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1 Introduction

For L-functions, as for the well-known Riemann zeta function, it is conjectured, and widely believed,
that the non-trivial zeros lie on the line Re 8 = 1/2; this being the generalised Riemann hypothesis
(GRH). Whereas high on this critical line the zeros of any given L-function appear to have the
same statistical distribution as the eigenvalues of the group U(N) of (large) N x N unitary matrices
endowed with Haar measure (otherwise known as the Circular Unitary Ensemble (CUE) of random
matrix theory) [17, 13, 12), Katz and Sarnak [9, to] have proposed that the low-lying zeros of
families of L-functions follow the statistics of the eigenvalues not always of U(N), but in some
cases of the compact groups O(N) or USp(2N). This is supported by the fact that for the function
field analogue the equivalent of the Riemann Hypothesis is known to be true, and Katz and Sarnak
have discovered that zeta functions over function fields have zero statistics which show exactly the
behaviour just described.

Conrey and Farmer [6] have extended this idea that the low-lying zeros of families of L­
functions show particular statistics to the study of the mean values of the L-functions L ,(8) within
families at the central point s =1/2. They have found evidence that the symmetry type to which
the low-lying zeros subscribe also determines the behaviour of these mean values. In particular,
they conjecture that in general, as Q -. 00,
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where they choose V(x) depending on the symmetry type (V(z) = Izl2 for unitary symmetry and
V(z) =z for the orthogonal or symplectic case); _4 is a symmetry-dependent constant; the family,
:F, over which the average is performed is considered to be partially ordered by the conductor, c(f),
of each L-function; and the sum is over the Q* elements with c(f) $ Q. The symmetry type of the
family manifests itself in the expectation that it alone determines the values of 9k and B(k). These
functions are thus universal, being independent of the details of the particular family in question.
a(k), on the other hand, is expected to depend on the specific family involved.

Previously [i] we have studied mean values of the Riemann zeta function, which is defined
by the Euler product over prime numbers or a Dirichlet sum,

(
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for Re8 > 1, and by an analytical continuation in the rest of the complex plane. We conjectured
that the moments of (1/2 + it) high on the critical line t E lR factor into a part which is specific
to the Riemann zeta function, and a universal component which is the corresponding moment of
the characteristic polynomial Z(U,9) of matrices in U(N), defined with respect to an average over
the CUE. The connection between N and the height T up the critical line corresponds to equating
the mean density of eigenvalues N /27r with the mean density of zeros 2~ log i:r. This idea has
subsequently been applied by Brezin and Hikami [2] to other random matrix ensembles, and by
Coram and Diaconis [3] to other statistics.

Our purpose here is to extend these calculations to SO(2N) and USp(2N), and to compare
the results with what is known about the L-functions. (Only SO(2N) is relevant, because a family
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of L-functions governed by O(N) falls approximately into two halves; one displaying even symmetry
about 3 = 1/2, and the other odd symmetry. This latter class contributes zero to averages at the
central value, while the zero statistics of the former are expected to follow those of SO(2N).) We
therefore consider the value distribution of the characteristic polynomial of 2N x 2N orthogonal or
unitary symplectic matrices,

N
Z(U, 9) =II (1 - ei (9,,-9» (1 - ei (-9,,-9» ,

n=1

(3)

averaged over these groups when 9 =0, which is the symmetry point for the eigenvalues, just as
8 = 1/2 is for the L-function zeros. In each case we derive an explicit expression for {Z(U, 0)-),
valid for all N, and from this obtain the leading order N -+ 00 asymptotics, together with a
simplified formula when 8 is an integer. We also derive the value distributions of log Z(U, 0) and
Z(U, 0). Comparing with results for various families of L-functions suggests that, as for (a),
random matrix theory determines the universal party of (1). This then provides further support
for the programs of Katz and Sarnak, and Conrey and Farmer.

2 Symplectic Symmetry

2.1 Random matrices in USp(2N)

We are interested here in the group of symplectic unitary matrices, USp(2N). These are 2N x 2N

matrices, U, with uut = 1 and rPJU = J, where J = (-~N I~) and IN is the N x ~
identity matrix. For these matrices, the eigenvalues lie on the unit circle and come in complex
conjugate pairs. Thus the characteristic polynomial related to such a matrix with eigenvalu~

eiB., e-iB., ei92 , e-i92 , ... eiBN , e- iBN takes the form (3). .
Our first step will be to calculate the moments of Z(U, 0) defined by averaging with respect

to Haar measure. The joint probability density function of the eigenvalues is thus [16]

with normalization constant

_ N r(l + N + j) 22N2_2N

Nsp =2 3N JJ r(l + j)(r(1/2 + j»2 = 1rN NI .

