

A Pragm atic Im ple m e ntation
of e -Transactions

Svend FrØlund, Rach id Gue rraoui1
Softw are Te ch nology Laboratory
H P Laboratorie s Palo Alto
H PL-2000-9 7
July 25th , 2000*

re liability,
fault-tole rance ,
transaction
proce ssing,
e xactly-once

Th re e -tie r applications h ave n ice prope rtie s, w h ich m ak e th e m
scalable and m anage able : clie n ts are th in and se rve rs are
state le ss. H ow e ve r, it is ch alle n ging to im ple m e n t, or e ve n
de fine , end -to-end re liability for such applications.
Furth e rm ore , it is e spe cially h ard to m ak e th e se applications
re liable w ith out violating th e ir n ice prope rtie s.

In our pre vious w ork , w e h ave ide n tifie d e -transactions as a
de sirable and practical end -to-end re liability guarante e for
th re e -tie r applications. Esse n tially, an e -transaction guarante e s
th at th e se rve r-side transactional side -e ffe ct h appen s exactly-
once , and th at th e clie n t re ce ive s th e re sult of th e se rve r-side
com putation . Th us, e -transactions m ask se rve r and database
failure s re lative to th e clie n t. W e pre se n t in th is pape r a
pragm atic im ple m e n tation of e -transactions th at m aintains th e
n ice prope rtie s of th re e -tie r applications in th e spe cial, but ve ry
com m on, case of a single back end database .

1 Sw iss Fed e ral Institute of Te ch nology, Lausanne , Sw itz e rland CH 1015
* Inte rnal Accession Date Only Approved for Exte rnal Publication
 Copyrigh t H e w le tt-Pack ard Com pany 2000

A Pragmatic Implementation of e-Transactions�

Svend Fr�lund1 Rachid Guerraoui2

1 Hewlett-Packard Laboratories, Palo Alto, CA 94304
2 Swiss Federal Institute of Technology, Lausanne, CH 1015

Abstract

Three-tier applications have nice properties, which

make them scalable and manageable: clients are thin

and servers are stateless. However, it is challenging

to implement, or even de�ne, end-to-end reliability for

such applications. Furthermore, it is especially hard to

make these applications reliable without violating their

nice properties.

In our previous work, we have identi�ed e-trans-

actions as a desirable and practical end-to-end reliabil-

ity guarantee for three-tier applications. Essentially,

an e-transaction guarantees that the server-side trans-

actional side-e�ect happens exactly-once, and that the

client receives the result of the server-side computa-

tion. Thus, e-transactions mask server and database

failures relative to the client. We present in this pa-

per a pragmatic implementation of e-transactions that

maintains the nice properties of three-tier applications

in the special, but very common, case of a single back-

end database.

1 Introduction

It is very common for modern applications to fol-

low a pure three-tier structure: thin clients, stateless

application servers, and a single back-end database.

The database contains all the application's state. Ap-

plication servers update this state within transactions.

An application server starts a transaction in response

to a client request, and returns the result of execut-

ing the transaction to the client. In other words, the

client is not part of the transaction, it only initiates it

(indirectly).

One reason for the popularity of the pure three-

tier application structure is that it lends itself well

�This is an extended and modi�ed version of a paper, with

the same title, that appears at the 2000 IEEE Symposium on

Reliable Distributed Systems.

to Internet-based computing. An applet running in

a browser is a typical thin client (it is thin because

it does not access a disk). Because the client is not

part of server-side transactions, we get transactional

semantics without having transactions that span the

Internet. A web server is a typical example of a state-

less application server. It is stateless because it con-

siders individual http requests to be independent. In

particular, it does not store \conversation" state.

Although popular, three-tier applications are chal-

lenging from an end-to-end reliability perspective. For

example, an application server may crash after com-

mitting a transaction but before sending a result to

the client. When the client detects the failure, it has

no way to determine if the database was updated by

the transaction, and it has no way to obtain the result.

We refer to these issues as outcome determination and

result delivery . We distinguish between the outcome

of a transaction (commit or abort) and the result of

a transaction (the value computed by the server-side

business logic within the transaction).

Giving a precise speci�cation of the desired end-

to-end reliability guarantee is not obvious. For ex-

ample, we cannot promise the client that it will al-

ways get a result because the client itself may crash.

In [FG99], we de�ne the concept of an e-transaction

as a practical and desirable end-to-end reliability

guarantee for three-tier applications. The \e" in

e-transactions stands for exactly-once, and reects

the fact that clients want their requests to be pro-

cessed with exactly-once semantics. Moreover, with e-

transactions, clients get transactional guarantees, even

though they are not part of the \real" server-side

transaction. Roughly speaking, if a client submits a re-

quest \within" an e-transaction (and does not crash),

the client will eventually receive a reply, and this re-

ply is the result of a server-side transaction that has

committed exactly-once.

In [FG00], we present a general algorithm to im-

1

plement e-transactions in three-tier applications with

multiple back-end databases. In the protocol, applica-

tion servers depend on each other to provide termina-

tion guarantees: if an application server crashes, other

application servers terminate its transactions. Ideally,

we would like to implement e-transactions with inde-

pendent application servers that do not communicate

with each other. The middle tier would then be com-

pletely scalable and could dynamically scale the num-

ber of application servers up and down to meet the

current demand.

In this paper, we present an e-transaction proto-

col that allows application servers to be completely

independent. The protocol provides e-transaction se-

mantics for the very common case where application

servers only manipulate a single database. Because the

system only contains a single database, we can use a

one-phase commit protocol. In contrast, the protocol

in [FG00] uses a two-phase commit protocol, even if

there is only a single database. Thus, the protocol we

present in this paper is not a special case of the proto-

col in [FG00]: it is a fundamentally di�erent protocol

that is inherently more scalable.

