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Abstract

Random matrix theory (RMT) is used to model the asymptotics of

the discrete moments of the derivative of the Riemann zeta function, �(s),

evaluated at the complex zeros 1

2
+ i
n, using the methods introduced by

Keating and Snaith in [14]. We also discuss the probability distribution of

ln j�0(1=2 + i
n)j, proving the central limit theorem for the corresponding

random matrix distribution and analysing its large deviations.

1 Introduction

Let �(s) be Riemann's zeta function, with (assuming the Riemann Hypothesis)

its complex zeros denoted by 1
2
+i
n with 
n increasing with n, and 
1 = 14:13:::.

The purpose of this paper is to develop the random matrix model of Keating

and Snaith [14] in order to study the discrete moments of � 0(s),

Jk(T ) =
1

N(T )

X
0<
n�T

��� 0 � 1
2
+ i
n

���2k ; (1)

where

N(T ) =
X

0<
n�T

1 (2)

=
T

2�
ln

T

2�e
+O(ln T ): (3)

Jk(T ) is clearly de�ned for all k � 0, and, on the additional assumption that

all the zeros are simple, for all k < 0. It has previously been studied by Gonek

[9, 10, 11] and Hejhal [12], and is discussed in x2.11 of Odlyzko [17] and x14 of

Titchmarsh [19].
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The model proposed by Keating and Snaith is the characteristic polynomial of

an N �N unitary matrix U with eigenangles �n,

Z(�) = det
�
I � Ue�i�

�
(4)

=

NY
n=1

�
1� ei(�n��))

�
(5)

which can be considered as a continuous family of random variables (parame-

terised by �), with the probability state space being the group U(N) of allN�N
unitary matrices with Haar measure (the probability density being denoted by

d�N ). In the physics literature, this state space is referred to as the Circular

Unitary Ensemble, or CUE (see [15], for example).

They found that equating mean densities of zeros and eigenangles, that is setting

N = ln
T

2�
; (6)

the CUE statistics of Z(�) model well the local statistics of �(s). For example,

the value distribution of ln j�(1=2 + it)j high up the critical line is correctly

predicted. Coram and Diaconis [8] have subsequently shown that making the

indenti�cation (6) leads to close agreement with other statistical measures. Also

in favour of the model is the fact that theorems in restricted ranges [16, 18],

numerical evidence [17] and heuristic calculations [5, 6] support the conjecture

that the n-point correlation function of the Riemann zeros is asymptotically the

same as the n-point correlation function of CUE eigenvalues for all n.

However, it appears that global statistics, like moments of j�(1=2 + it)j (rather
than of ln j�(1=2 + it)j) are not modelled precisely by random matrix theory.

Indeed,

Conjecture 1. (Keating & Snaith [14]). For k > �1=2 �xed,

1

T

Z T

0

��� � 1
2
+ it

���2k dt � a(k)f(k)

�
ln

T

2�

�k2
(7)

as T !1, where

a(k) =
Y
p

prime

�
1� 1

p

�k2 1X
m=0

�
�(m+ k)

m! �(k)

�2

p�m (8)

is the zeta-function-speci�c (non-universal) part, and

f(k) = lim
N!1

N�k
2

MN(2k) (9)

=
G2(1 + k)

G(1 + 2k)
(10)

is the random matrix (universal) part. Here, for Re(k) > �1=2,

MN(2k) =

Z
U(N)

jZ(�)j2k d�N (11)

=

NY
j=1

�(j)�(j + 2k)

(�(j + k))2
(12)
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is independent of �, and G(k) is Barnes' G{function (see the appendix).

This is in line with previous results for other statistics, where long range devi-

ations from random matrix theory have also been related to the primes [2, 3].

In the present paper we consider

Z
U(N)

1

N

NX
n=1

jZ 0(�n)j2k d�N (13)

where �N denotes the Haar measure of U(N), in the hope that it gives infor-

mation about the universal part of Jk(T ).

