[cickano

Pronto: A Fast Failover Protocol for
Off-the-shelf Commercial Databases

Fernando Pedone, Svend Frglund
Software Technology Laboratory
HP Laboratories Palo Alto

HPL-2000-96

July 25th, 2000*

E-mail: {Fernando_Pedone, Svend_Frolund}@hp.com

high
availability,
database
failover,
database
replication,
fault tolerance,
transaction
processing,
three-tier
architectures

* Internal Accession Date Only

Enterprise applications typically store their state in databases.
If a database fails, the application is unavailable while the
database recovers. Database recovery is time consuming
because it involves replaying the persistent transaction log. To
isolate end-users from database failures, we introduce Pronto, a
protocol to orchestrate the transaction processing by multiple,
standard databases so that they collectively implement the
illusion of a single, highly-available database. The key
challenge in implementing this illusion is to enable fast failover
from one database to another so that database failures do not
interrupt the transaction processing. We solve this problem
with a novel replication protocol that handles non-determinism
without relying on perfect failure detection.

Approved for External Publication

o) Copyright Hewlett-Packard Company 2000

1 Introduction

High availability is essential for mission-critical computing systems. This is especially true for
internet-based e-commerce applications: if the application is unavailable, the business is closed.
Such applications commonly follow a three-tier structure, where front-end web browsers send
http requests to middle-tier web servers who perform transactions against a back-end database.
As for most online transaction processing systems, the database is the availability bottleneck
in three-tier applications. This is not surprising because the database usually contains the
entire application state. Database failures normally result in log based recovery: to restart,
the database has to establish a consistent pre-failure state from a persistent transaction log. In
contrast, web servers are typically stateless, and if a web server fails, browsers can failover to
another web server and immediately continue their processing. Rebinding to another web server
is usually orders of magnitude faster than recovering against a transaction log.

To construct applications that are continuously available, we have to reduce the impact of
database failures on the overall system downtime. At the same time, we want to use standard,
off-the-shelf database systems for the back-end transaction processing. Since standard database
systems use log-based recovery, we want to use multiple databases in the back-end to some-
how “mask” the log-based recovery of one database and thus be able to continue processing
transactions against other databases.

Our goal is to build a highly-available transaction-processing system out of standard, and
possibly heterogeneous, databases. Moreover, we want the multiplicity of the databases to
be transparent to clients of the transaction-processing system. The database ensemble should
appear as if it were a single, highly-available database. We formally define what it means for
the ensemble to be highly available. Intuitively, it means that users of the ensemble never wait
for log-based recovery, even if individual databases in the ensemble fail.

We present a protocol to orchestrate the execution of a database ensemble, providing the
illusion of a single, highly-available database system. Orchestrating the execution of standard
database systems in a highly-available ensemble is not straightforward. To illustrate why, let
us consider using conventional replication techniques, such as active replication and primary-
backup, to this problem. With active replication, we would keep the ensemble synchronized
through some broadcasting protocol that delivers messages in the same order to all databases.
The problem with this approach is that databases are inhererently non-deterministic in the
way they process transactions. Even if we deliver the same messages in the same order at all
databases, their states may diverge due to their individual non-determinism. In principle, one
could build a deterministic execution by submitting transaction requests sequentially to the

database, but such a solution would not have good performance. With primary-backup, a single

database would be the primary. The primary processes transactions, and checkpoints its state
to one or more backups. Since only the primary actually executes transactions, we can deal
with non-determinism. However, making a standard database checkpoint its state against other
databases introduces a number of issues. The checkpointing mechanism typically supported
by standard databases is to ship the transaction log to the backups. However, log shipping is
either asynchronous, and we may lose transactions in a failover to a backup, or based on atomic
commit (to preserve consistency), which may block transactions if the primary fails.