The key idea behind our protocol is for the server-

side transactions to leave a persistent trace in the

database. This trace contains enough information

to reproduce lost replies and lost outcomes after

crashes of the database or the middle-tier application

servers. The client can access this recovery informa-

tion through the application servers. We discuss how

to garbage collect the trace information, and we as-

sess the performance penalty incurred by creating the

trace.

This paper proceeds as follows. We �rst de�ne what

we mean by a three-tier application in Section 2. We

then de�ne e-transactions as an end-to-end reliabil-

ity guarantee in this application model. We give the

de�nition of e-transactions in Section 3. We then in-

troduce a protocol to implement e-transactions in the

single database case in Section 4. We discuss the prac-

ticality of our protocol, including its performance in

Section 5. Finally, we contrast our work with related

approaches in Section 6.

2 A Three-Tier Model

We consider a distributed system as a �nite set of

processes that communicate by message passing. Pro-

cesses fail by crashing. That is, they execute their

prescribed algorithm until they crash|they do not be-

have maliciously when they crash.

Client processes have an operation, called issue,

which they invoke with a request as parameter. A

request is a value in the domain Request. Clients call

the issue operation to invoke the transactional logic in

application servers, and thereby update the database

and compute a result. A result is a value in the domain

Result. When a client invokes the issue operation, we

say that it issues a request, and if issue returns a re-

sult, we say that the client delivers the returned result.

A request models information provided by the end

user, such as travel destination and dates. The re-

sult represents information computed by the business

logic, such as reservation number and hotel name. The

result must typically be returned to the user.

After being issued by a client, a request is processed

without further input from the client. Furthermore,

the client issues requests one at a time and, although

issued by the same client, two consecutive requests are

considered to be unrelated. Clients cannot communi-

cate directly with databases, only through application

servers.

Application server processes interact with a single

database process through transactions. We introduce

a primitive called compute to model the database ma-

nipulations performed by the application server busi-

ness logic. The compute primitive takes two parame-

ters, a unique identi�er and a request, and returns a

result value. The compute primitive starts a database

transaction, and uses the identi�er as transaction iden-

ti�er. The request contains the input values for the

SQL statements executed by the compute primitive.

The result value returned by compute captures the

output from executing the transactional logic. The

result value must be communicated back to the client.

If an error condition occurs, the compute primitive re-

turns a special result value, nil. For example, it may be

impossible to start a transaction because the database

is down, or the SQL statements may fail. In fact, the

compute primitive starts at most one transaction. The

compute primitive is non-deterministic: it may return

di�erent results if we invoke it multiple times with the

same request value.

If no error conditions occur, the compute primitive

will create a database transaction that will be pend-

ing when the primitive returns. That is, the compute

primitive only creates transactions, it does not termi-

nate them. In general, the database can terminate a

transaction in one of two ways: abort or commit. If a

transaction commits, its changes are made permanent.

That is, the manipulations performed by the com-

pute primitive on behalf of the transaction are made

durable and can no longer be undone. If the transac-

tion aborts, its changes are discarded, and the e�ects

of executing compute are cancelled. If the database

2

terminates a transaction, we say that it decides on

that transaction. The database can only decide once

for each transaction.

To allow application servers to inuence the data-

base decision, we introduce a database primitive called

decide. Application servers can then ask the database

to invoke this primitive (using message passing). The

decide primitive takes a decision (commit or abort)

and a transaction identi�er. The database may de-

cide on the transaction when we invoke the decide

primitive. However, there is no guarantee that the

database is able to make the requested decision. For

example, the database may already have decided on

the transaction. If the decide primitive returns yes, the

database made the requested decision; if the primitive

returns no, the database did not make the requested

decision (at least not during this invocation of the de-

cide primitive).1

3 The Exactly-Once Transaction

Problem

An e-transaction is a fault-tolerant activity that

takes a request, computes a result using the server-

side logic, updates the database, and returns the re-

sult to the client. As the name e-transaction indicates,

the end-to-end activity appears to happen only once,

even if we have to retry parts of it due to failures. For

example, we may have to re-execute the server-side

transaction a number of times, but only one of these

transactions actually commits. Moreover, the result

returned to the client is the result of the transaction

that actually commits.

To precisely capture the properties of an e-trans-

action, we have formulated the e-transaction prob-

lem. We describe this problem in [FG99]. In that

paper, we consider e-transactions that update multiple

databases. Here, we give a single-database incarnation

of the problem.

To specify the e-transaction problem, we introduce

some terminology related to our model. Since the

compute primitive starts a single transaction to com-

pute a result, we say that a result has a corresponding

transaction|the transaction within which the result

was computed. Furthermore, a given request can give

1The behavior of decide closely matches the semantics of

the XA [x/O91] interface. This is a standard interface de�ned

by the X/open consortium, and is supported by most commer-

cial database systems. To simplify the presentation, we do not

model the \prepare" operation in XA. Since we use a one-phase

commit protocol, we do not need this functionality. Moreover,

we can specify the single-database incarnation of e-transactions

without reference to the prepare operation.

rise to one or more transactions (depending on how

many times we call compute for that request). We say

that the database commits a transaction for the re-

quest if it commits one of the transactions arisen from

the request.

We de�ne the e-Transaction problem with three

categories of properties: termination, agreement , and

validity . Termination captures liveness guarantees by

preventing blocking situations. Agreement captures

safety guarantees by ensuring the consistency of the

client and the databases. Validity restricts the space

of possible results to exclude meaningless ones.

� Termination

(T.1) If a client issues a request, then unless it

crashes, it eventually delivers a result;

(T.2) If an application server computes a result,

then the database commits or aborts the

corresponding transaction.

