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1. Introduction

Our aim here is to characterize energy-level fluctuations in quantum

systems whose classical counterparts are mixed, that is, neither

completely integrable nor completely chaotic. Previous work (Berry and

Robnik, 1984) indicates that the short-range fluctuations can be usefully

approximated by a superposition of the Poisson and random-matrix

spectral statistics that respectively describe integrable and chaotic

systems (Berry, 1983, Bohigas et ai, 1984, Bohigas and Giannoni, 1984,

Berry, 1987). Here we will argue that there is a complementary

description, more fundamentally associated with the mixed regime.

The new description is associated with bifurcations, where

combinations of stable and unstable orbits collide and transform into

others, or annihilate, as a parameter (for example energy) varies - it is the

ubiquity of bifurcations, after all, that characterizes mixed systems. The

main result will be the prediction that the spectral moments - describing

the fluctuations in the distribution of energy levels as explained below ­

are dominated by a competition among the different sorts of bifurcation.

Bifurcations are singularities of the dynamics, and the statistics to be

calculated here are a new example of the wider class of 'singularity­

dominated strong fluctuations'. This old but still-unfamiliar idea is that

some variables exhibit wild (non-gaussian) fluctuations, with very large
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values described by scaling laws and associated with particular geometric

singularities. For a review, see (Berry, 2000) (but note that some of the

exponents in section 4 of this publication are wrong, and superseded by

the present paper). The fluctuations most closely analogous to those we

consider here are the intensity variations of twinkling starlight, where the

short-wave singularities are caustics, and the intensity moments depend

on a competition (Berry, 1977) among catastrophes (universality classes

of caustic). Although the formal analogy between spectral fluctuations

and light caustics is close, orbit bifurcations are classified differently, and

in their technical aspects, and their results, the two theories diverge.

Like all statistics related to chaology, those described here emerge

semiclassically, that is in the limit of vanishing Planck's constant h.

Consider a set of levels {£1(h), £2 (h), ... ,£ j (Ii), ••.}. This spectrum can

be characterized by the counting function, or spectral staircase:

00

tN(E,h) = ~ a(E-Ej(h»),
]=1

(1)

where e denotes the unit step. As usual, we separate fJ{into its smooth

and fluctuating parts:

(2)

fJ{sm is given by the Weyl rule plus It-corrections (Baltes and Hilf, 1976).
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We will concentrate on the semiclassical size of the spectral

fluctuations tN;., as embodied in the spectral moments

(3)

Here (...) denotes a local energy average for an individual hamiltonian.

However, central to our calculation will be replacement of the energy

average by averages over parameters for families of hamiltonians

including the given one. This implied ergodicity is implicit in many

semiclassical arguments (for example, it leads directly to the short-range

level repulsion for different classes of system (Berry, 1983». The main

result will be that

constant .
Mm(1i) - v (up to loganthms) as 11~ 0,

11 m
(4)

where vm are the 'twinkling exponents': universal numbers that we will

determine by studying the hierarchy of bifurcations. Each exponent can

be determined as the slope on a log-log plot, that is

r dlog{Mm(ll)}
h~ cHog{1/1l} =vm ·

(5)

(6)

Our calculations will be for systems with two freedoms. For these, a

strict upper bound v".s4m follows from the Weyl rule

'1f - '1f8m - constant /1l2, implying

1l2'}{ fl ~ 0 as 1l~ O.
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2. Semiclassical theory

To see the importance of bifurcations, we frrst recall the trace formulas,

in which tN;.(E) can be represented semiclassically as a sum over periodic

orbits. In the generic case, where the orbits are isolated, the sum is over

primitive periodic orbits p with energy E, and their repetitions r

(Gutzwiller, 1971, Balian and Bloch, 1972):

1 00 sin{S (E) I 1'1 - II }
'}{fl (£,1'1):::: - '1: '1: p,r ""p,r .

n p r=1 r de{[Mp(E)r -1)
(7)

Here Sp,r is the action of the orbit, Mp is the monodromy matrix describing

the linearised return map on the Poincare section, and J.lp,r is the Maslov

index (which will play no further part our reasoning).

