptic integrals then provides

information about the dynamics of the system. The phases may also be studied in terms of

integrals of elliptic functions.17;18

Notice that this procedure reduces the three-wave phase space to that of a one-

dimensional nonlinear oscillator. Unfortunately, only information about a single wave am-

plitude (and indirectly the relative phase) of the system is retained in this representation.

By exploiting the fact that the Manley-Rowe invariants correspond to symmetries of the

three-wave system, the three-wave phase space is reduced to a closed two-dimensional sur-

face in three-dimensions. This representation of the dynamics retains information about all

of the amplitudes and the relative phase.

The phase space coordinates are chosen to be invariant with respect to symmetries con-

nected to the Manley-Rowe invariants (6a)-(6c). These symmetries manifest themselves in
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the three-wave equations as invariants with respect to phase shifts. One way to understand

this is to let each of the K
j
act as the \Hamiltonian" in the canonical equations of motion

(3). The dynamics generated by each K
j
introduces phase shifts, a unitary transformation,

on the vector of three-wave amplitudes. In real coordinates q
j
= x + iy these are just the

motions of uncoupled harmonic oscillators. The speci�c phase shifts associated with the

Manley-Rowe symmetries are

(q1; q2; q3)! (q1 exp(�i�1); q2 exp(i�1); q3); (7a)

(q1; q2; q3)! (q1; q2 exp(�i�2); q3 exp(�i�2)); (7b)

(q1; q2; q3)! (q1 exp(�i�3); q2; q3 exp(�i�3)) ; (7c)

for K1 through K3, respectively. It is easily checked that the three-wave equations (2a){(2c)

are invariant under these transformations.

3. REDUCTION TO THREE-WAVE SURFACES

If a system of �rst-order ordinary di�erential equations has a phase symmetry, its dimension

can be reduced by one by ignoring the value of the phase in question. If the system is

Hamiltonian, its dimension can be reduced by two; associated to the phase symmetry is a

conserved quantity, and �xing its value eliminates an additional degree of freedom. The

theory of reduction generalizes this procedure in a systematic way.9

Projection of polarization dynamics onto the Poincar�e sphere is a simple example of

reduction. The dynamics of the two polarization components are modeled by two cou-

pled complex amplitude equations. There are typically no frequency mixing terms, but the

equations conserve the total intensity. Since the equations are Hamiltonian, intensity con-

servation reduces the dimension of the system from four to two. This conserved quantity is

also associated with a phase symmetry of the equations. The Stokes parameters12 are in-

variant coordinates with respect to this phase symmetry that project the dynamics onto the

Poincar�e sphere. The dynamics of the amplitudes and the relative phase of the polarization
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components is retained in the reduced phase space, but the absolute phase is not. In the

following analysis reduction is applied to three-wave interactions.

Reduction of the three-wave system is achieved by introducing new coordinates that

are invariant with respect to the phase symmetries (7a){(7c) associated with the Manley-

Rowe relations. As noted above, only two of these symmetries are independent. Since the

three-wave system has three complex, or six real, dimensions, it follows that there are four

independent phase-invariant coordinates. The coordinates (X; Y; Z) de�ned by

X + iY = q1q2q
�

3 ; (8a)

Z =
3X

j=1

p
j
jq

j
j
2
; (8b)

where the p
j
are real constants, are clearly invariant under the phase symmetries, as are

the associated conserved quantities K1, K2 and K3 of the Manley-Rowe relations. Thus we

expect two relations amongst the invariants X, Y , Z and K1, K2, K3. We have already

noted the relation K3 = K1 + K2. The second relation is obtained by taking the square

modulus of X + iY and expressing the jq
j
j
2 that come from the right hand side of (8a) in

terms of Z and the Manley-Rowe relations. This yields the relation � = 0, where

� = ��(X2 + Y
2) + �(Z � Z1)(Z + Z2)(Z � Z3) ; (9)

� = 1=�2; Z1 = 2(p3K2 + p1K1); Z2 = 2(p1K3 + p2K2) and Z3 = �2(p2K1 � p3K3);

and � = p1 + p2 � p3.