Noting that
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we proceed to

N

Z(U, 0) = III(I-eil")12

n=1

N

= 22N II sin2(Bn /2)
n=1
N

= 2N II (I - cos Bn ),

n=1

(6)

< Z(U, 0)' >r;Sp(2N) _ Ns,2N , r ft

••• {2ft dB1 ••• dlJN II (! (cos B; _COSBi»)2
10 10 l<i< "<N 2- ,-

N N
x IT sin2 B" x IT(1- cos Bn )'

"=1 n=1

= Ns, 2NI+2N-
N211r

•• •1ft

dlJl··· dlJN IT (cosB; - cos Bj)2
o 0 19<;~N

N N
X IT sin2 B" x II (1 - cos Bn )', (7)

"=1 n=1

which, after the transformation xi = cosB;, becomes

<Z(U, 0)' >US,(2N) - Ns, 2N,+2N-/li2jl .. . jl dXl." dxN IT (Xi - Xi)2
-1 -1 l~i<;~N

N

X IT (1 - x,,)1/2+, (1 + X,,) 1/2.

"=1

(8)

There is a form of Selberg's integral (detailed in [11]) which states that

{lin
1- ... ( II I(Xi- XI )12'YII(I-xj)Q-l(l+x;)P-1dx;

-1 1-11~;<I~N ;=1

= 2'Yn(n-l)+n(Q+P-l) nIT-l r(1 +"( + i"()r(a + i"()r(P + i"() ,
;=0 r(I +1')r(a +P+"(n + j - 1»

if Rea > 0, Rep>°and Re-y > -min (~, ~i, ~~1).
In our case ., = 1, a = 3/2 + s and P=3/2, so
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< Z(U,O)" >US,t,2N) = N 2N"+2N-N2 2N2+N+N,, If 1'(2 + j)r(3/2 + s + j)r(3/2 + j)
Sp j=O 1'(2)1'(3 + s + N + j -1)

= 22N" IT 1'(1 + N + j)r(1/2 + s + j)
j=1 r(1/2 + j)r(1 + s + N + j)

- Ms,(N, s). (10)

We now consider the coefficients Cj in the expansion

(ll)

These coefficients are the cumulants of the distribution of logZ(U,O), because Ms,(N,s) is the
generating function for the moments of this distribution:

Since

00 .
~ . sJ

Ms,(N, s) = L,,«log Z(U,0))'}US,(2N)-=j"'
. 0 J.
J=

(12)

N

logMs,(N,s) = 2sN log 2 + L(logr(I/2 + s + j) + log 1'(1 + N + i) -logr(I/2 + j)
j=1

-logr(1 + s + N +i», (13)

we find that

N

Cl =~ log Ms,{N,s)/,,=o =2Nlog2 +L:(¢(1/2 + i) - ""(1 + N +i» (14)
;==1

is the first cumulant, while the higher ones are given by

N

en =::n log Msp(N, s)I,,=o =L (",,(n-l)(1/2 + i) - ",,(n-l)(1 + N + j») , (15)
j=1

where ¢U>{z) = ::J+':'1 logI'{z) is a polygamma function,
We seek the behaviour of these cumulants for large N. For the first we use the asymptotic

formula

1 00 B2n
·/·(z) '" log z - - - ~--." 2z L" 2nz2n '

n=1
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which holds when z --. 00 with largzl < 11', where ~" are the Bernoulli numben. Also, we need
the integral form of the digamma function,

Applying (17), we obtain

[00 e-t _ e-.zt
1/1(z) + "Y = 10 1 _ e- t dt. (17)

(IS)

~ ( [00 e-t _ e-(j+1/2)t roo e-t _ e-(j+N+l)C )
Cl = 2Nlog2+~ 100 l-e-t dt-"Y- 100 l-e-t dt+"Y

J=1

~100 e-(j+N+1)t _ e-(j+1/2)t
= 2Nlog2+ LJ 1 -t dt.

;=1 0 - e

We now interchange the summation and integration and perform the sum explicitly so that we can
integrate by parts to arrive at

100 e-Nt Loo e-2Nt 1LOO e-3t/ 2
Cl = 2Nlog2-{N+l) 1 _t dt +{2N+l) 1 _t dt +-2 1 _tdt

o -e 0 -e o-e

1
00 e-(N+3/2)t

-(N + 1/2) 1 -t dt.
o -e

Converting back to polygamma function notation via (17), then applying (16) as N becomes
large, we see that

CI = 2N log 2 + (N + 1)1/1(N) - (2N + 1)1/1(2N) - ~1/1(3/2) + (N + 1/2)1/1{N + 3/2)

1 . "Y -I= '2 logN + 2+O(N ). (19)

For the second cumulant we need to use the asymptotic formula for higher polygamma
functions, valid as z --. 00 with larg zl < 11',

.1.(n)() ,..., (_1)"-1 [(n - I)! ~ ~ B (2" +n - I)!]
.". z z" + 2z"+1 +~ 2A: (2k)!z2A:+n .