In the integrable case, for two freedoms, with hamiltonian H(I)

involving action variables I={Il,I2}, the sum is over resonant tori

characterized by their winding numbers W={W1,W2}, and the trace

formula is (Berry and Tabor, 1977)

(8)
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Here Iw(E) are the actions of resonant tori, where the frequencies CD are

commensurate, and K is the curvature of the energy contour H(I)=£ in 1

space.

When these formulas apply, there are no strong fluctuations and

the estimation of tN'n is fairly simple. For the chaotic case (7), the

prefactor is of order hO; the sum diverges, but can be regularized by

truncation at orbits with period equal to the Heisenberg time h/(mean

level spacing), which, together with the exponential proliferation of orbits

with increasing period, leads to

r-rfll- constant x ~log(I/1i),

and moments (5) with all twinkling exponents vm=O. For the two­

dimensional integrable case (8), where the sum converges,

r-rfll- constant x 1i-1/2 ,

and (3) and (5) give vm=m.

(9)

(10)

Here we are interested incases when the trace formulas fail. This

happens at bifurcations of periodic orbits. In (7), bifurcations of isolated

orbits correspond to a unit eigenvalue of the monodromy matrix, so

det(M-I) vanishes, and the terms representing those orbits diverge. In (8)

bifurcations of tori correspond to coalescence of parallel normals to the

energy surface, so that K vanishes and the terms representing those orbits

diverge. The formulas fail, but it is clear that bifurcations lead to large
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values of ?fa. How large? This has been studied by several authors

(Ozono de Almeida and Hannay, 1987, Tomsovic et al., 1995, Ullmo et

al., 1996, Sieber, 1996, Schomerus and Sieber, 1997, Schomerus, 1998,

Sieber and Schomerus, 1998), who have found corrected versions of the

trace formula that incorporate the bifurcations properly, with the result

that ?fa does not diverge but rises to values that increase as I1~O. We

will extend these results to estimate the moments M".(11) and hence the

twinkling exponents v"..

Near bifurcations, the trace formulas (7) and (8) must be replaced

by the 'diffraction integrals' for which they are the stationary-phase

approximations. Before writing these, we note that, for two freedoms,

periodic orbits are fixed points of the map determined by successive

intersections of the Poincare section with coordinates q, p. In terms of

the generating function ;, the map can be specified as

Thus, periodic orbits are critical points of the reduced generating function

(henceforth called the generator)

~(q',p) = ;(q',p) - q'p

{aq~(q,p)= ap~(q,p) = o} H {q' = q,p' = p}.
(12)
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To write the diffraction integral describing semiclassical spectral

fluctuations, we need the generator~, for the r-times-iterated Poincare

map. (~,(q, p; E) can be regarded as an effective hamiltonian describing

the motion between r intersections of orbits with the Poincare section.)

Up to irrelevant factors, the fluctuations are (Ozorio de Almeida

and Hannay, 1987, Sieber, 1996)

00

t]{fl (E) =:: '1: '1ffl,r (E),
r=1

'1ffl,,(E) = Im~Ifdqdpexp{~4>,(q, p;E)}

(13)

Provided the sum over r converges, this semiclassical theory implies the

bound vmS2m, sharper than the strict bound vmS4m obtained at the end of

section 1.

Periodic orbits correspond to stationary values of the phases in

these integrals. If the stationary points are isolated, the stationary-phase

approximation reproduces (7). If the system is integrable, tP depends not

on q and p separately but on a combination (action variable) such as

t/+p2, and is stationary on lines, corresponding to resonant tori; then

stationary-phase reproduces (8). At bifurcations, where isolated periodic

orbits or resonant tori coalesce, these approximations fail. For different

sorts of bifurcation, the patterns of coalescence are different, and '1fn can

be described locally (Ozorio de Almeida and Hannay, 1987) by replacing
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~ by an appropriate normal form (the validity of the description can be

extended by approximating the integrals (13) by the technique of uniform

approximation (Sieber, 1996, Schomerus and Sieber, 1997, Sieber and

Schomerus, 1998), but that is not required for our purposes).