The main idea behind our protocol is to use a hybrid approach that has elements of both
active replication and primary-backup. Essentially, we deal with database non-determinism by
having a single (primary) database execute transactions in a non-deterministic manner. But
rather than checkpoint the resulting state to backups, we send the transaction itself to the back-
ups along with ordering information that allows the backups to make the same non-deterministic
choices as the primary. Like active replication, every database processes all transactions. Un-
like traditional active replication, the backups process transactions after the primary, which
allows the primary to make non-deterministic choices and export those choices to the back-
ups. By shipping transactions instead of transaction logs, we can have heterogeneous databases
with different log formats, and prevent the contamination that may result if the data in one
database becomes corrupt. Briefly, our protocol can cope with the existence of several primaries,
a situation that can happen in certain transitory conditions, without leading to database incon-
sistencies. Furthermore, our protocol does not block nor lose transactions if the primary or the
backups crash.

This paper is structured as follows. Section 2 describes the system model, some abstractions
used in the paper and formally states the problem we are concerned about. Section 3 presents the
Pronto protocol in detail and sketches its proof of correctness. Section 4 discusses some aspects
about the impact of the Pronto protocol on the transaction response time. Section 5 reviews

some related works on commercial databases and research projects, and Section 6 concludes the

paper.

2 Model, Definitions and Problem

2.1 Processes, Communication and Failures

We assume an asynchronous system composed of two disjoint sets of processes: a set C' =
{c1, ¢, ...} of database client processes (i.e., middle-tier web servers), and a set S = {s1, 82, ..., $p }
of database server processes (i.e., back-end databases). Every database server has a copy of all

data items. Processes can only fail by crashing (i.e., we do not consider Byzantine failures).

We further assume that database clients and servers have access to failure detectors [4], used
to monitor database server processes. The class of failure detectors we consider guarantees that
every database server process that crashes is eventually suspected to have crashed (complete-
ness), and there is a time after which some database server process that does not crash is never
suspected (accuracy) [4].

Processes are all connected through reliable channels. We do not exclude link failures, as
long as we can assume that any link failure is eventually repaired. In practice, the abstraction of
reliable channels is implemented by retransmitting messages and tracking duplicates. Reliable
channels are defined by the primitives send(m) and receive(m). Database server processes can
also exchange messages using a broadcast abstraction built on top of reliable channels (also
known as Atomic Broadcast or Total Order Broadcast). Broadcast communication is defined
by the primitives broadcast(m) and deliver(m), and guarantees that if a database server process
delivers a message m, then all database server processes that do not crash eventually deliver
m (agreement), and if two database servers, s; and sj, both deliver messages m; and mg, then
s; delivers m; before mg if and only if s; delivers m; before mo (total order). We discuss in

Section 4 implementations for the broadcast primitives.

2.2 Databases and Transactions

In this section, we precisely define the notions of databases and transactions. Databases are
specified by a set of primitives and their associated behavior. The syntax and semantics of our
database primitives are those of standard off-the-shelf relational database systems. We define
transactions as sequences of database requests.

A database is an abstraction implemented by database server processes. The database

abstraction is defined by the primitives presented next.

e begin(t,) and response(t,, —). The begin primitive starts a transaction ¢, in the database.
It has to precede any other operations requested on behalf of ¢,. The database issues a

response once it is ready to process t,’s requests.

e exec(t,y, sql-st) and response(ty,, —). The exec primitive requests the execution of an
SQL statement to the database. sql-st can be any SQL statement, except for commit
and abort (e.g., select or update). When executing sql-st, the database may decide to

abort t,, if ¢, is involved in a deadlock, for example.

e commit(t,) and response(t,, —). The commit primitive terminates a sequence of exec’s

for transaction t, and requests t,’s commit. The response returns a confirmation that ¢,

has been committed. If ¢, cannot be committed in response to a commit request (e.g., no

disk space), we assume that the database server process crashes.!

e abort(t,). The abort primitive terminates a sequence of requests for transaction ¢, and
requests t,’s abort. We assume that an abort request can always be executed, and so,

there is no need for a confirmation response from the server.