There is also an integral formula for the higher polygamma functions which will prove useful:

This leads us to

N

C2 = L (1/1(I)(j + 1/2) -1/1(1)(1 + N + j»)
;=1

N (Loo te-(j+1/2)C 100 te-(l+N+;)C )
= '" dt- dt .
~ 0 1 - e-t 0 1 - e-t
J=l
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Again we interchange the order of the summation and integration, perform the sum and integrate
by parts. The result, expressed in terms of polygamma functions, is

C2 = -t/J(3/2) - ~t/J(1)(3/2) + t/J(N + 3/2) + (N + 1/2)t/J(I)(N + 3/2) + t/J(N + 2)

+(N + 1)t/J(I) (N +2) - t/J(2N +2) - (2N + 1)t/J(1) (2N + 2)
3

= log N + 1 + '1 + log 2 - 2«(2) +O(N-1). (23)

The higher cumulants follow in a similar manner

and so

~ ( "100 t"-l e-(1/2+;)t "100 t"-l e-(l+N+;)t )
en = L (-1) 1 -t dt-(-l) 1 -t dt

;=1 0 - e 0 - e

f t"-le-(3/2)t 1 - e-Nt 100 t,,-le-2- N 1 - e-Nt
= (-1)" dt - (_1)" dt

o 1 - e-t 1 - e-t 0 1 - e-t 1 - e-t '
(24)

lim en
N-+oo

rOO t"-le-(3/2)t
= (-1)"}0 (l_e-t)(l_e-t)dt

" [_t"-le-(3/2)t 100 100 t"-2e-(1/2)t 1100 t"-le-(1/2)t ]
= (-1) 1 -t +(n-l) 1 -t dt--2 1 -t dt-e 0 0 -e o-e

= -(n -1)t/J("-2)(1/2) - ~t/J("-1)(1/2)
2

= (-1)"(n -1)1 [(2"-1 -1)«(n -1) - ~(2" -l)«(n)] . (25)

These expressions for the cumulants, inserted into (11), allow us to write the leading order
coefficient of the moment Msp(N,s) as

fsp(s) lim MSp(N, s)
- N~OtJ N,/2+.2 /2

= exp (is + (1 +'1 + log2- i«2») s22

+~ (-1)"(2"-1 -1)«n -1) - ~(-l)"(2" -1)((n») ~) .

(26)

This coefficient can be expressed as a combination of gamma functions and the Barnes
G-function [1, 15], which is defined by

00

G(1 + z) = (21r)Z/2e-(l+7)z2+zI/2 IT [(1 + z/n)ne-z+z
2/(2n)] ,

n=1

(27)

and has zeros at the negative integers, -n, with multiplicity n (n = 1,2,3 ... ). Other properties
useful to us are that
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and furthermore, for Izi < 1,

G(I) = 1,

G(z +1) = r(z) G(z),

(28)

z ~ ~ ~
logG(1 + z) =(log(21l") - 1)-2 - (1 +1')- +L(_1)n-l(n -1)-. (29)

2 n=3 n

Combining this with

log r(1 + z) = -1'z +f: (n) (_;)'l ,
n=2

which holds (or Izi < 1, we see that, for lsi < 1/2,

(30)

111
logG(1 + 8) - "2 log G(l + 2s) - "2 log r(1 + 2s) + "2logr(1 + 8)

23 00

= Is + (1 + 1')~ - _(2)s2 +L (_1)1l(21l- 1 - 1)«n -1)
2 2 4 n=3

_~(_1)1l(21l _ 1)(n)) s:. (31)

A comparison with (26) shows that

f (s) = 2,2/2 X G(l +8)y'r(1 + 8)
Sp y'G(l + 2s)r(1 + 2s)'

for lsi < 1/2, and hence by analytic continuation for all s.
For integer moments the formula is simpler. Using (28) we see that

n-l
G(n) = II r(j),

j=l

and so for integer n,

7
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fsp(n) = 2n2/2 G(l + n)y'r(l + n)
y'G(l + 2n)r(1 +2n)

= 2n2/2 (nj=1 r(j») y'r(l+n)

In't=l rei) r(l + 2n)

= 2n2/2 ( nj=t r(j)) v7i!
Jn~~tl (j - 1)1

= 2n2/2 (nj=IU -1)1) v'TiT
';22n- 1 32n- 2 42n- 3... (2n - 1)2 2n

= 2n2/2 (nj=IU -1)1) v'fv'2 ... v'n=Tv;i
v'2../4 ... V21i';22n-232n 242n- 4 ••• (2n - 2)2(2n - 1)2

= 2n2/2 1n- 12n- 2 ... (n - 2)2(n -1)
2n/22n-13n-14n-25n-2 ... (2n - 2)(2n - 1)

= 2n2/2 1
2n/ 22Ej;l j nj=1 (2j - 1)l!