3. Normal forms and scaling

We envisage that for each bifurcation the local generator for each

repetition number r depends on parameters x={xn} (1Sng:') in addition to

q and p; one of these parameters is the energy E, and K is the

codimension of the singularity. The parameters describe the unfolding of

the bifurcation, that is, the ways in which the degenerate periodic orbit

can split into combinations of nondegenerate orbits. Reflecting this, we

denote the normal forms for the bifurcations by

(14)

and defme the associated canonical integrals

The strategy now is to simplify the h dependence of these integrals in

a way that enables the averages in the moments (3) to be estimated as

integrals over the parameters x. This will be achieved by a two-stage

process: rescaling the integration variables q and p to remove the lilt
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factor from the dominant term (germ) of the generator in the exponent of

(15), and then applying compensating rescaling of the parameters x. This

will lead to

The exponent f3 describes the semiclassical strength of the spectral

fluctuations at the bifurcation. The exponents (j describe the scale of the

interference fringes associated with nondegenerate periodic orbits that

appear in the different unfolding directions xn• We will also need the

associated exponent

K
r r,K = ~ (jn,r,K '

n=l

describing the scaling of the K-dimensional x space hypervolume

associated with interference near the bifurcation.

(17)

Armed with the scaling law (16), we can estimate the contribution

of the bifurcation T, K to the ensemble average for the mth moment (3).

This is

Mm,r,K(h) == BfdKxlJ{fl,r,K(X,h)2m

= (2m/_ )JdKy ['1f fl,r,K(y,I)]2m,
Ii r,1r. Yr,K

where B is a normalization constant.

(18)
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With the 1; dependence thus extracted, these contributions can now

be compared for the different bifurcations. The dominant contribution(s)

will come from the bifurcation(s) with the strongest 1; dependence,

leading to the fluctuation moment scaling law (4) and (5) as the result of

a competition among bifurcations, resulting in the twinkling exponents

Vm =max(2rnf3r K- Yr K)'(r,K) , ,
(19)

Here we will consider only the fully generic situation where the dynamics

is such that all bifurcations occur in the neighbourhood of the system

under consideration. Then the competition in (19) is unrestricted. If for

some reason (e.g. symmetry) some classes of bifurcation are forbidden,

the competition must be appropriately restricted, and the resulting

exponents will be different. Analogous restricted competitions have been

explored in the optical context (Walker et al., 1983) in the analysis of an

experiment to measure twinkling exponents.

To carry out this program, we need the normal forms for the

bifurcations labelled r, K. For r=1, these are the elementary catastrophe

polynomials representing the different ways that critical points of smooth

functions can coalesce (Poston and Stewart, 1978, Arnold, 1973, Arnold,

1974, Arnold, 1975), and the exponents in the scaling law (16) and (17)

have already been calculated (Berry, 1977). This is analogous to the

optical case, where the appropriate diffraction integral is the first term

r=1 of the sum (13). For the cuspoid catastrophes, where one variable (P,
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say) is quadratic - in the language of singularity theory, these are

catastrophes of corank 1 - the normal forms are

(20)

(any term of order cf+l can be eliminated by shifting the origin) and the

exponents are

I3cuspoids _ K ucuspoids =1- n ,
I,K - 2(K + 2) '",I,K K + 2

cuspoids _ K(K + 3)
r I,K - 2(K +2)

We do not give the more complicated expressions corresponding to

catastrophes of corank 2, where the generators involve both q and p

nontrivially.