� Agreement

(A.1) No result is delivered by the client unless

the database commits the corresponding

transaction;

(A.2) The database does not commit more than

a single transaction for each request.

� Validity

(V) If the client delivers a result, then the result

must have been computed by an applica-

tion server with, as a parameter, a request

issued by the client.

Termination ensures that a client does not remain

inde�nitely blocked (T.1). Intuitively, this property

provides at-least-once request processing guarantee to

the end-user, and frees her from the burden of having

to retry requests. Termination also ensures that the

database always decides on a transaction, and thereby

releases resources held on behalf of that transaction

(T.2). Agreement ensures the consistency of the re-

sult (A.1). It also guarantees at most-once request

processing (A.2). Validity (V) excludes trivial solu-

tions to the problem where the client invents a result,

or delivers a result without having issued any request.

4 The Pragmatic Protocol

The basic idea behind our protocol is to provide

server-side recovery logic that clients can invoke if they

3

suspect that a failure may have happened during re-

quest processing. The recovery logic allows clients

to determine the outcome of in-doubt transactions.

Furthermore, the recovery logic allows clients to re-

trieve the result computed by in-doubt transactions

that have committed. Under normal circumstances,

clients will not invoke the recovery logic, and the per-

formance of transaction processing will be very close

to an unreliable system. However, the performance

will not be identical to an unreliable system. Since

we don't know up front which transactions will fail, or

be suspected to have failed, we need to store recovery

information for every transaction.

To modularize our protocol, we introduce a server-

side abstraction that captures testable transactions. A

testable transaction is one whose outcome can be re-

liably determined and whose result is reliably stored.

In addition to these recovery facets, we can also termi-

nate (commit and abort) a testable transaction. More-

over, the recovery functionality of a testable transac-

tion is highly available: one server can (start to) ter-

minate a transaction, and another server can test the

outcome and result of the transaction (independently

of the �rst server). That is, if we suspect the crash of

a server, we can fail over to another server and recover

the in-progress transactions at the �rst server under

exactly-once semantics.

With testable transactions, our e-transaction proto-

col then has two parts: a client-server retry protocol

that uses testable transactions to guarantee exactly-

once semantics, and a server-database protocol that

implements testable transactions. In the following, we

�rst outline the assumptions underlying our protocol

in Section 4.1 (we argue for the practicality of these

assumptions in Section 5.1). We then de�ne precisely

our notion of testable transactions in Section 4.2, and

outline a retry protocol that uses testable transactions

in Section 4.3. Finally, in Section 4.4, we give a proto-

col that implements testable transactions. We prove

the protocols correct in Appendix A.

4.1 Assumptions

We assume an asynchronous, distributed system

model, and make the following assumptions about the

components of the system and their communication:

� The database will eventually make a decision for

any transaction. Moreover, the database will

only commit a transaction if we invoke the de-

cide primitive with a commit decision. We as-

sume that the decide primitive is non-blocking:

if the database invokes it, and does not crash,

decide will eventually return.

� At least one application server is correct, that is,

it does not crash. The database always recovers

after a crash. At any point in time, the database

is either up or down. A crash causes a transition

from up to down, and a recovery causes a tran-

sition from down to up. There is a time after

which the database stops crashing and remains

up.

� If an application server calls compute, and does

not crash, then compute will eventually re-

turn. Moreover, there is a time after which the

database will be able to commit any transaction

started by compute.

� Channels are reliable. That is, we assume that

a message is eventually delivered unless either

the sender or receiver crashes during the trans-

mission. We also assume that channels do not

duplicate messages.

� The client has a failure detector that is eventu-

ally perfect in the sense of [CT96]. The failure

detector gives hints to the clients about server

crashes. Being eventually perfect, the failure de-

tector will eventually discover a crashed server.

Moreover, it will eventually stop falsely suspect-

ing a non-crashed server.

� If the client sends a request to start a transaction

and then sends a message to determine the out-

come of that transaction, the request message

will not start a transaction after the outcome

message has tested the outcome of the transac-

tion.

4.2 Testable Transactions

We de�ne the interface of the testable transaction

abstraction in Figure 1. The interface only contains

methods to terminate and recover transactions. The

commit method attempts to commit the transaction

with identi�er id. The method also takes a result,

and, if the transaction commits, the result can later

be retrieved through the get-outcome methods. The

get-outcome method takes the identi�er for a trans-

action. If the transaction committed, get-outcome

returns the result given to the commit method for this

transaction. If the transaction aborted, get-outcome

returns nil. Finally, the rollbackmethod attempts to

abort a transaction.

Formally speaking, a correct implementation of the

Testable-transaction abstraction must satisfy the

following properties:

4

interface Testable-transaction f
Status commit(Result res,UUID id);

void rollback(UUID id);

Result get-outcome(UUID id);

g

Figure 1: The interface of a transaction-processing

system with outcome determination

� All methods are non-blocking. That is, if an ap-

plication server invokes a method, and then does

not crash, the method must eventually return.

� If commit or rollback returns, then the decide

primitive has been executed at least once.

� If commit returns yes for a transaction, then the

database has committed that transaction.

� If get-outcome returns nil for a transaction,

then the database has not committed that trans-

action.2 If get-outcome returns a non-nil re-

sult for a transaction, then (1) the database has

committed that transaction, and (2) the result

returned by get-outcome was passed to commit

for that transaction.

In Section 4.4, we describe an implementation that

satis�es these properties.

4.3 Retry Protocol

We describe the client-server retry protocol, which

relies on the testable-transaction abstraction to

ensure safety (at-most-once). The protocol has a client

and a server part. We show the client part in Figure 2

and the server part in Figure 3.