The function � = 0 implicitly de�nes for given K1, K2 and K3 the three-wave surface

in (X; Y; Z)-space. Since the K
j
are also constants of the motion, the three-wave dynamics

is captured by the motion dynamics of (X; Y; Z). The coordinate Z can be chosen to

provide a convenient comparison among intensities of the three waves. For second harmonic

generation, one might choose p = (�1;�1; 1), so Z provides a measure of the conversion

e�ciency. More light at the second harmonic corresponds to larger values of Z. By making

the new coordinates invariant with respect to the Manley-Rowe phase symmetries, we have
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removed information about the absolute phases of each wave. The new coordinates (X; Y; Z)

include information only about the amplitudes and the relative phase among the waves.

Comparing to the standard variable transformation q
j
= �

�

j
exp(i�

j
), the coordinates X

and Y may be regarded as the components of a vector of length j�1�2�3j
� and polar angle


 = (�1 + �2 � �3), where 
 is the relative phase of the three waves. If p
j
= 1 is chosen

for any one value of j and p
j
= 0 is chosen for the each of the other two values of j then

Z = �
2�
j
. This choice of Z provides a direct connection to the standard analysis in the case

of a depleted pump.

Using the invariant coordinates X, Y and Z de�ned in (8a)-(8b), the three-wave system

and its Hamiltonian structure can be rewritten. The reduced equations of motion can

be obtained by di�erentiating the expressions for (X; Y; Z) in (8a)-(8b) and removing all

instances of q
j
by substitution. It is often more convenient to transform the equations written

in terms of Poisson brackets (3). Using the reduced coordinates, the Poisson structure of

the three-wave system becomes

dW
j

d�
= fW

j
; H

r
g ; j = 1; 2; 3 ; (10)

where W = (X; Y; Z) and H
r
is the Hamiltonian (4) written using the reduced coordinates.

The reduced equations of motion are obtained once the reduced Hamiltonian and Poisson

brackets among the reduced coordinates are known. By direct substitution using (8a)-(8b),

the reduced Hamiltonian

H
r
= sX �

��

2�
(Z + 2�) (11)

is obtained, where, as above, � = p1+p2�p3 and � = (p2�p1)K1+(p2�p3)K2+(p1�p3)K3.

This choice of coordinates leads to the important simpli�cation that the reduced Hamiltonian

is linear in X and Z and independent of Y . The reduced Poisson brackets,

fX; Y g = �@�=@Z ; (12a)

fZ;Xg = �2�Y ; (12b)

fY; Zg = �2�X ; (12c)
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are obtained by computing the brackets (5a)-(5b) among the invariant coordinates (X; Y; Z).

Using these results the reduced three-wave equations are written explicitly as

dX

d�
= ���Y (13a)

dY

d�
= ��X + s

@�

@Z
(13b)

dZ

d�
= �2s�Y : (13c)

In this form it is clear that the coupling between X and Y is equivalent to that of a harmonic

oscillator with frequency ��, and the coupling between Y and Z is equivalent to a nonlinear

oscillator. These equations can also be written in the compact form

dW

d�
= r

r
H

r
� r

r
� ; (14)

where the gradient is taken with respect to the reduced coordinates as r
r

=

(@=@X; @=@Y; @=@Z). Since dH
r
=d� = r

r
H

r
� dW=d� and d�=d� = r

r
� � dW=d�, it is

clear from (14) that H
r
and � are constants of the motion.

The reduced equations (13a){(13c) are integrated by di�erentiating (13c) with respect

to � and substituting (13b). The result is a potential equation for Z

1

2

 
dZ

d�

!2

+ U = E (15)

where the reduced Hamiltonian, H
r
, has been used to replace X, and the \energy" E is the

constant of integration. The potential, U , is given by

U = 2� [�(X = 0; Y = 0; Z) + rZ] +
1

2
��2

Z
2
; (16)

where r = ��H
r
+��2

�=2�. Integrating the potential equation it is found that

� � �0 =
Z

dZq
2(E � U(Z)

; (17)

where E � U(Z) is a cubic polynomial for which the sign of the coe�cient of the highest

power is given by the sign of �. De�ning �1 > �2 > �3 to be real roots of E � U(Z) with

� > 0, then E � U(Z) � 0 on (�2, �3) and
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� � �0 =

�
2

k

� Z
d�q

1�M sin2(�)
; (18)

where M = (�2 � �3)=(�1 � �3) and k =
q
(�1 � �3)=2=2. In this case the solution is