When r>1, however, the normal forms are not the elementary

(21)

catastrophes, because the period-r generator must have the special

property of possessing an rth root, namely the generator for the primitive

map. Some information is available for bifurcations of period-r orbits

with K=1 (Meyer, 1970, Arnold, 1978, Meyer, 1986, Ozorio de Almeida,

1988) and K=2 (Schomerus, 1998), but this is not sufficient for our

purposes.

To get the results we need, we start by transforming to polar

coordinates in phase space, that is



q =.[i72cos;, p =.[i72sin;,

and noting that the generators for period-r bifurcations must have

qr.dependence with period 2rdr, so the tP-dependent terms of lowest

13

(22)

degree in I must involve cos(r;) and sin(r;). Moreover, the generators

must be smooth functions of q and p at the origin, which excludes terms

fcos(r;) with s<rl2. This leads to the surprising conclusion that if

r~2K+2 the ct>-dependent terms are all of higher order than the unfolding

terms containing the parameters x. Thus we can write

<l»r,K(q,p;X) = IK+1+ ~ xnIn (r ~ 2K +2).
n=l

(23)

(The resemblance to the cuspoid generators (20) is misleading: it is not

legitimate to eliminate the highest unfolding term xKIKby shifting the

origin of I, since this would violate the condition that I must be non­

negative - alternatively stated, the origin of I is privileged, unlike the

origin of q in (20).)

Reverting to q and p, and scaling the integrals (15), we get, for the

exponents in (16) and (17),

K n
R. K =-- U K =1--- Yr,K =.1K (r~2K+2). (24)Pr, K + I'n,r, K +1' 2"

Note that these exponents do not involve r.
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In (23) we are neglecting the ;-dependent terms, but we are not

asserting their absence - of course these terms must be present, to

describe the 'island necklaces' of stable and unstable orbits into which

the degenerate orbits bifurcate. But because the neglected terms are of

higher order (reflecting the fact that the islands are very thin close to the

bifurcation) the parameters that would multiply them acquire negative

exponents (1 under scaling, and so disappear semic1assically from the

diffraction integrals. Alternatively stated in the language of critical

phenomena, these parameters are irrelevant variables. As a simple

illustrative example, consider K=l, r=5 (i.e. r>2K+2). Then the generator,

including the leading q, -dependent term, is

4>S,1 (q,p;x) =]2 + Xl] + Xs]SI2 cos(5q,)

=4{p2 +q2)2 +2Xl{p2 +q2)+2S/2xsRe(q+ip)S.
(25)

Scaling Ii from the exponent in (15) gives fJ= 112, and incorporating this

into the parameter XI gives (11=112. However, applying the same scaling

to the 'necklace' parameter x, gives (1,=-114, which is negative and

therefore irrelevant. (If r=2K+2, the leading necklace parameter gives the

marginal exponent 0=0, which does not affect any of our subsequent

arguments.)
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We have not determined the generators for l<r<2K+2, but will

soon argue that these bifurcations cannot contribute to the twinkling

exponents.

4. Battle of the bifurcations

Suppose for the moment that all relevant bifurcations have r~K+2, so

that (23) applies. Then the twinkling exponents are determined by the

competition (19), where the entrants are the (j and yvalues in (24), that is

v =max(2mK -tK).
m K K+l

The results are given in table 1.

(26)

m 2 3 4 5 6 7 8 9 10 11 12

vm i 3 ! 6 Ja ~ f ~ Bt I¥ ~5 5 2
dominating K 2 2,3 3 3,4 4 4 5 5 5 6 6

Table 1. Twinkling exponents Vm' and the codimension(s) K of the
dominating bifurcation(s), for generic two - freedom systems

Now we will argue that these results are unaffected by allowing the

bifurcations with r<2K+2 to enter the competition. This requires the

twinkling exponents associated with this class of singularities to be

smaller than those in table 1. The generators for r<2K+2 will contain

(/rdependent unfolding terms, and can be written in the form
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<l>r,K(q,p;X) =/'(K)+1 + '<;') xn/ n + ~ (terms involving ,), (27)
n=l n=I(K)+l

where 1(K)<K and all the terms involving tP are of lower degree than t(/()+l.