We describe the client as an object with a single

method issue. The code in Figure 2 describes the

client-side \stub" that a client application would use

to submit requests to application servers. We say that

the client issues a request when the issue method is

invoked with a request. The retry protocol is round-

based. The client starts a round by sending a request

to a server using a Request message. A round is

over if the client receives a Result message from the

server. If instead the client suspects the server to have

crashed, the round is completed using a termination

sub-protocol. The termination protocol is embodied

in the terminate method. This method keeps send-

ing Terminate messages to servers for the incomplete

2A return value of nil does not mean that the transaction has

aborted, the transaction may still be in progress.

class Client f
Process replicas[n];

Int i := 0;

Result issue(Request req) f
Result res := nil;

while(res == nil) f
UUID id := new UUID; UUID id1;

send [Request,req,id] to replicas[i];

await (receive [Result,res,id1]

where id1 == id) or suspect(replicas[i]);

if(received [Result,res,id1] where res != nil)

return res;

res := terminate(id);

i := (i +1) mod n;

g
return res;

g

Result terminate(UUID id) f
Int k := i; Result res; UUID id1;

while(true) f
send [Terminate,id] to replicas[k];

await (receive [Outcome,res,id1]

where id1 == id) or suspect(replicas[k]);

if(received [Outcome,res,id1]) then

return res;

k := (k + 1) mod n;

g
g

g

Figure 2: The client side of the retry protocol

class Server f
Testable-transaction TT;

while(true) f
cobegin

await receive [Request,req,id] from client;

res := compute(req,id);

if(TT.commit(res,id) == yes) then

send [Result,res,id] to client;

else

send [Result,nil,id] to client;

||

await receive [Terminate,id] from client;

TT.rollback(id);

res := TT.get-outcome(id);

send [Outcome,res,id] to client;

coend;

g
g

Figure 3: The server side of the retry protocol

5

request. The server-side processing of Terminatemes-

sages is idempotent, so the client is free to concur-

rently invoke multiple servers. Eventually a server

will respond to the Terminate messages sent, and

the response contains the outcome of the in-doubt re-

quest. When the client receives an Outcome message,

it knows that the database has decided on the server-

side transaction that may have been started for the

request. Moreover, if the database decided commit,

the Outcome message contains the result of the com-

mitted transaction. In summary, a round completes

when the client either receives a Result message or

when it receives an Outcome message. In the latter

case, the client may have to start a new round if the

outcome is abort (the returned result is nil).

The server-side logic in Figure 3 relies on the

testable-transaction abstraction. The server in-

stantiates an object of this type, and uses the name

TT for the object. The server accepts two kinds of

messages: Request and Terminate. A Request mes-

sage starts a new transaction by calling compute. If

compute returns successfully (the return value is non-

nil), the server tries to commit the transaction. If the

server successfully commits the transaction it sends

the result back to the client. If not, the server sends

nil back to the client. A Terminatemessage causes ex-

ecution of the server-side termination protocol, which

ensures that the transaction in question is terminated

(by calling rollback). The termination protocol then

sends the outcome and result of the transaction back

to the client.

4.4 A Protocol for Testable Transactions

We implement testable transactions using a one-

phase commit protocol. Conventional one-phase com-

mit protocols do not provide testability. We imple-

ment testability by explicitly storing a transaction's

identi�er and result in the database within the trans-

action itself. In this way, the identi�er and result will

be permanent parts of the database if and only if the

transaction commits. We can then use the presence of

the information, and the information itself if present,

to perform outcome determination and result delivery.

To formalize this idea, we introduce two primitives,

insert and lookup. The insert primitive takes a transac-

tion identi�er and a result. The lookup primitive takes

a transaction identi�er and returns a result. They sat-

isfy the following properties:

� insert and lookup are non-blocking. If a server in-

vokes one of these primitives, and then does not

crash, then the primitive will eventually return.

class Testable-transaction f

Status commit(Result res,UUID id) f
Status stat; UUID id1; Decision val1;

insert(res,id);

repeat f
send [Decide,commit,res,id] to db;

set timer to database-timeout;

await (receive [AckDecide,stat,val1,id1]

where id1 == id and val1 == commit)

or expire(timer)

g
until received [AckDecide,stat,val1,id1])

return stat;

g

void rollback(UUID id) f
Status stat; UUID id1; Decision val1;

repeat f
send [Decide,abort,id] to db;

set timer to database-timeout;

await (receive [AckDecide,stat,val1,id1]

where id1 == id) or expire(timer)

g
until(received [AckDecide,stat,val1,id1])

g

Result get-outcome(UUID id) f
return lookup(id);

g
g

Figure 4: Implementation of the testable-trans-

action abstraction

� lookup returns non-nil for a transaction identi-

�er, if and only if the database has committed a

transaction with that identi�er.

� If lookup returns a non-nil result for a transaction

identi�er, then a server has invoked insert with

that result for that transaction identi�er.

We have implemented these primitives using SQL

statements. Essentially, the insert primitive inserts

the pair of a transaction identi�er and result into a

dedicated, user-level table. The lookup primitive then

performs a query against this table. We take these

primitives as given, and do not further describe their

implementation.

The logic of the commit method in Figure 4 invokes

the insert primitive within a transaction. Moreover,

in commit, the transaction identi�er passed to insert

is the identi�er of the transaction within which the

insertion is performed.

The rollback method tries to abort a given trans-

action. The rollback method ensures that the decide

primitive is executed at-least-once, which again guar-

6

class Database f
Decision val; UUID id;

while(true) f
Status stat;

await receive [Decide,val,id] from server;

stat := decide(val,id);

send [AckDecide,stat,val,id] to server;

g
g

Figure 5: The database part of the protocol

antees that the database has decided on the transac-

tion. The get-outcome method simply returns the

result of calling the lookup primitive for a given trans-

action.

Application servers invoke the decide primitive in

a database by sending a Decide message to the

database. We illustrate the pseudo-code for the

database in Figure 5.