Z(�) = �2 � (�2 � �3)cn
2[f(�1 � �2)=2g

1=2(� � �0)jM ] ; (19)

where �3 is the minimum value of Z and �2 is the maximum value of Z over a period. The

positions of the roots �
j
are speci�ed by the values of the initial data and the parameters

s and ��. This dependence is obtained by comparing the coe�cients of the polynomial

E � U(Z) with those of its factored form. When one of the roots �
j
can be written in

terms of the extremal values of Z (and therefore the q
j
) the other two are then obtained

algebraically.5;8

The period of energy transfer among the waves is given as

L =
I

dZq
2(E � U(Z))

=
K(M)

k
; (20)

where the loop integral is taken about neighboring roots over which E � U(Z) � 0 and

K(M) is the complete elliptic integral of the �rst kind. If Z is de�ned so that only one p
j
is

non-zero the one-dimensional potential equation obtained using the standard method with

variables ��
j
exp(i�) is recovered. Once Z is known, the value of X is obtained using the

reduced Hamiltonian, H
r
, and the value of Y is then obtained using � = 0. To reconstruct

the solution of the three-wave equations the wave amplitudes are then computed in terms of

Z and their initial values through Manley-Rowe invariants (K1; K2; K3). The relative phase

is arg(X+iY ). The two remaining phases are not given in terms of algebraic relations. They

must be integrated. This can be done using the variables q
j
= �

�

j
exp(i�

j
) and integrating

d�
j
=d�.18;17 Recently the geometric structure of the three-wave system was exploited to

obtain these phase shifts.10 In general these shifts have a geometric and dynamic component.

The geometric component is proportional to the symplectic area enclosed by an orbit on the

three-wave surface.
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4. THE REDUCED PHASE SPACE

The three-wave system has now been reduced to a set of equations in three space. These

reduced equations produce motion con�ned to a closed surface in (X; Y; Z). In this section we

describe how to generate the reduced phase space by constructing orbits on the three-wave

surfaces. We then show how to interpret the dynamics of wave mixing in terms of motion

on the reduced phase space. Recall that on these three-wave surfaces only the dynamics of

the relative phase and the amplitudes of the waves are captured. In many applications the

absolute phases are not needed, but they can be obtained analytically as described above.

A. GEOMETRIC CONSTRUCTION OF THE REDUCED PHASE SPACE

First recall that (14) implies H
r
and � are constants of the motion. Since H

r
is linear, its

level sets are the planes

Z = mX � (smH
r
+ 2�) ; (21)

with slopes m = 2s�=��. Expressed in terms of the wave amplitudes q
j
, �(X; Y; Z) vanishes

identically. Thus the reduced dynamics is con�ned to the surfaces given by �(X; Y; Z) = 0.

These three-wave surfaces are generically egg-shaped. Notice that in the case of polarization

dynamics �(X; Y; Z) is quadratic in Z and the analogous surfaces are spheres.

Trajectories of the reduced equations are the curves produced by intersecting the level

sets of H
r
with the three-wave surfaces. Fig. 1 shows the intersection of a three-wave surface

and a planar level set of H
r
. This intersection de�nes a trajectory of the system.

A typical reduced phase space on a three-wave surface is plotted in Fig. 2 and corresponds

to either type-II second harmonic generation or parametric three-wave interactions. Apart

from �xed points, the three-wave surface is �lled with periodic orbits. As the system traverses

one of these cycles light is converted from the pump wave to the signal and idler waves and

then back to the pump wave.

Type-I second harmonic generation is realized when K2 = K3. In this limit a pair of the
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roots of �(X = 0; Y = 0; Z) = 0 coalesce, and a singular point forms. A typical phase space

for type-I second harmonic generation is plotted in Fig. 3.

B. FEATURES OF THE REDUCED PHASE SPACE

The shape and size of the three-wave surface is de�ned by �xing the values of the Manley-

Rowe invariants, which are de�ned by the initial values of the scaled wave amplitudes

(jq1j; jq2j; jq3j). The plane de�ned by the corresponding Hamiltonian must pass through

the initial point in (X; Y; Z) as de�ned by the initial amplitudes and phases of (q1; q2; q3).