= (ft(2j _ 1)l!) -1

,=1
(34)

Following the ideas developed in [7J, these integer coefficients have also been calculated
independently by Brezin and Hikami [2J.

Having the generating function, Msp(N, 8), it is a short step to find the value distributions
of both log Z(U, 0) and Z(U,O) itself. The distribution of log Z(U, 0)/ log N is

Thus

(6(x - log Z(U, O)/log N))USp(2N)

= / ~ jCXI e-iy(:r-logZ(U,O)/IOgN)dY)
\ 211' -CXI USP(2N)
1 jCXI .= -2 e-1y:rMsp(N, iy/ log N)dy
11' _OQ

= 2:.. roo e -iy:reCI i'll/log N +c2(i'll/log N)2 /2+C3(i'll/log N)3/3!+ ..·dy
211' J-CXI

= 2~ i:e-iy:r exp [(~ logN + 0(1») iy/logN

y2. y3 ]
-(logN +0(l»2(logN)2 -'(O(I»31(logN)3 + ... dy.

(35)

(36)

lim (6(x - log Z(U, 0)/ log N»USP(2N) _ 2:.. (CXI e-iY2:+iy/2dy (37)
/tI.....oo 211' J-CXI

= 6(x -1/2),
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and so the distribution of values of log Z(U, 0)/ log N tends to a delta function centred at % =1/2.
If we instead retain the y2 term in the exponent in (36), we have the central limit theorem

(38)I. (~( Cl lOgZ(U,O))) ~ (x2
)1m f1 x + - - == - exp --

N-+'Xl JCi JCi US,(2N) 211" 2'

where CI and C2 are related to N by (19) and (23), respectively. For finite N, the exact distribution
is of course given by (35), where Msp(N, s) is defined by (10).

It is not difficult to determine as well the distribution of the values of Z(U, 0) iihr. Changing
variables in (35), results in

== -2
1 roo %-iyMSp(N, iy/ log N)dy,

11"% i-oo (39)

and so

lim (6(% - Z(U, O)Totv »USp(2N)
N-+oo

(40)

Alternatively, we can examine the value distribution of Z(U, 0). Denoting it by PSp(N,x),
we see that .

Psp(N,x) = -2
1 100

x-iJlMSp(N,iy)dy..
1I"X -00

(41)

Although Ps,(N, x) does not have a limiting distribution as N -+ 00, we suggest the approximation

(42)

Psp(N,x) 1 100

[ C2y2]~ - exp -iy log x + iClY - -2- dy
211"x -00

1 ( (logx - Cl)2)
= x~exp - 2C2 '

and plot it, for two values of N, in Figure 1 along with the exact distribution (41). It should be
noted that the approximation (42) is valid when x is fixed and N -+ 00, and more generally is
expected to be a good approximation when log x >> - log N and N is large, the lower bound
being determined by the pole of Msp(N, s).

It may be seen from Figure 1 that Psp(N,O) == O. Although the approximation (42) also
tends to zero as % -+ 0, it does not predict the correct rate of approach. This may instead be
obtained by examining the poles of the integrand of

P (N ) - _1_ t Xl
-i1l22iN1I lIN r(l + N + j)r(1/2 + iy + j) d (43)

Sp ,x - 211"% 1-00 X ;=1 r(I/2 + j)r(1 + iy + N + j) y.
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Figure 1: Distribution of the values of Z(U, 0) for matrices in USp(2N), a)N = 6, b) N = 42. The
solid curve is the exact distribution (41) and the dashed curve is the large N approximation (42).

These poles occur at the points y = i(2k +1)/2 and are of order k, for k = 1, 2, . .. ,N, then
of order N for all higher k. Due to the factor x-iy it is evident that in the limit x ~ 0, the lowest
pole, that at y = (3i) /2, gives the dominant contribution. From the residue at that lowest pole we
thus find that as x ~ 0

( 1/2 -3N 1 rrN f(I +N + j)f(j)
PSp N,x) - x 2 feN) ;=1 f(I/2 + j)f(N +j -1/2)·

(44)

2.2 L-functions with Symplectic Symmetry

In the Introduction we gave a brief description of the mean values at s = 1/2 for families ofL­
functions and the relation of these to the symmetry type displayed by the low-lying zeros. Here we
consider the case of symplectic symmetry in more depth.