5 Discussion

We discuss various pragmatic aspects of our pro-

tocol. In Section 5.1, we argue that our protocol is

based on practical assumptions. We discuss ways of

garbage collecting recovery information in Section 5.2.

Finally, we analyze the performance of our protocol in

Section 5.3.

5.1 Practicality of our Assumptions

We assume that the database eventually makes

a decision for any transaction. This assumption

closely matches the behavior of commercial, o�-the-

shelf database systems. They time out transactions so

that resources are not held forever by \orphan" trans-

actions.

To guarantee termination of the protocol|the

client will eventually get a result if it does not crash|

we make liveness assumptions about the database and

the transaction processing. We assume (1) that the

database always recovers, that (2) it eventually stops

crashing, and (3) that there is a time after which any

transaction can be committed. Assumption (1) is typ-

ically satis�ed in practice by running the database sys-

tem in a high-availability cluster. Assumption (2) re-

ects the fact that we cannot guarantee termination

for a given request unless the database eventually stays

up long enough to allow an application server to pro-

cess the request to completion. However, in an asyn-

chronous model, we cannot capture \long enough" di-

rectly in the assumption because there is no notion of

time. Assumption (3) reects the following properties

of real database systems:

� For any request, an application server will even-

tually be able to commit a transaction before

the database unilaterally decides to abort the

transaction. We can achieve this in practice by

adjusting the database timeout period to be sig-

ni�cantly longer than the time it normally takes

to process a request.

� For any request, the business logic inside of the

compute primitive will eventually start a trans-

action that runs to completion. Thus, if we re-

submit a transaction a number of times, we will

eventually avoid concurrency-control problems,

such as deadlocks, in the database.

The assumption about clients having access to a

failure detector with eventual accuracy may sound

strong, especially since the client may communicate

with servers across wide-area networks, or even the In-

ternet. However, we only rely on the accuracy of the

failure detector for liveness. That is, failure-detection

mistakes will never cause transactions to be executed

twice, it may only delay the completion of transac-

tions because non-failed transactions are aborted by

the protocol. In essence, what we assume is that the

client will eventually give the servers enough time to

execute a request.

The client may send a request message and a num-

ber of terminate messages for the same transaction.

We assume that the request message will not arrive

at a server after the terminate messages have been

processed. In practice, we can implement this timing

assumption by delaying the processing of terminate

messages on the server side. Delayed processing of

terminate messages is reasonable since they represent

the uncommon case with failures or failure suspicions.

5.2 Garbage Collection of Recovery
Information

Our protocol stores recovery information in the

database in a dedicated, user-level table. Our pro-

tocol, as described in Section 4, only creates this in-

formation, it does not delete it when it is no longer

necessary. However, as we describe in the following,

we can add such garbage-collection capabilities to our

protocol in various ways.

In essence, the recovery information is no longer

necessary when the client knows the outcome and has

the result of a server-side transaction. If the client

7

crashes, and does not recover, we may never be able

to inform the client of the outcome and result. Thus,

unless we assume that clients always recover, we can-

not rely on the client to inform the servers when it

is safe to delete recovery information. Assuming that

clients always recover is not practical with Internet-

based computing where clients may become discon-

nected for arbitrary periods of time. Thus, to be

practical, a garbage-collection algorithm has to rely

on some client-independent notion of expiration time

for recovery information.

A simple garbage-collection algorithm is to rely ex-

clusively on expiration times, and never involve the

client in the garbage-collection algorithm. We can

then have a special garbage-collection server that is-

sues SQL queries against the recovery information to

remove information that has expired. We can even re-

�ne this basic algorithm by having clients inform this

garbage-collection service when they know the out-

come and result. With these client-generated \hints"

the service may be able to remove some recovery in-

formation before it expires.

5.3 Performance

To quantify the performance of our protocol, we

built a test system that performs transaction process-

ing in a three-tier setting. The test system consists

of a synthetic client that generates workload for a

simple application server. We implement the client-

server communication with the Orbix CORBA Object

Request Broker from IONA [ION97]. The server in-

stantiates a single object that contains the business

logic. In the test system, the business logic updates a

bank account that resides in a back-end database. The

database is a standard Oracle [Ora] database manage-

ment system that runs in an HP ServiceGuard clus-

ter [Wey96].

We measure the end-to-end latency for request

processing as seen by the client. We obtain the

measurements under contention-free conditions|the

client submits request one at a time. Moreover, we ob-

tain the measurements under failure-free conditions|

we do not inject failures into the system and measure

recovery times.

We perform the experiment for three transaction-

processing protocols. The �rst is a baseline proto-

col, which does not provide exactly-once semantics.

It simply uses a normal one-phase commit protocol.

The second protocol is our one-phase commit proto-

col with outcome determination. Finally, we use a

traditional two-phase commit protocol where the ap-

plication server itself is the transaction coordinator.

protocol baseline Our protocol 2PC

start 3.4 3.5 3.5

end 3.4 3.5 3.4

commit 18.6 18.8 17.5

prepare 0 0 21.2

SQL 187.0 193.2 190.6

insert 0 9.4 0

log-start 0 0 12.5

log-outcome 0 0 12.7

other 5.0 5.1 5.1

total 217.4 233.4 266.5

reliability cost 0% +7% +23%

Figure 7: Comparing the latency of the protocols

We illustrate the three protocols, and the resulting in-

teraction patterns, in Figure 6.