We prove

Theorem 1. For Re(k) > �3=2 and bounded,

Z
U(N)

1

N

NX
n=1

jZ 0(�n)j2k d�N =
G2(k + 2)

G(2k + 3)

G(N + 2k + 2)G(N)

N G2(N + k + 1)
(14)

� G2(k + 2)

G(2k + 3)
Nk(k+2) as N !1: (15)

Heuristic arguments then lead us to

Conjecture 2. For k > �3=2 and bounded,

Jk(T ) �
G2(k + 2)

G(2k + 3)
a(k)

�
ln

T

2�

�k(k+2)
(16)

as T !1, where a(k) is given in (8).

We note that this conjecture agrees with all previously known results about

Jk(T ), which are reviewed in x2.2.1
Some work has been done on the limiting distribution of ln j� 0(
n)j. In particu-

lar,

Theorem 2. (Hejhal [12]). If one assumes the Riemann Hypothesis (RH)

and the existence of an � such that

lim sup
T!1

1

N(2T )�N(T )

���nn : T � 
n � 2T; 0 � 
n+1 � 
n �
c

lnT

o��� �Mc�

(17)

holds uniformly for 0 < c < 1, with M a suitable constant, then, for a < b,

lim
T!1

1

N(2T )�N(T )

������

8<
:n : T � 
n � 2T;

ln
��� �0(1=2+i
n)

1

2�
ln


n

2�

���q
1
2
ln lnT

2 (a; b)

9=
;
������

=
1p
2�

Z b

a

e�x
2
=2 dx: (18)
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In the same direction, we have

Theorem 3. For a < b,

lim
N!1

P

8<
:

ln
��� Z0(�1)
N exp(
�1)

���q
1
2 (lnN + 3 + 
 � �2=2)

2 (a; b)

9=
; =

1
p
2�

Z b

a

e
�x2=2 dx: (19)

In xx3.2 and 3.3 we study the asymptotics of the tails of this distribution, when

scaled by a factor much greater than
p
lnN , in x3.2 using large deviation theory,

and in x3.3 using more re�ned asymptotic methods.

Throughout this paper we use the notation f � g to denote f = o(g), f << g

to denote f = O(g). We write f � g when f << g and f >> g.

2 The Discrete Moments

2.1 The Random Matrix Moments

Proof of Theorem 1. Di�erentiating Z(�), we get

Z
0(�) = i

NX
j=1

e
i(�j��)

NY
m=1
m6=j

�
1� e

i(�m��)
�
; (20)

and so

jZ 0(�n)j =
NY

m=1
m6=n

��ei�m � e
i�n
�� : (21)

The Haar probability density of U(N) equals [15, 21]

d�N =
1

N !(2�)N

Y
1�j<k�N

��ei�j � e
i�k
��2 NY

p=1

d�p (22)

and so we may evaluate

Z
U(N)

1

N

NX
n=1

jZ 0(�n)j
2k

d�N (23)

as the N{fold integral

Z
� � �
Z �

��

1

N !(2�)N

Y
1�j<k�N

��ei�j � e
i�k
��2 1

N

NX
n=1

NY
m=1
m 6=n

��ei�m � e
i�n
��2k NY

p=1

d�p:

(24)
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Due to the symmetry in the angles �n (the ones being summed over), we see

that

Z
U(N)

1

N

NX
n=1

jZ 0(�n)j
2k

d�N =

Z
U(N)

jZ 0(�N )j
2k

d�N ; (25)

and so (24) equals

Z
� � �
Z �

��

1

N !(2�)N

Y
1�j<k�N

��ei�j � e
i�k
��2 N�1Y

m=1

��ei�m � e
i�N
��2k NY

p=1

d�p: (26)

Putting all the terms from the �rst product with a factor
��ei�j � e

i�N
��2 in them

into the second product gives

Z
� � �
Z �

��

1

N !(2�)N

Y
1�j<k�(N�1)