The value of m then �xes the orbit associated with this initial point. After one trip around

the three-wave surface, the reduced system returns to its initial position. The amplitudes

and the relative phase return to their initial values.

The qualitative features of the phase space depend only on the slopem and the invariants

K
j
. These parameters de�ne the interactions of the three light waves. For a �xed quadratic

coe�cient, m varies inversely with the phase mismatch. Near phase matching, �k � 1, so

��� 1 and the slope m is large, meaning the Hamiltonian planes tend to be vertical. Far

from phase matching the slope m is small and the Hamiltonian planes are nearly horizontal.

The three-wave surface is always a single closed surface. For a given choice of the p
j
, the

K
j
de�ne the positions of the roots of �(X = 0; Y = 0; Z) = 0. One root coincides with the

top and a neighboring root coincides with the bottom of the three-wave surface. A consistent

set of initial data must lie between these two roots, and all points on the trajectory that it

generates must lie between the same pair of roots. This is necessary in order that X, Y and

Z remain real.

An important feature which simpli�es the analysis of controls is that the three-wave

surfaces are independent of the value of �� and s, so the transformation s ! �s, which

corresponds to changing the sign of the second order susceptibility, �(2), leaves the three-wave

surface invariant.

In these calculations the vector p provides some 
exibility in the de�nition of Z as a
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linear combination of the square of the �eld amplitudes. In this way Z can be chosen to be

proportional to the amount of conversion. For a given �
(2) process the conversion e�ciency

can then be extracted directly from the phase portrait on the three-wave surface. If p is

chosen so that the orbit passing through the highest point on the surface produces complete

conversion, then for a given initial condition, m can be chosen so that the trajectory passes

through the point at the top of the three-wave surface. The process of varyingm is analogous

to tuning the phase mismatch, �k. Consider the choice p = (�1;�1; 1). When �k = 0, the

orbit passing through (X; Y ) = (0; 0) produces maximum conversion.

Relative �xed points, sometimes called eigenmodes, are located at the points where the

Hamiltonian planes are tangent to the three-wave surface. The value of Z remains constant

at these points, so no energy is exchanged. These points are generically elliptic points. For

K2 = K3, as in the case of type-I second harmonic generation, an additional relative �xed

point appears at the singular point. The trajectory connected to it is homoclinic since it

connects a �xed point to itself. The homoclinic trajectory, given by H
r
= 0, divides the

three-wave surface in half, with H
r
> 0 on one side and H

r
< 0 on the other. This orbit

corresponds to the well-known tanh solution. In the phase-matched system, where m� 1,

the pair of elliptic points are located on the sides of the three-wave surfaces. As m decreases

and the mismatch increases, one of these points migrates toward the top and one toward the

bottom. If K2 = K3 the homoclinic orbit shrinks as one of the elliptic points approaches

the homoclinic point, and the portion of the phase space having characteristically nonlinear

features shrinks. In the limit m = 0 the area enclosed by the homoclinic is zero and the

motion is purely linear.

C. LINEARIZATION AND THE UNDEPLETED PUMP APPROXIMATION

In many applications the three-wave system is linearized by assuming that the pump wave

remains nearly constant throughout the evolution of the wave interaction. This is always

the situation near the elliptic �xed points since only small variations in the Z coordinate
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occur there. As the phase mismatch becomes large compared to the strength of the nonlinear

interaction, so that ��� 1, the slope of the level sets of the reduced HamiltonianH
r
become

small (m � 1). In this limit the Z coordinate makes small nearly sinusoidal oscillations

near its initial value. This corresponds to the undepleted-pump limit.

For interactions over a single period the reduced three-wave system (13a){(13c) can be

linearized in the limit �� � 1. Take �� = �=�, where 0 < � � 1. Rescale the evolution

variable so T = �=� and obtain

dX

dT
= ��Y (22a)

dY

dT
= �X + s�

@�

@Z
(22b)

dZ

dT
= �2s��Y : (22c)

Now linearize by letting W = (X; Y; Z) = W0 + ��W . To leading order in �,

dX0

dT
= ��Y0 ; (23a)

dY0

dT
= �X0 ; (23b)

dZ0

dT
= 0 : (23c)

Consistent with the undepleted-pump approximation, no conversion takes place. At this

order the system simply oscillates in the (X; Y )-plane with frequency �. This corresponds to

a period of 2l
c
= 2�=��. In the physical coordinates l

c
is �=�k. Note that when K2 = K3

special care must be taken near the homoclinic orbit, but as noted above the area enclosed

by this orbit tends to zero as m tends to zero.