In Figure 7, we summarize our performance mea-

surements. In addition to the client-side, end-to-end

latency, we also measure how much time is spent per-

forming the various tasks involved in transaction pro-

cessing. For example, we measure the elapsed time

for the various XA operations. All measurements are

elapsed time in milli seconds. The numbers in Fig-

ure 7 are averages|we also computed the 90 % con�-

dence interval for these average numbers. The width

of the 90 % con�dence interval is less than 10 % in

all cases.3 The \total" time is the end-to-end elapsed

time. The \start," \end," \prepare," and \commit"

times are the elapsed time for the XA operations. The

\SQL" category is the time spent executing the busi-

ness logic, in our case updating a bank account (a mix

of select and update in SQL). The \insert" category

is the time it takes to insert a transaction identi�er

into a dedicated user-level table in the database. In

the test system, a transaction identi�er is 32 byte text

string. In the experiment, we only insert the trans-

action identi�er, not the result. We expect that the

cost of also inserting a result will be a linear function

of the size of the result value (when marshaled into

a byte stream). The \log-start" and \log-outcome"

are the operations performed by the transaction co-

ordinator to store its recovery information. We use a

presumed nothing protocol for two-phase commit, and

store the transaction identi�er before the commit pro-

tocol is begun (\log-start"). With a presumed-abort

protocol, we can avoid this operation, but still need

to log the outcome. The \other" category includes

3Statistically speaking, this means that there is a 90 %

chance that the \real" average lies within 10 % of the measured

average.

8

client server db client server db

compute

commit

ack

request

result

request

result

compute

insert

commit

ack

client server db

request

compute

log−start

log−outcome

prepare

yes

commit

ack

result

baseline our protocol two−phase commit

Figure 6: Communication steps in failure-free executions

the communication cost of the client-server interac-

tion. A round-trip Orbix RPC without parameters

takes about 3-5 milliseconds in our environment, so

the client-server communication accounts for most of

the time in the \other" category.

In summary, we can see that the cost of reliabil-

ity with our protocol is less than 10 %. Moreover, we

obtain exactly-once semantics without making appli-

cation servers stateful or less scalable.

6 Concluding Remarks

It is challenging to implement end-to-end reliability

solutions for three-tier applications. As we point out

in the following, current technologies only solve part

of the problem.

Typically, single-database applications use a one-

phase commit protocol where the database unilater-

ally decides the transaction outcome. Although a

conventional one-phase commit protocol guarantees

all-or-nothing (atomicity), it does not guarantee that

anyone but the database will know the actual deci-

sion, which makes it impossible to have middleware

logic re-submit (exactly) the failed transactions. It is

then left to the end-user to deal with errors fundamen-

tally caused by failures in the back-end transaction-

processing system.

With a two-phase commit protocol [GR93], a trans-

action coordinator computes the transaction outcome

information. Compared with a one-phase commit pro-

tocol, a two-phase commit protocol involves an ex-

tra round-trip communication between the transac-

tion coordinator and the database. It also requires

the database to store a \prepare" record in its per-

sistent transaction log, which is an eager (forced log)

disk operation.

Most transaction processing monitors [BN97] em-

ploy a transaction coordinator that stores its recovery

information, including transaction outcomes, in a disk

�le. Thus, using a transaction monitor typically makes

the middle-tier stateful, violating the stateless nature

of application servers. Moreover, transaction monitors

usually do not provide any means for middleware retry

logic to access transaction outcome information in a

highly-available manner.

Besides providing highly-available access to trans-

action outcome information, we also need to (reliably)

capture the result of transactions that actually com-

mit. Such results cannot be re-generated without ex-

ecuting the same transaction twice. The approach

in [LS98] is to store the result in the client's disk.

The notion of resource proxy allows this result delivery

to be part of the server-side transaction, but without

making the client transactional. Although the client

does not have to be transactional, the client still needs

9

access to stable storage (this may not be possible with

thin clients). Moreover, the approach inherently re-

quires a two-phase commit protocol because the result

delivery is part of the two-phase commit protocol. The

general technique of using message queues, as exem-

pli�ed by [BHM90], is another approach to store the

result in client-accessible storage (it is stored in a re-

ply message queue). Message queues also su�ers from

the general issues with a server-side two-phase com-

mit coordinator. The message queues are now trans-

actional resources, and although we only have a single

database, we have (at least) three transactional re-

sources and need a two-phase commit protocol.

Some group-communication systems consider an

open model and deals with the issue of client broad-

cast transparency, e.g., [BvR93, RSV94, KM99]. How-

ever, these systems only focus on message delivery in a

client-server model. We consider end-to-end process-

ing, and we assume a more general three-tier archi-

tecture where the servers not only respond to client

requests; in our model, servers also invoke third party

databases.

The protocol we present in this paper masks appli-

cation server and database failures in three-tier appli-

cations. The key to failure masking is to transparently

retry in-progress transactions without ever duplicating

the side-e�ect of transactions. A retry mechanism re-

quires recovery state, and we use the database itself as

a container for this recovery state. Using the database

allows us to use a one-phase commit protocol. In com-

parison, the protocol we introduced in [FG00] uses a

two-phase commit protocol, even if there is only a sin-

gle database, and links application servers, precisely

because it does not store recovery state in the back-

end database.

It may seem inelegant to store transaction recovery

information in the database. However, it is impor-

tant to notice that our choice is not whether to store

this information but where to store it. Conventional

transaction-processing systems do not solve this prob-

lem, they may at best allow the application to solve

it. For example, with OTS [Obj97] the application

can register an auxiliary resource with the transaction

coordinator, and we can then encapsulate the transac-

tion recovery information within this resource. How-

ever, recovery information will not be highly available

(we will have to wait for server recovery to perform

transaction recovery) and it will create recovery state

in the middle tier, which violates the stateless nature

of three-tier applications.

Acknowledgements

We thank Jerremy Holland, Fernando Pedone, Jim

Pruyne, and Aad van Moorsel for feedback on earlier

versions of this paper.