��ei�j � e
i�k
��2 N�1Y

m=1

��ei�m � e
i�N
��2k+2

NY
p=1

d�p:

(27)

Integrating �rst over �1 � � � �N�1 and then over �N ,

Z
U(N)

1

N

NX
n=1

jZ 0(�n)j
2k

d�N =

Z �

��

(
1

2�N

Z
U(N�1)

jZ(�N )j2k+2 d�N�1

)
d�N

(28)

=
1

N

N�1Y
j=1

�(j)�(j + 2k + 2)

(�(j + k + 1))2
(29)

which is valid for Re(k) > �3=2.

The evaluation of
R
U(N�1)

jZ(�N )j2k+2 d�N�1 is essentially (12), since it is

independent of �N .

From the recurrence relation for the G{function (see the appendix), (29) equals

G
2(k + 2)

G(2k + 3)
�
1

N

G(N + 2k + 2)G(N)

G2(N + k + 1)
: (30)

Assuming k to be bounded, then as N ! 1, the asymptotics for G, (107),

imply

1

N

G(N + 2k + 2)G(N)

G2(N + k + 1)
= N

k(k+2)

�
1 +O

�
1

N

��
: (31)

This proves Theorem 1.

Remark. If k is a non-negative integer then the recurrence relation for G implies

G
2(k + 2)

G(2k + 3)
=

kY
j=0

j!

(k + 1+ j)!
: (32)
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Remark. By comparing the Taylor expansions of both sides one can show that

G
2(k + 2)

G(2k + 3)
=

exp
�
3� 0(�1) + ln� � 11

12 ln 2 + k ln� � 3k ln 2� 2k2 ln 2
�

�
�
k + 3

2

�
G2
�
k + 3

2

� ; (33)

which has the advantage of making the poles at k = � 1
2 (2n+1), n = 1; 2; 3; � � � ,

explicit. (The poles are of order 2n� 1).

The existence of a pole at k = �3=2 in (29) means the random matrix average

diverges (for any N � 2) for Re(k) � �3=2. Its analytic continuation into this

region is given by (29).

2.2 A heuristic analysis of Jk(T )

De�ne, for x > 0, with x� ln lnT

P (T; x) =
1

T

���t : 0 � t � T ; ln
��� � 12 + it

��� � �x
	�� ; (34)

so P (T; x) is the proportion of space 0 � t � T where
��� � 12 + it

��� � e
�x.

In the limit as x ! 1, the regions in 0 � t � T where
��� � 12 + it

��� � e
�x each

contain exactly one zero, provided all the zeros are simple. At such a zero, we

wish to solve
��� � 12 + i(
n + �)

��� = e
�x for �. To do this, we Taylor expand the

zeta function, then take the modulus, obtaining��� � 12 + i
n + i�
��� = j�j

��� 0 � 12 + i
n
���+OT

�
�
2
�
; (35)

which equals e�x when

j�j =
e
�x��� 0 � 12 + i
n

��� +OT

�
e
�2x
�

(36)

and so the length of each region is 2j�j+OT (�
2).

Thus,

lim
x!1

e
x
P (T; x) =

2

T

X
0<
n�T

��� 0 � 12 + i
n
����1

: (37)

A di�erent evaluation of P (T; x) comes from conjecture 1, which suggests that

for large T ,

P (T; x) �
Z �x

�1

1

2�

Z 1

�1
e
�iyzG

2
�
1 + 1

2 iy
�

G(1 + iy)

�
ln

T

2�

��y2=4
a
�
1
2 iy
�
dy dz (38)

for N = ln T
2� .