For each such generator, there is a partner in the class with r~2K+2, of

the form (23), with codimension K' = l(K). This partner has the same

germ 1(10+1 as (27), and therefore the same exponent P, but its r exponent

is smaller, because of the additional terms in (27). Therefore the partner

with r~2K+2 has the larger twinkling exponent 2mfJ-r, and so dominates

in the competition.

This general argument can be verified directly for the special case

of the bifurcations with r=1, namely the elementary catastrophes. For the

cuspoids (corank 1), with exponents (21), it is easy to calculate the results

of the competition (19); this has already been done in the optical context

(Berry, 1977), and all the exponents are indeed smaller than those in table

1. The same is true for the corank 2 catastrophes, even though the

exponents are all larger than for corank 1 (for corank 2 the classification

is incomplete, but the conclusion holds for all classes of singularity that

have been examined).

Thus the entries in table 1 are confirmed as the universal twinkling

exponents associated with bifurcations of generic systems with 2

freedoms.
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5. Discussion

We have argued that to leading order in l/h, the spectral fluctuation

moments Mm diverge according to power-laws, with exponents - those

winning the competition (19) - given in table 1. This goes far beyond the

already-established fact that bifurcations contribute to the spectral

statistics when regular and chaotic orbits coexist (Berry et al., 1998),

because these new semiclassical fluctuation phenomena involve many

competing bifurcations, not just one.

Two observations may assist the eventual observation of the

universal fluctuations we are predicting. The first relates to our

concentration on the average effect of large spectral fluctuations

associated with individual bifurcations of periodic orbits of finite length,

while ignoring possible collective effects of long orbits. But this

collective effect seems small (equation 9 and the remark following it), so

we expect the associated fluctuations to contribute only a weak

background that will not mask the bifurcation fluctuations we are

interested in.

The second observation is that although all the twinkling exponents

in table 1 satisfy the inequality vm<2m. all the exponents with m>3

exceed the value vm=m for integrable systems, rendering unnecessary the

problematic subtraction of possible contributions to the fluctuations from
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the (nonresonant) KAM tori that persist in the systems we have been

studying here.

Nevertheless, it is difficult to make quantitative predictions of the

circumstances in which the twinkling exponents might be seen in

computer or laboratory experiments. To illustrate this, suppose that the

dominant bifurcation, with exponent vm' has an associated coefficient Am'

and the runner-up in the competition has exponent vlm<vmand coefficient

A1m' Then the two leading terms of the moment asymptotics will be

(28)

If it should happen that Am<<Alm, and vmexceeds Vim only slightly,

experiments will indicate the wrong exponents Vim unless Ii is less than

the crossover value

(29)

which in the circumstances indicated is very small.

Our reasoning hints at fabulous complexity in the full semiclassical

asymptotics of the moments: many different bifurcations contribute

according to (18), and these terms are merely the leading orders in

(almost certainly divergent) It-expansions, because the normal forms of

the generators give only local approximations to the diffraction integrals
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(13), which themselves are lowest-order semiclassical approximations.

These observations lead to the expectation that

A - )Mm (1i) = ~ ( m,r,K ) 1+ ~ a s,m,r,K1i.
s

r,K 1i. 2m!3r,K-Yr,K s=O

(where the A and a coefficients might involve logarithms of 11h).

(30)

We know nothing about the leading-order bifurcation coefficients

Am,r.K or the corrections as,m.r.K' These coefficients are not universal, so

calculating them would require detailed knowledge of the individual

bifurcations in the particular dynamical system being considered. Even

for the less complicated case of optical twinkling, the A coefficients have

been calculated only for the simplest situation: cuspoids in diffraction

from a corrugated phase-changing screen (Hannay, 1982, Hannay, 1983).
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