Ifwe again use Conrey and Farmer's notation, as in (1), then in the symplectic case they have
V(z) = z and find that B(k) = lk(k+l) [6}. They also list several families which are conjectured to
have low-lying zeros with symplectic symmetry, the simplest of which is the Dirichlet L-functions,
L(S,Xd), where Xd is a quadratic Dirichlet character. The sum (1) is then over all such characters
with conductor Idl $ D: as D ~ 00

(45)

where D· is the number of quadratic characters included in the sum.
For this case the first few values of 9k for integer k have been found using number-theoretic

techniques to be [8. 14, 6) 91 = I, 92 = 2, 93 = 2" and, by conjecture, 94 = 3 . 2'. It might be
expected that 9k is related to the random matrix moment values calculated in Section 2.1, since it
is believed to be purely symmetry-determined. Our purpose now is to provide evidence in favour
of this.
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Making the identification

(46)

(47)

and recalling that as N ~ 00 Ms,(N, k) ..... fSp(k)Nl/c(/c+1), we conjecture that for symplectic
families of L-functions

g/c
r(1 + }k(k + 1» = ISp(k).

Following the arguments of [7], the relation between N and Q should arise from equating
the mean densities of zeros. For the L-functions we need the density near 8 = 1/2 because we are
dealing with the L-functions just at this point. In the case of L-functions with quadratic Dirichlet
characters, (45), the mean density at a fixed height up the critical line increases like 2!r log ldl
as Idl ~ 00. Since the mean density of eigenvalues of a matrix in USp(2N) is N/1r, we equate
N =(1/2) log D, and obtain exactly the proposed relation, since A =1/2 in this case.

It is then striking that the first few values of Is, at the integers, Isp(l) = I, Is,(2) =1,
15,(3) = -Jg and Isp(4) =~, agree precisely, via (47), with the values that Conrey and Farmer
report for the symplectic L-functions. .

Further evidence in favour of (47) is the success of a very similar conjecture relating moments
of the Riemann zeta function to averages over U(N) [7]. The only difference is that in the case of
(8) the average was along the critical line rather than over a family of functions. This is not a
significant difference, however, and Conrey and Farmer in fact suggest that we think of the Riemann
zeta function as a unitary family (with zeros showing the statistics of the eigenvalues of matrices
from U(N» in its own right, where we are averaging over special values of the family {(1/2 + it)}
as t ranges over the real numbers.

The validity of the conjecture (47) would imply many results on the value distribution of the
central values of symplectic L-functions. The distribution for the logarithm of symplectic families of
L-functions, for example, is expected to behave for asymptotically large Q in the same way as that
of the characteristic polynomial Z, always remembering that N must be related to the L-function
parameter via the density of zeros. This is because the conjecture (47) can also be written as

I:
f e:F

c(f) ~ Q

(48)

so the value distribution of log LI(!)/ log log QA defined by averages with c(f) ~ Q, would be, for
large Q and making the identification (46),

leading to

\lsp(X) = 2
1 roo e- iZ7la(iy/logN)Ms,(N,iY/logN)dy,
1r 1-00

11
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Since c(O) = 1, we see that this would imply that the distribution of log L/( i)/ log log QA is
asymptotic to 6(x - 1/2), in just the same way as for log Z(U, 0)/ log N.

Following the same line of argument, we suggest that

(51)

where OF denotes an average over a family F of L-functions, as in (1), and ci and C2 are given by
(19) and (23), respectively, again with the identification (46).

If we now turn to the distribution of values of L/(!) itself, Ws,(x), we can close the contour
of

Ws,(x) =-2
1 /00 x-i'a(is)Ms,(N,is)ds
1rX -00

(52)

around the poles and obtain, as x -+ 0, the dominant contribution from the pole at s = (3i)/2:

1/2 -3N 1 lIN r(l + N + j)r(j)
Wsp(x) ..... x c(-3/2)2 r(N) j=l r(I/2 + j)r(N +j - 1/2)' (53)

This is of particular note in the light of recent interest in the non-vanishing of the central.
values of L-functions, see for example [14, 4, 5} and references therein. Clearly (53) implies that as
long as a(-3/2) is finite for a particular family of symplectic L-functions, the probability that the
central value of those L-functions lies in the range (0, x) decreases like x3/ 2 as x -+ O.