For x > 0, calculating the Fourier integral by the residue theorem (c.f. x3.3),
we �nd that for x su�ciently large (x � ln lnT ), P (T; x) is dominated by the

(simple) pole at y = i,

P (T; x) = e
�x
G
2
�
1
2

��
ln

T

2�

�1=4

a
�
� 1

2

�
Res
s=0

�
(G(s))�1

	
+OT

�
e
�3x+�

�
;

(39)
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and so, as T !1,

lim
x!1

e
x
P (T; x) �

�
ln

T

2�

�1=4

exp
�
3� 0(�1) + 1

12 ln 2�
1
2 ln�

�
a
�
� 1

2

�
: (40)

Combining (37) and (40), we obtain

Conjecture 3.

J�1=2(T ) � exp
�
3� 0(�1) + 1

12 ln 2 +
1
2 ln�

�
a
�
� 1

2

��
ln

T

2�

��3=4

: (41)

Note that for k = �1=2, the random matrix moment, (15), is asymptotic to

exp
�
3� 0(�1) + 1

12 ln 2 +
1
2 ln�

�
N
�3=4 (42)

as N ! 1. Since a(k) is exactly the zeta-function-speci�c term in conjecture

1, and N = ln T
2� , this in turn leads us to conjecture 2, that as T !1,

Jk(T ) �
G
2(k + 2)

G(2k + 3)
a(k)

�
ln

T

2�

�k(k+2)

(43)

for k > �3=2 �xed.

2.2.1 Comparison with known results

If the tails of the distribution (18) are su�ciently small, one might expect [10, 12]

Jk(T ) � (lnT )k(k+2)
: (44)

We show in x3.3 that the singularity at k = �3=2 in (43) comes from a large

left tail of the distribution of ln jZ 0(�1)j.

Under RH Gonek [9] has proved that J1(T ) � 1
12 (ln T )

3. Under the additional

assumption that all the zeros are simple, he has conjectured that J�1(T ) �
6
�2
(ln T )�1 [10].

We observe that our conjecture agrees with all these results.

2.3 Discussion on the `pole' at k = �3=2

Due to the divergence of the random matrix average, conjecture 2 is restricted

to 2k > �3. In this section, we argue that this restriction is necessary.

For k negative, but jkj large, the sum over zeros of the zeta function may be

dominated by the few points where j� 0(1=2+ i
n)j is close to zero. These points
are expected to be where two zeros lie very close together (an occurrence of

Lehmer's phenomena).

Gonek [11], in a talk at the Mathematical Sciences Research Institute (MSRI),

Berkeley, in June 1999, de�ned

� = inf
�
� : j� 0

�
1
2 + i
n

�
j�1

<< j
nj� 8n
	
: (45)
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He observed that RH implies � � 0, and that � � 1 if the averaged Mertens

hypothesis holds, that is if

Z X

1

1

x2

0
@X
n�x

�(n)

1
A

2

dx = O(lnX); (46)

where �(n) is the M�obius function.

If � is �nite, then there exists an in�nite subsequence of the f
ng, such that

for all � > 0,

j� 0
�
1
2 + i
n

�
j�1

> j
nj
���

: (47)

Choosing a 
 from this subsequence and setting T = 
, we have, for k < 0,

Jk(T ) >
1

N(T )
j� 0
�
1
2 + i


�
j2k (48)

>
2�

T lnT
T
�2k(���)

: (49)

If � > 0, then

2�

T lnT
T
�2k(���) � (lnT )k(k+2) (50)

when

2k < �
1

�
; (51)

implying that the conjectured scaling (44) is too small for 2k < � 1
� . It follows

from theorem 1 that the analogue of (44) for Z 0(�1) fails for 2k � �3, which
implies, via conjecture 2, that � = 1=3. This is precisely the value conjectured

by Gonek [11], and is in line with the fact that Montgomery's pair correlation

conjecture, [16], suggests that � � 1=3.

In the region 2k < � 1
� , all we can say is that for any � > 0

Jk(T ) = 

�
T
2jkj��1��

�
: (52)

For k < 0 we have the trivial upper bound of

Jk(T ) = O

�
T
2jkj�+�

�
(53)

which comes from noting that j� 0(1=2 + i
n)j
�1

<< j
nj�+� for all n.