At the next order in �, the dynamics is governed by the equations,

d �X

dT
= ���Y ; (24a)

d �Y

dT
= +��X + s

@�

@Z

�����
Z=Z0

; (24b)

d �Z

dT
= �2s� �Y : (24c)

These equations reveal that the �rst correction to the oscillation in the (X; Y ) plane is to

shift its center along the X-direction by introducing a constant driving term determined by
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the value of Z0. In addition, there is now motion in the Z-coordinate. This motion is slaved

to the rate of change of the Y -coordinate and is thus a small oscillation. As expected this

gives a small amount of conversion and introduces motion perpendicular to the (X; Y )-plane.

For m � 1, the linear approximation is valid for at least propagation distances of the

order of a period for most orbits in the reduce phase space, so for large phase mismatch the

linear approximation will be su�cient for distances of order �=�k. Notice that secular terms

enter at the next order in this expansion since the amplitude dependence of the period is

ignored. This amplitude dependence or Stokes shift of the period is obtained using a multiple

time scales or averaging approach.

The leading-order oscillation in Z can also be obtained from the explicit solution for

Z in (19). Let a = (�1 � �2)=2. Then M = 2a=(�2 � �3) and as the amplitude of the

oscillation in Z tends to zero, a! 0, M ! 0, and Z ! �2 � a(1� cos[k(� � �0)]) + O(a2),

where k = ((�1 � �3)=2)
1=2. In this limit the period is 2�=k. The correction the period due

nonlinear terms is calculated as

L =
�

k

"
1 +

�
1

2

�1=2

M + : : :

#
(25)

by expanding the expression (20) for L in the small amplitude limit.

5. CONTROL VISUALIZED ON THREE-WAVE SURFACES

In this section we analyze the control of energy 
ow among the three light waves. In previous

work5 a potential equation analogous to (15) was solved directly in (�; �) coordinates and

quasi-phase-matching was analyzed using the solutions. These solutions can be

visualized either by considering deformations of the potential U(Z) or the phase portrait

in (Z; dZ=d�) as the values of the parameters s and �� are varied. Here we use the phase

space on the three-wave surface to visualize the transfer of energy among the three light

waves. In this setting the phase portrait deforms in a simple way as the parameters s and

�� vary, and it is easy to see how to manipulate the dynamics of the three-wave interaction.
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On the reduced three-wave surface information about all three wave-amplitudes as well as

the relative phase is retained. As noted above, only information about the absolute phases

was removed during the process of symmetry reduction.

Controlling the transfer of energy among the light waves can be analyzed as a motion

planning problem on a three-wave surface. In the three-wave equations (2a){(2c) either the

linear or nonlinear term may play the role of the control vector �eld. The goal is to move

from a point on the three-wave surface associated with the initial state of the three-wave

system to a second point associated with maximum conversion. As noted earlier, one way

to do this is to vary the phase matching parameter until the initial point is connected to the

�nal point with a single orbit. In practice this is achieved by temperature or angle tuning

the crystal to phase match the waves. This procedure is often di�cult to implement in

devices and reduces their robustness.

When the system is not perfectly phase matched, an initial point on the three-wave

surface can still be connected to any �nal point by modulating the material parameters.

For instance, if the phase space velocities for s = 1 and s = �1 are independent at each

point of the three-wave surface, then the reduced system is controllable; any pair of points

can be joined by a �nite concatenation of s = 1 and s = �1 
ows. As the parameters are

modulated a point on the three-wave surface is �rst pushed in one direction and then in

another. In this way any point on the three-wave surface can be reached in �nite time and

the three-wave system can be controlled up to the value of the absolute phases.

When the reduced phase portraits associated with the two di�erent choices of material

parameters share a �xed point, the system is no longer controllable. In the three-wave

system, such an exceptional point appears when K2 = K3. This is also the case of type-

I second harmonic generation. Here both vector �elds approach the �xed point along a

homoclinic orbit. Even in this special but important case it is possible to get as close in

�nite time as needed in optical devices. What is more, for large phase mismatch the region

of the phase space that is a�ected is small. Thus the basic requirement to achieve control

is that the modulated parameter or parameters produce at least two di�erent directions for
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the phase-space velocity vectors at nearly all points on the three-wave surface.