References

[BHM90] P. Bernstein, M. Hsu, and B. Mann. Imple-

menting recoverable requests using queues. In

Proceedings of the 1990 ACM SIGMOD Interna-

tional Conference on Management of Data, May

1990.

[BN97] P. A. Bernstein and E. Newcomer. Principles

of Transaction Processing. Morgan-Kaufmann,

1997.

[BvR93] K. Birman and R. van Renesse. Reliable Dis-

tributed Computing with the Isis Toolkit. IEEE

Computer Society Press, 1993.

[CT96] T. Chandra and S. Toueg. Unreliable failure de-

tectors for reliable distributed systems. Journal

of the ACM, 43(2):225{267, 1996.

[FG99] S. Fr�lund and R. Guerraoui. Exactly-once

transactions. Technical Report HPL-1999-105,

Hewlett-Packard Laboratories, September 1999.

[FG00] S. Fr�lund and R. Guerraoui. Implementing e-

transactions with asynchronous replication. In

Proceedings of IEEE Conference on Distributed

Systems and Networks (DSN), June 2000. An

extended version of this paper is published as

HP Labs Technical Report HPL-2000-46.

[GR93] J. Gray and A. Reuter. Transaction Processing:

Concepts and Techniques. Morgan Kaufmann,

1993.

[ION97] IONA Technologies Ltd. Orbix 2.2 Programming

Guide, 1997.

[KM99] C. Karamanolis and J. Magee. Client-access pro-

tocols for replicated services. IEEE Transactions

on Software Engineering, 25(1), January 1999.

[LS98] M. C. Little and S. K. Shrivastava. Integrating

the object transaction service with the web. In

Proceedings of the Second International Work-

shop on Enterprise Distributed Object Comput-

ing (EDOC). IEEE, 1998.

[Obj97] Object Management Group. CORBA Services|

Transaction Service, 1.1 edition, November

1997.

[Ora] Oracle Corporation. Oracle8 Application Devel-

oper's Guide.

[RSV94] L. Rodrigues, E. Siegel, and P. Ver��ssimo. A

replication-transparent remote invocation pro-

tocol. In Proceedings of the 13th Symposium on

Reliable Distributed Systems. IEEE, 1994.

10

[Wey96] P. S. Weygant. Clusters for High-Availability:

A Primer of HP-UX Solutions. Prentice-Hall,

Hewlett-Packard Professional Books., 1996.

[x/O91] x/Open Company Ltd. Distributed Transac-

tion Processing: The XA Speci�cation, 1991.

XO/SNAP/91/050.

A Correctness Proofs

We �rst prove the end-to-end e-transaction proto-

col correct. The correctness proof in Section A.1 as-

sumes the properties of testable transactions outlined

in Section 4.2. Then, in Section A.2, we prove that our

implementation of testable transactions satis�es those

properties.

A.1 Correctness of the Retry Protocol

We prove that the protocols in Figure 2 and 3 cor-

rectly implement e-transactions.

Lemma 1 Consider the client-side algorithm in Fig-

ure 2. The terminate method eventually returns and

the client is not forever blocked in the wait statement

in the issue method.

Proof: Consider �rst the wait statement inside the

issuemethod in Figure 2. The client enters this state-

ment after sending a request message to an application

server a. There are two cases to consider: (1) a crashes

or (2) a does not crash. If a crashes, then by the com-

pleteness property of the client's failure detector, the

client will eventually suspect a and exit the wait state-

ment. If a does not crash, then by the reliability of

the communication channel, a will eventually receive

the message. By the non-blocking property of com-

pute and commit, a will eventually send back a result

message to the client. Again by the reliability of the

communication channels, the client will eventually re-

ceive this reply and exit the wait statement. Notice

that the client may also (falsely) suspect a even if a

does not crash. In that case, the client also exits the

wait statement.

Consider the terminate method in Figure 2. Fol-

lowing the same reasoning as above, the client will

not remain blocked in the wait statement inside the

terminate method: the rollback and get-outcome

methods in the server are non-blocking. Moreover, the

client will not forever exit the loop after suspecting a

server. By the eventual accuracy of the failure de-

tector, there is a time after which the client will not

falsely suspect a server that has not crashed. Fur-

thermore, we assume that there is at least one cor-

rect server. Since the client keeps sending terminate

messages to di�erent servers, the client will eventu-

ally send a terminate message to a server that has not

crashed or is suspected to have crashed. That server

will send an outcome message that the client will even-

tually receive and exit the while loop. 2

Lemma 2 (T.1) If the client issues a request, and

then does not crash, it eventually delivers a result.

Proof: Assume by contradiction that the client is-

sues a request, remains up, and never delivers a result.

Because of the non-blocking properties of Lemma 1,

the client then executes the while loop in the issue

method forever. Let t be a time after which the client

does not falsely suspect application servers and all

transactions started by compute can be committed.

Such a time exists as a consequence of our assump-

tions in Section 4.1.

Let a be an application server that does not crash.

The client will send a request message to a after t

because it keeps sending messages to di�erent appli-

cation servers. The server a will eventually receive the

request message, and compute a transaction that can

be committed. It will then call commit, which will

eventually return because it is non-blocking. More-

over, we know that decide has been executed at least

once. Since the database is able to commit all transac-

tions after t, one of these invocations will have commit-

ted the transaction started by compute. If commit re-

turns yes, a sends back the result to the client, who will

then deliver this result|a contradiction. If commit re-

turns no, then the client will invoke send a terminate

message to a. Since the transaction was committed,

the get-outcome method will return a non-nil result,

which is then passed back to the client and delivered|

also a contradiction. 2

Lemma 3 (A.1) No result is delivered by the client

unless the database commits the corresponding trans-

action.