Remark. If all the zeros are simple, then for k � � 3
2 , Jk(T ) is still de�ned, but

our results do not predict its asymptotic behaviour. However, if one rede�nes

Jk(T ) to exclude these rare points where j� 0 (1=2 + i
n)j is very close to zero,

then RMT should still predict the universal behaviour.
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3 The Distribution of ln jZ 0 (�1)j

3.1 Central Limit Theorem

Proof of theorem 3. From theorem 1 we have,

Z
U(N)

1

N

NX
n=1

jZ 0(�n)j
�
d�N =

Z
U(N)

jZ 0(�1)j
�
d�N (54)

=
G
2
�
2 + 1

2�
�

G(3 + �)

G(N + 2 + �)G(N)

G2
�
N + 1 + 1

2�
�
N

(55)

= F (�;N) (56)

which we can think of as a moment generating function (m.g.f.) for ln jZ 0(�1)j.

By de�nition, the cumulants of this m.g.f. are

Cn =
dn

d�n
flnF (�;N)g

����
�=0

: (57)

Evaluating these, and asymptotically expanding for large N , we see that

C1 = �(2)��(3) + �(N + 2)� �(N + 1) (58)

� lnN + 
 � 1 (59)

C2 =
1
2�

(1)(2)��(1)(3) + �(1)(N + 2)� 1
2�

(1)(N + 1) (60)

� 1
2 (lnN + 
 + 3� �

2
=2) (61)

Cn = O(1) for n � 3 (62)

where �(n)(x) = dn+1

dxn+1 lnG(x).

This implies that the mean of the distribution is C1 and the variance is C2, with

the other cumulants subdominant to the variance, which is su�cient to show

that
lnjZ0(�1)j�C1p

C2
converges in distribution (as N ! 1) to a standard normal

random variable (see, for example, x30 of [4]).

Writing the result out explicitly, for a < b

lim
N!1

P

8<
:

ln
��� Z0(�1)
N exp(
�1)

���q
1
2 (lnN + 3 + 
 � �2=2)

2 (a; b)

9=
; =

1
p
2�

Z b

a

e
�x2=2 dx (63)

where P ff(U) 2 Ag is the probability that f(U) lies in a set A and is de�ned

to equal
R
U(N) 1ff(U)2Ag d�N where 1f�g is the indicator function.

Recalling (6), that N = ln T
2� , this is in line with Hejhal's distribution theorem,

(18). (Note that the O(1) di�erences in the mean and variance are subdominant

in the large N , large T limit).

Odlyzko [17] found numerically that, around the 1020th zero, ln j� 0j had mean

3:35 and variance 1:14. Compare this to the leading order asymptotic prediction

in (18) of 1:91 and 1:89, and the above random matrix theory prediction of 3:33

and 1:21 respectively.
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3.2 Large Deviations

In this section we study the tails of the distribution of ln jZ 0(�1)j, beyond the

scope of the above central limit theorem. (In fact, we consider the random

variable ln
��� Z0(�1)
exp(C1)

���, since this has zero mean).

De�ne a new family of random variables, RA
N , by

R
A
N =

ln
��� Z0(�1)
exp(C1)

���
A(N)

; (64)

where A(N) is a given function, much greater than
p
C2.

Denote the logarithmic moment generating function of RA
N by

�N(�) = ln

Z
U(N)

e
�RAN d�N (65)

=

(
lnF

�
�

A(N) ; N

�
� �

A(N)C1 for �
A(N) > �3

1 for �
A(N) � �3

(66)

A standard theorem in large deviation theory (see, for example, [7]) allows one

to establish the log-asymptotics of the probability distribution of RA
N . In order

to apply this theorem, we need the following:

Assumption 1. There exists a function B(N) (which tends to in�nity as N !
1), such that

�(�) = lim
N!1

1

B(N)
�N (B(N)�) (67)

exists as an extended real number, for each � (i.e. the pointwise limit exists in

the extended reals).