3 Orthogonal Symmetry

3.1 Random matrices in SO(2N)

We now consider the characteristic polynomial of matrices from the group SO(2N). Here the
eigenphases also come in complex conjugate pairs, so Z(U,9) takes the form (3), and the average
at the point 9 = 0 is, once again using the joint probability density function for the eigenphases
dictated by Haar measure [16],
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<Z(U,O)">SO(2N) = No f2f( ... rf(d81· .. d8N II (~(COS(1i-COS9i»)2
10 10 l<i< '<N_ ,_

N

x2N
" II (1 - cos9n )"

n=1

= No 22N-N2+N" [ ... r dOl'" dON II (cos OJ - COS Oi)2
o 10 I<i< '<N_ ,_

N

X II (1 - cos9n)"

n=1

= No 22N-N2+N"II ...11
chi'" chN II (X; - Xi)2

-1 -1 lSi<j$N

N

Xrr (1 - x~}-1/2(1 - x n )' I (54)
n=l

with a normalization constant

(55)

We use the Selberg integral again, this time with 'Y = 1, a = s + 1/2 and IJ = 1/2, obtaining

< Z(U.O)' >SO(2N) = No 22N-N2+N". 2N2 - N+"N+N/2+N/2-N

X If f(2 + j)f(s + 1/2 + j)f(I/2 + j)
i=O f(2)f(s + 1+ N + j - 1)

= N. 2N+2N'IT f(1 + j)f(s + j - 1/2)f(j - 1/2)
o j=1 r(s + N + j - 1)

= 22N" rrN f(N + j -1)f(s + j -1/2)
. f(i -1/2)r(s + i + N -1)

1=1

_ Mo(N,s). (56)

As for Ms,(N, s), Mo(N, s) is the generating function for the moments of the log of Z(U, 0),
this time for the orthogonal ensemble, so if we write

(57)

then the parameters qj are the cumulants of the value distribution of log Z(U, OJ. These cumulants
can be obtained by taking derivatives of

13



N

logMo(N,s) = 2Nslog2 + ~)logr(N + j -1) + logr(s + j -1/2) -logr(j -1/2)
;=1

-logr(s + j + N -1», (58)

thus producing

ql = : log Mo(N, s)1
s ,=0

N

= 2Nlog2 + ~)1/1(j -1/2) - 1/1U + N -1»,
;=1

qn = :;n logMO(N,s)I..=O

N

= L (1/1(n-l)(j -1/2) - 1/1(n-l}(j + N - 1») , (59)
;=1

for n = 2,3,4, ....
The asymptotic behaviour of these cumulants for large N may be recovered using the

techniques of Section 2.1. Starting with ql and using (16) and (17),

~ (f e-e - e-(j-l/2)t 100 e-t - e-(j+N-l)t )
ql = 2N log 2 + LJ 1 -t dt - ..., - 1 -t dt + "y

. 0 -e o-e,=1

N 100 e-(j+N-l)t _ e-U-1/2)t
= 2Nlog2+ L 1- -t· dt.

;=1 0 e
(60)

At this point we interchange the sum and integral, evaluate the sum and integrate by parts, resulting
in

1
00 e-Nt 100 e-2Nt 1100

e-t/ 2

ql = 2Nlog2 - (N - 1) 1 _tdt + (2N -1) 1 _tdt - -2 1 tdto -e 0 -e o-e

1
00 e-(N+l/2)t

-(N - 1/2) 1 -t dt
o -e

= 2Nlog2 + (N -1)1/J(N) - (2N -1)t/J(2N) + ~t/J(1/2) + (N - 1/2)t/J(1/2 + N)

= -~logN-~+O(~). (61)

The second cumulant is determined similarly (with the help of (20) and (21» to be

14



= ~ (100
te-(;-1/2)C dt -lC?O te-(j+N~l)C dt)

Q2 ~ 0 1 - e-t 0 1- e-C
1=1

100 te-t/2(1 - e-Nt ) f te-Nt (1 - e-Nt )
= dt- dt

o (1 - e- t )2 0 (1 - e-t )2

100 e-t/2 1100 te-t/2 100 e-(N+l/2)t 100 te-(N+l/2)t
= 1 -t dt + -2 1 -t dt - 1 -t dt + (N - 1/2) 1 -t dto -e 0 -e 0 -e o-e

100 e-Nt 100 te-Nt 100 e-2Nt 100 te-2Nt
- 1 _t dt +(N-l) 1 _t dt + _t dt -(2N-I) 1 _tdt

o -e 0 -e 0 l-e 0 -e

= -t/J(1/2) + ~t/J(1)(1/2) + t/J(N + 1/2) + (N - 1/2)t/J(l)(N + 1/2)

+t/J(N) + (N -1)t/J(I)(N) - t/J(2N) - (2N - 1)t/J(I)(2N)