These basic ideas allow a complete understanding of the control of frequency conversion

in the fully nonlinear regime and are based on a very simple geometric construction that

permits all the basic features to be visualized. We consider two speci�c cases below.

A. QUASI-PHASE-MATCHING

Quasi-phase-matching is a robust and e�cient way to enhance the e�ective conversion ef-

�ciency of optical materials, and it has a simple geometric interpretation. Quasi-phase-

matching is achieved by alternating the sign of �(2) at every half-period of the oscillation

cycle (i.e., the coherence length l
c
= �=�k), which for small m was seen above to be half

the linear oscillation period or nearly half a trip around the three-wave surface. Just as

conversion from the pump saturates and begins to reverse, the sign of �(2) is inverted. This

reverses the direction of the conversion process so that more conversion from the pump can

take place.

To understand quasi-phase-matching geometrically notice that the transformation 

j
!

�

j
or s! �s leaves the three-wave surfaces invariant but reverses the sign of m and there-

fore the slope of the Hamiltonian planes. This leads to the following geometrical construction

for quasi-phase-matching trajectories: they are obtained by concatenating intersections of

the three-wave surface with Hamiltonian planes of alternating slope. In the optimal case,

the sign changes along Y = 0, at a point of maximal Z on one segment and minimal Z on

the next.

In Fig. 4 a quasi-phase-matched trajectory corresponding to type-II second harmonic

generation or parametric conversion is plotted on a three-wave surface. It was generated

numerically from Eqs. (2a){(2c) by alternating the sign of the s after steps of size l
c
. It

spirals down the three-wave surface towards larger values of Z as more light is converted to

the second harmonic. A similar picture is obtained in the case of type-I second harmonic

generation and is plotted in Fig. 5. Here the second harmonic grows as the trajectory spirals
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down the three-wave surface.

To produce maximum conversion, the initial data are chosen in the plane Y = 0 where


 = n� with n = 0; 2; 4; : : : if m > 0 and n = 1; 3; 5; : : : if m < 0. At these points Z has

its minimum value and makes the maximum excursion in Z on a given orbit over a half-

period. The composite quasi-phase-matching trajectory is constructed as before, changing

the sign of the quadratic coe�cients each time the plane Y = 0 is crossed. In a system

where the second harmonic starts from noise, waves initially near the optimum relative

phase grow most e�ciently. In systems where the signal is seeded, the relative phase is

tuned to achieve optimum conversion.19 If m is small the optimum conversion e�ciency is

closely approximated by taking steps of length l
c
. Even for moderately large values of the

slope m conversion is improved because the period depends weakly on the value of ��.

Looking back at (24a){(24c) we see that for m � 1 modulating s introduces the dy-

namics of a driven harmonic oscillator. Thus, periodically poling the quadratic coe�cient

introduces a periodic driving force. If its period is half the period of the oscillation, para-

metric instability occurs. This process eventually saturates. One way that this occurs is

through the Stokes shift. In Fig. 4 dots are plotted at the points where the poling takes

place. Notice that these points do not all lie along Y = 0. The error is due to the Stokes

shift. The value of this shift is given approximately in (25).

This saturation process is particularly clear as m increases and the linear period becomes

an increasingly poor approximation to the actual oscillation period. In this limit quasi-phase-

matching conversion saturates after only a few steps of length l
c
. At these larger values of

m, the signs of the quadratic coe�cients must be alternated at half the nonlinear period to

obtain the most e�cient quasi-phase-matching conversion. Because this period varies as the

harmonic grows, optimizing the conversion e�ciency requires that the length of the poled

segments be varied along the propagation path. If m is large enough, only a few layers

are needed to produce complete conversion. If the length of the poled segments cannot be

varied, corrections to both l
c
and the initial relative phase give the constrained optimum

conversion e�ciency for the system.5
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B. ZIG-ZAG CONTROL