De�nition 1. The e�ective domain of �(�) is

D = f� 2 R : �(�) <1g (68)

and its interior is denoted by D�.

De�nition 2. The Fenchel-Legendre transform of �(�) is

��(x) = sup
�2R

f�x� �(�)g: (69)

Theorem 4. If assumption 1 holds, then for a < b,

lim sup
N!1

1

B(N)
lnP

�
R
A
N 2 [a; b]

	
� � inf

x2[a;b]
��(x): (70)

If, in addition, �(�) is di�erentiable in D�, and (a; b) � f�0(�) : � 2 D�g, then

lim
N!1

1

B(N)
lnP

�
R
A
N 2 (a; b)

	
= � inf

x2(a;b)
��(x): (71)
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We say that RA
N satis�es the Large Deviation Principle (LDP) at speed B(N)

with rate function ��(�) if (71) holds.

Thus, for example, if x > 0 then

P

�
ln

���� Z
0(�1)

N exp(
 � 1)

���� > xA(N)

�
� e

�B(N)��(x) (72)

where the meaning of the symbol � is made precise in the equation above.

In order to apply theorem 4, we need to know the leading-order asymptotics of

�N (B�). Writing �(N) =
B(N)
A(N)� for simplicity, then (66), (56), (59) and (107)

imply that as N !1, for � > �3,

�N (B�) =
1
2 (N + �+1)2 ln(N + �)+ 1

2 (N � 1)2 lnN � (N + 1
2�)

2 ln(N + 1
2�)

� 1
12 ln(N + �)� 13

12 lnN + 1
6 ln(N + 1

2�)� � lnN

+ 2 lnG
�
2 + 1

2�
�
� lnG (3 + �)� 
� � 3

8�
2 +O

�
1

N

�
: (73)

This can be simpli�ed if we restrict
B(N)
A(N) to various regimes, and hence we are

able to �nd B(N) and ��(x):

� 1
lnN � B

A
� 1

1

B
�N (B�) =

B

4A2
�
2 lnN +O

�
1

BN

�
+O

�
1

A

�
; (74)

so we take B = A2

lnN , and obtain ��(x) = x
2.

This is valid for
p
lnN � A� lnN .

� B
A
= 1

1

B
�N(B�) =

(
B
4A2�

2 lnN +O
�
1
B

�
if � > �3

1 if � � �3
(75)

If A = lnN , then the supremum of f�x� �(�)g occurs at

� =

(
2x if x � � 3

2

�3 if x � � 3
2

(76)

and so,

��(x) =

(
x
2 if x � � 3

2

�3x� 9
4 if x � � 3

2

(77)

Remark. Note that in this case theorem 4 only gives the upper bound,

(70), on the probabilities for x < � 3
2 .
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If we keep the condition B
A
= 1, but have A� lnN , then

1

B
�N (B�)!

(
0 for � > �3
1 for � � �3

as N !1 (78)

and thus

��(x) =

(
1 for x > 0

�3x for x < 0
(79)

Remark. Again, theorem 4 only gives the upper bound on the probabilities

for x < 0. However, in x3.3 the probability density is evaluated in such a

way as to prove the full LDP, (71). (We obtain, in fact, a much stronger

result: the asymptotics of the probability density function, not just the

log-asymptotics).

Remark. The fact that the rate function is in�nite for x > 0 means that

for A � lnN the deviations to the right (x > 0) tend to zero much

faster than the deviations to the left. We will now study these far-right

deviations.

� � > 0 with 1� B
A
and ln B

A
� � lnN with 0 � � < 1 �xed

1

B
�N(B�) =

B

4A2
�
2(1� �) lnN +O

�
B

A2

�
: (80)

Hence we require B = A2

lnN .

The rate function is therefore:

��(x) =

(
x2

1�� if x � 0

0 if x � 0
(81)

This is valid for A� lnN but limN!1
lnA
lnN < 1.