We define a transaction ¢, as a finite sequence (begin(t,); response(tq, —); exec(tq, —);
response(ty, —); ... ; | commit(t,); response(t,,—) / abort(t,) |), where commit(t,);
response(t,, —) and abort(t,) are mutually exclusive, although one must take place. Our
definition of a transaction differs from traditional definitions (e.g., [2]) in that we focus on the
requests submitted to the database and not on the operations performed by the database on the
data items. For example, in some cases, even if a commit is requested for some transaction %,
the database may decide to abort %,.

A database server process s; guarantees the following properties:

DB-1 Transactions are serialized by s; using strict two-phase locking (strict 2PL).

DB-2 If s; receives an infinite number of transactions to execute and does not crash, then s;

commits an infinite number of transactions.

Property DB-1 ensures serializability, that is, any concurrent transaction execution £ has
the same effect on the database as some serial execution & of the same transactions in £ [2].
Furthermore, strict 2PL schedulers have an interesting property that will be exploited by our
protocol: if transaction ¢, has been committed before transaction ¢, by s; in some execution
&, then in any serial execution & equivalent to &, t, precedes t, (notice that a serial execution
establishes a total order between transactions).

Property DB-2, although not explictly stated as such, is often assumed to be satisfied by
current database systems. DB-2 reflects the fact that in general, databases do not guarantee
that a submitted transaction will commit (e.g., the transaction may get involved in a deadlock
and have to be aborted) but the chances that a database aborts all transactions that it processes

is very low.

2.3 Clients and Transactional-Jobs

The transactional-job abstraction models the business logic that runs in middle-tier web servers.

The execution of a job generates a transaction that will be executed by database server processes.

1This is not as restrictive as it may seem because if a client requests a commit, all transaction operations have

been executed successfully (e.g., the transaction is not involved in a deadlock).

A job j terminates sucessfully if the transaction it generates requests a commit and is committed,
or requests an abort.

Database client processes use a transactional-job abstraction to generate database requests.
The execution of a transactional job (or simply job, for short) is defined by the primitives
submit(j) and response(result). The submit(j) primitive requests the execution of a job, and
the response(result) primitive returns the results of the job.

The transactional-job abstraction allows clients to access a replicated database as if they

were accessing a highly-available single-copy database. It satisfies the following properties.

RDB-1 If £ is an execution of the replicated database system, then there exists some serial

execution & that is equivalent to £.

RDB-2 If a client submits a transactional job j and does not crash, then it will eventually

issue a response with the results of j.

RDB-1 is the serializability property in the context of replicated databases (also called one-
copy-serializability). RDB-2 states that the submission of a job should always result in its

execution.

2.4 Pragmatic Issues About the Model

Our database model captures the behavior of standard, off-the-shelf database systems. Since
our model is based on the notion of SQL statements, and not read and write operations, it
closely matches the semantics of standard database interfaces, such as JDBC and ODBC [16].
Furthermore, we allow the database to exhibit non-deterministic behavior in how it chooses to
order transactions.

Another aspect of the database model is the interface used by clients to access the database.
We want the client access method to capture a standard database interface as well. This will
allow us to implement a replicated database ensemble and give clients the illusion of accessing a
single, highly-available database system. In our model, clients access the database by submitting
entire transactional jobs. A transactional job models a piece of business logic that contains a
number of SQL statements. Using jobs instead of SQL statements at the client side interface
allows us to provide transparency and mask failures relative to the client. If the user instead
submits SQL statements, and a failure occurs, we cannot simply re-submit the same statements:
the business logic that submits the statements may select subsequent statements based on the
non-deterministic results returned by previous statements. The notion of transactional job is

supported by the JDBC interface in the form of prepare statements [16].