The usual strategy for quasi-phase-matching described above is only one of many possibilities

for controlling energy 
ow in resonant wave interactions. Any two points on the three-wave

surface can be connected by a composite trajectory if the system parameters are modulated

between at least two states. In standard quasi-phase-matching the two states are the two

signs of �(2). An alternate strategy for the robust control of frequency conversion at any

value of m works by modulating the sign of the mismatch parameter at a period shorter

than the oscillation period for frequency conversion. The portions of the trajectories that are

most nearly vertical produce the most conversion and are located near X = 0. Therefore,

in contrast to the standard quasi-phase-matching strategy, the optimum initial data has

relative phase near 
 = n�=2, n = 1; 2; 3 : : :. Geometrically, the composite trajectory looks

like a zig-zag stepping up the side of the three-wave surface along X = 0. A composite

zig-zag trajectory is plotted on a three-wave surface in Fig. 6. It moves down the three-wave

surface as more light is converted. We refer to this strategy as the zig-zag control.

6. CONCLUSION

A geometric description of frequency conversion in materials with quadratic nonlinearity has

been introduced that enables the dynamics of the amplitudes and the relative phase of the

waves to be viewed on a single closed surface in three-dimensions. Composite trajectories

constructed in the spirit of quasi-phase-matching connect any two points on a three-wave

surface as long as the tangent vectors of at least two families of trajectories are not parallel

for most points on the reduced surface. Using this approach controls for the three-wave

dynamics were analyzed, and both the zig-zag and the well-known quasi-phase-matching

strategies were described geometrically.

While a relatively small amount of conversion is obtained between each modulation of the

parameters, the net conversion can be quite large, so the average trajectory is approximately
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given by a system with a much smaller value of the ratio of mismatch to nonlinearity. In

this way controlling the dynamics of the three-wave interaction enhances the net nonlinear

response of the material.

Randomly distributed errors in the poling period degrade the conversion e�ciency,5;15

but do not introduce catastrophic errors. This robustness to errors in the poling period is

easy to understand using the geometric description of quasi-phase-matching on the three-

wave surface. The structure of Eqns. (13a){(13c) also illustrates important features of

frequency conversion that make quasi-phase-matching particularly robust.

The geometric approach for analyzing wave interactions and their control described here

provides a general approach that can be used for many other systems. It underscores the

idea that engineering the dynamics of wave interactions improves the net performance of

optical materials.
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FIGURES

Fig. 1. An orbit of the reduced three-wave equations is constructed by intersecting a three-wave

surface with a plane that is one level set of the reduced Hamiltonian. Here p = (�1;�1; 1), s = 1,

�� = 40, and the Manley-Rowe relations are de�ned by (q1(0); q2(0); q3(0)) = (0:1; 0:6; 1:0).

Fig. 2. A reduced three-wave phase space for type-II second harmonic generation or parametric

frequency conversion on a three-wave surface. Here, p = (�1;�1; 1), s = 1, �� = 10, and the

Manley-Rowe relations are de�ned by (q1(0); q2(0); q3(0)) = (1:0; 0:5; 2:0).

Fig. 3. A reduced three-wave phase space for type-I second harmonic generation on a three-wave

surface, where p = (�1;�1; 1), s = 1, and �� = 2. The Manley-Rowe relations are de�ned by

(q1(0); q2(0); q3(0)) = (1:0; 1:0; 2:0), so K2 = K3.

Fig. 4. A composite trajectory with 30 segments of length l
c

= �=�k for type-II

quasi-phase-matching or parametric frequency conversion is plotted on a three-wave surface. Here

p = (�1; 1; 1), �� = 40, and initially s = 1 and (q1(0); q2(0); q3(0)) = (0:0; 1:0; 1:0).

Fig. 5. A composite trajectory with 30 segments of length l
c

= �=�k for type-I

quasi-phase-matching second harmonic generation. Here p = (1; 1;�1), �� = 40, and initially

s = 1, and (q1(0); q2(0); q3(0)) = (1:0; 1:0; 0:0).

Fig. 6. A composite trajectory for the zig zag strategy for type-II second har-

monic generation. The phase mismatch is modulated after l
c

= �=(2�k) and

(q1(0); q2(0); q3(0)) = (0:1; 0:6; exp(i � �=5)), so the initial relative phase is near �=5. Here s = 1,

�� = 10, and the Z coordinate is de�ned by p = (�1;�1; 1).
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Fig. 1
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Fig. 2
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Fig. 3
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Fig. 4
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Fig. 5
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Fig. 6
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