� � > 0 with B
A
= N

1

B
�N(B�) =

N
2

B

�
1
2 (1 + �)2 ln(1 + �)� (1 + 1

2�)
2 ln(1 + 1

2�)

� 1
4�

2 ln 2�
	
+O

�
N lnN

B

�
: (82)

Hence we require B = N
2, which means A = N , and so the rate function

is

Ic(x) = sup
�>0

n
�x� 1

2 (1 + �)2 ln(1 + �) + (1 + 1
2�)

2 ln(1 + 1
2�)

+ 1
4�

2 ln 2�
o

(83)

which occurs, assuming x � 0, when

x = 1
2� ln

�
(�+ 1)2

�(� + 2)

�
+ ln

�
�+ 1

�+ 2

�
+ ln 2: (84)
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Remark. Note that the right hand side is an increasing function of � (for

� > 0) bounded between 0 and ln 2. This means, for x � ln 2 the supre-

mum is 1, implying that any scaling A(N) greater than N has rate func-

tion 1, independent of x.

Hence

��(x) =

8><
>:
0 for x � 0

Ic(x) for 0 � x � ln 2

1 for x � ln 2

(85)

This only leaves the regime x > 0 with limN!1
lnA
lnN = 1 but A� N unconsid-

ered. This can be calculated in a similar way to the above.

3.2.1 Conclusion

For the deviations to the right, we must take x > 0:

Scaling A(N) Speed B(N) Rate function ��(x)

A�
p
lnN but lnA� lnN A2

lnN x
2

lnA � � lnN , � < 1 A2

lnN
x2

1��

A = N N
2

(
Ic(x) if 0 � x � ln 2

1 if x � ln 2

For the deviations to the left, we need x < 0:

Scaling A(N) Speed B(N) Rate function ��(x)

p
lnN � A� lnN A2

lnN x
2

A = lnN lnN

(
x
2 if � 3

2 � x � 0

3jxj � 9
4 if x � � 3

2

A� lnN A 3jxj

Remark. Note that the LDP for the deviations to the right is identical to that

found for Re lnZ(�) in [13]. The LDP for deviations to the left is very similar,

but the rate function there is linear for x < �1=2 rather than x < �3=2.

Remark. This later arrival of the linear rate function is consistent with the

observation that the value distribution ln j� 0j is closer to the standard normal

curve than ln j�j in Odlyzko's numerical data (see page 55 of [17]).
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3.3 Re�ned asymptotics for deviations to the left

Due to the pole in �(�) for � < �3 and A � lnN , theorem 4 only gives the

upper bound on the probabilities, (70). In order to complete the proof of large

deviations in this region (that is, to prove (71)), we will actually prove a much

stronger result, namely the asymptotics for the probability density.

By the Fourier inversion theorem, the probability density function, p(t), of

ln
��� Z0(�1)
exp(C1)

��� exists and is given by

p(t) =
1

2�

Z
1

�1

e�iy(t+C1)F (iy;N) dy (86)

(that is, for any measurable set A, P fln jZ 0(�1)j � C1 2 Ag =
R
A
p(t) dt).

Integrating over the rectangle with vertices �M ,M , M+(3+�)i, �M+(3+�)i

(where � is a �xed number satisfying 0 < � < 1) and letting M ! 1, we see

that

p(t) = Res
y=3i

n
e�iy(t+C1)F (iy;N)

o
+E; (87)

where

E =
1

2�

Z
1

�1

e(�iy+3+�)(t+C1)F (iy � 3� �;N) dy: (88)

Asymptotic analysis shows that

jEj �
1

2�
e(3+�)(t+C1)

Z
1

�1

jF (iy � 3� �;N)j dy (89)

�
1
p
�

�����
G2
�
1
2 �

1
2�
�

G(��)

����� e(3+�)(
�1)e(3+�)tN9=4+3�=2+�2=4(lnN)�1=2; (90)

and that

Res
y=3i

n
e�iy(t+C1)F (iy;N)

o
� e3tN9=4e3
�3G2(1=2): (91)