= logN + 1 +'1 + log 2 + ~{(2) + 0 (~). (62)

Finally, all the higher cumulants converge asymptotically to a constant,

100 tn-le-t/2 1 - e-Nt 100 tn-Ie-Nt 1 - e-Nt
lim (_I)n' dt - (_I)n dt
N~oo 0 1 - e-t 1 - e-t 0 1 - e-t 1 - e-t

roo t"-1 -t/2
= (_I)n 10 (1 _ :_t)2dt. (63)

Evaluating the integral in (63) by integrating by parts and then rewriting it as a pair of polygamma
functions,

lim qn = -(n - I)t/J(n-2) (-1/2) + !t/J(n-l) (-1/2)
N~oo 2

= (-I)n(n -I)l [(2n- 1 -1)C(n -1) + ~(2n -1)C(n)] . (64)

It is thus clear from (57) and the asymptotic form of the cumulants that the leading order
coefficient of the moments of Z(U, 0) is

~ ( ) r Mo(N,s)
JO s - N~ N,2/2-,/2

= eXP[-~s+(I+'1+Iog2+~{(2») s;
+~ (-1)"(2"-1 - I)(n - I) + ~(-I)"(2" - I)«n») ~ ] . (65)

Examining the product form of Mo(N, 8) we see that the coefficient is expected to have
poles of order k at s = -(2k - 1)/2, for k = 1,2,3.... Using (29) and (30), we see that a
combination with the correct poles is (for lsi < 1/2)
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1 1 1
logG(1 + s) - 210gG(1 + 2s) + 21ogr(1 +28) - 2log r(1 + s) (66)

=_2 + (1 + 'Y + ~(2») 8

2
+f: (_1)n(2n- 1 - l)«n _ 1) + !(_1)n(2n -1)«n») sn

2 2 2 n=3 2 n'

and comparing with (65) we thus find that

t (s) = 242/ 2 X G(1 +8)yl'{1 + 28)
o ..jG(1 + 2s)r{1 + S)'

for lsi < 1/2, and hence by analytic continuation in the rest of the complex plane.
This leading order coefficient reduces for integer moments, again using (28), to

(67)

lo(n)
2 (TIi=1 r(j») ..jr(1 + 2n)= 2n /2...J.....;===;::::=:::::::::====-

J(TI~1 r(j»r(1 +n)

= 2n2/2 (TIi=IU -1)1) y'(2n)I
";22ft 232n- 3 ... {2n - 2)2(2n -1)nl

= 2n2/2 (TIi=1(j - I)!) v'2r'fiiy'(2n - 1)l!
2"-14,,-2 ... (2n - 2)..j32R- 352R-& ... {2n -1)n!

= 2n2/2 (TIi=l(j -1)1) n
2Ej;Uln-12n-2 {n -1)";32ft 452ft 6 ... {2n - 3)2

= 2n2/2 1"-12"-2 (n - 2)2{n _1)2"/2
2,,(n-l)/23,,-25"-3 {2n - 3)1"-12"-2 ... (n -1)

= 2n (11 (2j _ I)!!) -1

,=1
(68)

This result was also obtained independently in [2].
Once more, we can examine the value distribution of Z(U,O) and its logarithm. The value

distribution of log Z(U, 0)/ log N is

(6(% -10gZ(U,0)/logN»so(2N)

= 2
1 roo e-ill:tt:Mo(N,iy/logN)dy (69)
71' 1-00

= 2~1:exp [-iYX + ( -~logN+ 0(1») iy/logN - (logN + 0(1»2(1~2N)2

-i(O(I» 31{I::N)3 +... ] dy,

yielding the limiting distribution
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1100
° °/2lim (6(x -logZ(U,O)/logN»so(2N) = - e-ayz-ay dy

N-+00 211' -00

= 6(x + 1/2). (70)

(71)

This is a delta distribution as in the symplectic case, but this time centred at x =-1/2.
Keeping the '112 term in the exponent in the integral above leads to the central limit theorem:

lim (& (x + .!I!..... _ log Z(U, 0»)) = ITexp 0(_x2
) •

N-+~ .fiji .fiji SO(2N) V2i 2

The value distribution of Z(U, 0) $ is similarly straightforward to compute. We see that

(6(x - Z(U,0)rotN»SO(2N) = -2
1 roo x-ir/Mo(N,iy/logN)dy, (72)
lrX 1-00

and so

lim (6(x _ Z(U,0)lo;N»SO(2N) = _1_ roo e-i r/logze-iy/2dyN-+oo 21rx1_00

= !&(log x + 1/2).
x

We also examine the distribution simply of Z(U, 0), Po(N, x). As

Po(N,x) = -2
1 roo x-i!l~fo(N,iy)dy,
lrX 1-00

we can make the approximation

(73)

(74)

(75)

valid as N -+ 00 when x is fixed (and, like (42), expected to be a good approximation when
logx » -logN and N is large). The result (i5) is plotted in Figure 2 for N = 6 and N =42
along with the numerically calculated exact distribution, from (74).