Proof: Assume by contradiction that the client de-

livers a result, but the database has not committed

the corresponding transaction. Since the client deliv-

ers the result, the client must have received a non-nil

result from an application server, say a. We have to

consider two cases: (1) a has sent the result as part of

a result message or (2) a has sent the result as part of

an outcome message.

Consider (1). A server only sends a result message

with a non-nil result if commit returns yes, which only

11

happens if the corresponding transaction was commit-

ted. This is a contradiction.

Consider (2). A server only sends a non-nil result

as part of an outcome message if the get-outcome

method returns this result. By the properties of the

get-outcomemethod, the server only returns a non-nil

result if a server has invoked commit with that result

and if the corresponding transaction has committed.

2

Lemma 4 (A.2) The database does not commit more

than one transaction for each issued request.

Proof: The client sends a, possibly empty, sequence

of request messages|one per iteration of the while

loop in the issue method. We prove the following

about this sequence:

1. Each request message starts at most one trans-

action

2. Message number n+1 is not sent if the database

commits the transaction of message number n.

Consider (1). Each request message causes compute

to be invoked at most once|the channels do not dupli-

cate messages. Furthermore, an invocation of compute

starts at most one transaction.

Consider (2). After sending request number n to

a server a, the client waits to either suspect a or re-

ceive a reply from a. If the client receives a non-nil

reply, it returns from the loop, and does not send re-

quest n+1, in which case (2) is satis�ed. If the client

either receives a nil result or suspects a, it calls the

terminatemethod. The client only sends request n+1

if the terminate method returns nil. This method

only returns nil for a given transaction identi�er if the

database does not commit that transaction. To see

this, assume that terminate returns nil. Then the

client has received an outcome message from some ap-

plication server a0. But a0 has called rollback before

sending the outcome message. Since rollback has re-

turned, we know that decide has been executed at least

once. This ensures that the transaction is no longer

pending in the database. Moreover, since the result

contained in the outcome message was nil, a
0 must

have gotten nil back from the get-outcome method.

This again means that the database has not commit-

ted the transaction. Thus, the transaction is neither

pending nor committed. Furthermore, the transac-

tion will not be committed in the future because the

request message will not arrive after we have execute

the terminate method. This proves (2).

We can now use induction to prove that only the

last request message sent by a client for a given re-

quest can cause a transaction for that request to com-

mit. Moreover, since each message starts at most one

transaction, we have proved the lemma. 2

Proposition 1 The algorithms in Figure 2 and 3 is

a correct implementation of e-transactions.

Proof: Lemma 2 proves the termination property

(T.1). The other termination property (T.2) follows

directly from our assumption that databases eventu-

ally decide for all transactions. We prove the agree-

ment property (A.1) in Lemma 3, and the agreement

property (A.2) in Lemma 4. Finally, the validity (V)

follows immediately from the structure of our algo-

rithm: neither the server nor the client invents a re-

sult. 2

A.2 Correctness of the Testable
Transaction Protocol

We prove that the algorithms in Figure 4 correctly

implements the properties of testable transactions.

Lemma 5 All methods are non-blocking. If an appli-

cation server invokes a method, and does not crash,

the method eventually returns.

Proof: Consider the commit method in Figure 4.

The insert primitive eventually returns. This is one of

our assumptions about the primitive. The database

eventually stops crashing. Thus, the database will

eventually be able to receive and respond to one of the

decide messages sent in the repeat loop of the commit

method. When the server receives a response to one

of these messages, it exits the repeat loop, and the

method returns.

Consider the rollback method in Figure 4. This

method returns when the server exits the repeat loop,

which happens when the server receives an ack mes-

sage for a decide message for the same transaction

identi�er. Assume by contradiction that the server

never receives an ack message. Let t be the time

after which the database is up and stops crashing.

Since the server never receives an ack message, it

will send a decide message after t. This message will

reach the database due to channel completeness. Since

the database does not crash, it will execute the de-

cide primitive to completion (it is non-blocking). The

database will send an ack message back to the server,

which will receive the ack message due to completion

12

of the communication channels. This is a contradic-

tion.

Consider the get-outcome method in Figure 4.

This method is non-blocking because the lookup prim-

itive is non-blocking. 2

Lemma 6 If commit or rollback returns, then the

decide primitive has been executed at least once.

Proof: If these methods return, they have received

an ack message from the database in response to a

decide message. Receiving an ack message means that

the database has executed the decide primitive at least

once. 2

Lemma 7 If commit returns yes for a transaction,

then the database has committed that transaction.

Proof: The commit method only returns yes for a

transaction if it has received an ack message from the

database. Moreover, it only returns yes if the ack mes-

sage was sent by the database after it decided commit

for the transaction. 2

Lemma 8 If get-outcome returns nil for a transac-

tion, then the database has not committed that trans-

action.

Proof: The get-outcome method only returns nil

for a transaction if lookup returns nil for that trans-

action. The lookup primitive only returns nil if the

database has not committed a transaction with the

given identi�er. 2

Lemma 9 If get-outcome returns a non-nil result

for a transaction, then (1) the database has commit-

ted that transaction, and (2) the result returned by

get-outcome was passed to commit for that transac-

tion.

Proof: Property (1) follows directly from the prop-

erty of lookup: it returns a non-nil result for a trans-

action identi�er if and only if the database has com-

mitted a transaction with that identi�er.

Consider property (2). Assume by contradiction

that lookup returns a non-nil result that was not passed

to commit for the transaction. The de�nition of lookup

guarantees that it only returns a non-nil result if a

server has invoked insert with that result. But insert is

only called in the commit method, which means that

the result passed to insert was also passed to commit.

This is a contradiction. 2

Proposition 2 The algorithms in Figure 4 and 5 cor-

rectly implement testable transactions

Proof: The proof follows directly from Lemma 5{9.

2

13