If limN!1
t

lnN < �3=2, then choosing

0 < � < min

�
�6� 4 lim

N!1

t

lnN
; 1

�
(92)

shows that the residue gives the dominant contribution to p(t) in this region,

that is

p(t) � e3tN9=4e3
�3G2(1=2) (93)

if limN!1
t

lnN < �3=2.
Remark. The asymptotics for ln p(A(N)x) complete the proof of the LDP for

scaling A(N) = lnN with x < �3=2, (77), and for A� lnN with x < 0, (79).

Remark. Due to the e3t term in (93),
R
U(N) jZ

0(�1)j2k d�N diverges for k �
�3=2.
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4 Other unitary ensembles

The other unitary ensembles | the COE (� = 1) and the CSE (� = 4) | can

be dealt with in the same manner as the CUE (� = 2), the ensemble considered

in all of the above.

The normalized measures on these spaces, U�(N), are [15]

d��N =
((�=2)!)N

(N�=2)!(2�)N

Y
1�j<k�N

��ei�j � ei�k
��� NY

n=1

d�n (94)

and Keating and Snaith [14] found that

Z
U�(N)

jZ(�)js d��N =

N�1Y
j=0

�(1 + j�=2)�(1 + s+ j�=2)

(�(1 + s=2 + j�=2))2
(95)

=MN (�; s): (96)

As in x2.1, we �nd that

Z
U�(N)

1

N

NX
n=1

jZ 0(�n)js d�
�
N =

Z
U�(N)

jZ 0(�1)js d�
�
N (97)

= (�=2)!
((N � 1)�=2)!

(N�=2)!
MN�1(�; s+ �): (98)

Calculating the cumulants,

C
�
1 =

N�2X
j=0

	(1 + � + j�=2)�	(1 + �=2 + j�=2) (99)

= lnN +O(1) (100)

C�
2 =

N�2X
j=0

	(1)(1 + � + j�=2)� 1
2	

(1)(1 + �=2 + j�=2) (101)

=
1

�
lnN +O(1) (102)

C�
n =

N�2X
j=0

	(n�1)(1 + � + j�=2)� 2�(n�1)	(n�1)(1 + �=2 + j�=2) (103)

= O(1) for n � 3 (104)

which shows that

lim
N!1

P�

8<
:
ln jZ 0(�1)j � C

�
1q

C
�
2

2 (a; b)

9=
; =

1
p
2�

Z b

a

e�x
2=2 dx: (105)
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Appendix

A Barnes' G{function

Barnes' G{function is de�ned [1] for all z by

G(z + 1) = (2�)z=2 exp
�
� 1

2

�
z2 + 
z2 + z

�� 1Y
n=1

�
1 +

z

n

�n
e�z+z

2=2n: (106)

It is an entire function of order two, such that G(z + 1) has zeros at z = �n of

multiplicity n, where n = 1; 2; : : : .

It has the following properties, [1, 20]:

Recurrence relation G(z + 1) = �(z)G(z)

Asymptotic formula for jzj ! 1 with j arg(z)j < �,

lnG(z + 1) � z2
�
1
2 ln z �

3
4

�
+ 1

2z ln 2� �
1
12 ln z + � 0(�1) +O

�
1

z

�

(107)

Taylor expansion for jzj < 1,

lnG(z + 1) = 1
2 (ln 2� � 1)z � 1

2 (1 + 
)z2 +

1X
n=3

(�1)n�1�(n� 1)
zn

n

(108)

Special values G(1) = 1 and G(1=2) = e3�
0(�1)=2��1=421=24.

Logarithmic di�erentiation

dn+1

dzn+1
lnG(z) = �(n)(z); (109)

which can be written in terms of the polygamma functions, 	(n)(z), with

�(0)(z) = 1
2 ln 2� � z + 1

2 + (z � 1)	(0)(z); (110)

for example.
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