Unlike the symplectic case (and unlike the approximation (75», Po(N,x) diverges as x -+ 0.
This can be seen by considering the poles of the integrand, which occur at i/2, 3i/2, 5i/2, .... Once
again it is the lowest pole, the simple one at i/2, that dominates the integral as x -+ 0. In this case
we find that

in that limit.

-1/2 -N 1 n'" f(N +j - l)f(j)
Po(N,x) - x 2 r(N) j=1 r(j - 1/2)r(j + N - 3/2)'
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Figure 2: Distribution of the values of Z(U, 0) for matrices in the group SO(2N), with a) N =6
and b) N =42. The solid curve is the exact distribution (74) and the dashed curve is the large N
approximation in (75).

3.2 L-functions with Orthogonal Symmetry

We now turn our attention to families of L-functions with a symmetry governed by an ensemble
of orthogonal matrices. L-functions of this type fall into two categories, even and odd, which are
related to the ensembles SO(2N) and SO(2N + 1) respectively. Of the L-functions comprising
an orthogonal family, approximately one half will have even symmetry, and the other half odd
symmetry, these latter vanishing at 8 = 1/2.

Examples of such families are given in [6]. Referring to (I), in the orthogonal case V(z) = z
and B(k) = !k(k - 1). As in the symplectic case, the first few of the coefficients 9" with integer
coefficients have been calculated. The known values are 91 = I, 92 = 2, 93 = ~ and it is conjectured
that 94 = 27 [6].

With N taking the place of log(QA), we conjecture this time that

(77)L
1 E:F

c(J) $ Q

The right hand side is divided by two because the random matrix average was just over SO(2N),
whereas the sum over central values of the L-functions contains an equal number of functions
contributing zero to the average; namely the L-functions with odd symmetry about s = 1/2. Once
again, we expect the relation (46) to follow from equating the density of zeros of the L-functions
and the density of eigenphases of the matrices.

Having posed the conjecture (77), we check it against the known values of 9". It is clear
that the first four coefficients 10(1) = 2, 10(2) =4, 10(3) = I and 10(4) = 1: satisfy conjecture
(77); that is 91c/r(1 + lk(k -1» = lo(k)/2, for k = 1,2,3,4.

As for the symplectic case, we can examine what (77) implies about the value distributions
of L-functions and their logarithms. Since the L-functions with odd symmetry are zero at 8 = 1/2,
we now restrict ourselves to averages over the orthogonal L-functions with even symmetry. These
are expected to satisfy (77) without the factor 1/2 on the right hand side.
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The value distribution of logL, (!) / log log QA for L-functions with even symmetry (defined
by averaging as in (77)) is expected to be given, for large Q, and with the identification (46), by

Vo(x) = 2
1 100

e-iZ'a(is/logN)Mo(N,is/logN)ds,
w -00

(78)

and following the argument laid out for the symplectic case, this converges to 6(x+l/2) as N -+ 00.

We can once again state a conjectural central limit theorem, this time for averages over a
family :F of L-functions with c(J) ~ Q governed by the symmetry SO(2N):

lim (6 (x + J!... _10gL, (!)))
Q-+oo .;q;,..ji;i

F

= lim 1. roo a ( iy ) e-i7lZ-i7lql/v'fiei1Jql/.fii2-1J2/2+q3(i!l)3/(q~/23!)+···dy
.v-+00 2w J-00 ...;q:;.

= ~exp ( _ x;), (79)

where ql and lf2 are related to (61) and (62), respectively, via (46).
For the value distribution of L,(!) itself, which the conjecture suggests for large Q is

Wo(x) =-2
1 JOO x-i'a(is)Mo(N,is)ds,
wx -00

we expect that near x = 0,

• -1/2 -N 1 lIN r(N + j - l)r(j)
Wo(x) '" x a(-1/2)2 r(N) j=1 r(j -1/2)r(j + N - 3/2) j

(SO)

(81)

the contribution to the integral (80) from the simple pole at s = i/2. For L-functions with even
symmetry from an orthogonal family for which a(-1/2) :F 0, this analysis therefore suggests that
the likelihood that the central value vanishes is integrably singular, and that the probability of a
value in the range (0, x) vanishes as x 1/ 2 when x -+ O.
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