A consequence of modeling the client-side behavior in terms of transactional jobs is that
we assume that the business logic does not receive input from users or other entities during its
execution. This assumption is satisfied by most interactive systems, and is certainly true for
three-tier applications where the business logic resides in the middle-tier. Using transactional
jobs to capture the client access method does not mean that our algorithm cannot be used if the
client submits individual SQL statements through a JDBC interface. It means that we only can
provide transparency if the client allows us to re-execute the business logic. If the client submits

individual SQL statements, it must be prepared to re-submit these statements if a failure occurs.

3 The Pronto Failover Protocol

3.1 The Protocol at a Glance

The protocol is based on the primary-backup replication model, where one database server, the
primary, is assigned a special role. The primary is the only server supposed to interact with
the clients, who submit transaction requests resulting from the execution of a transactional job.

The other database servers (the backups) interact only with the primary.

Failure/Suspicion Free Execution. To execute a transactional job j, a client ¢ takes the
first transaction request originated from the execution of j (i.e., begin transaction) and sends
this request to the database server s; that c believes to be, most likely, the current primary.
After sending the begin transaction request, ¢ waits for the result or suspects s; to have crashed.

The execution proceeds as follows.

(a) If s; is the current primary, it executes the request and sends the result to c. In this case,
¢ continues the execution of j, by submitting other transaction requests to the primary
on behalf of j. If the primary does not crash and is not suspected by ¢, the execution

proceeds until ¢ requests the transaction termination (see below).

(b) If s; is not the current primary, it returns an error message to ¢, which will choose another

database server s; and send to s; the transaction request.

(c) The case where c suspects s; to have crashed is treated in the next paragraph.

If the primary does not crash and is not suspected, the client eventually issues a request to
terminate the transaction (i.e., commit or abort). The primary executes a commit request from
the client by broadcasting the transaction unique identification, the SQL statements associated

with the transaction, and some control information to all backups.

Upon delivering a committing transaction, each database server decides to commit or abort
the transaction, and sends the transaction’s outcome to the client. The protocol ensures that
all database servers reach the same result (i.e., commit or abort) individually, after executing
the validation test. If a database server decides to commit the transaction, it executes the SQL
statements associated with the transaction against the local database, making sure that if two
transactions ¢ and to have to be committed, and ¢; is delivered before to, t1’s SQL statements
are executed before to’s SQL statements.

As a response to the commit request, a client will eventually receive the transaction’s outcome
from the primary and/or from the backup servers. If the outcome is abort, the client re-executes
job 7. Otherwise the client issues a response for job j. Figure 1 shows the protocol in an execution
without failures and failure suspicions. In such a case, the protocol comes down to a typical

primary-backup replication model.

submt(j) response(result)
begi n(t) exec(t, sql-st) commt(t)

Client S

Primary

execute execute))
begi n(t) exec(t, sql -st) f\/
br oadcast (t
Backup 1
commit t
Backup 2
commit t

Figure 1: Pronto without crashes and suspicions

Failure/Suspicion Handling. After submitting a request, a client ¢ may suspect the primary
s; to have crashed. This may happen because s; has crashed or because c incorrectly suspects
s;. In any case, ¢ sends an abort transaction message to s; (just in case it was a false suspicion),
chooses another database server s;, and re-executes j (by sending the begin transaction request)
using s;.

If the primary crashes or is suspected by another database server, the execution evolves as a
sequence of epochs. During an epoch, there can only exist one primary, which is deterministically
computed from the epoch number. The epoch change mechanism works as follows. When a

backup suspects the primary to have crashed, it broadcasts a message to all database servers

to change the current epoch (which will result in another database server as the primary). A
backup may suspect the current primary incorrectly. In such a case, the primary also delivers the
change epoch message, and will abort all transactions in execution and inform the application
servers corresponding to these transactions that a new epoch has started with a new primary.
Clients have to re-start the execution of their jobs in the new primary, as described before.

Due to the unreliable nature of the failure detection mechanism used by database servers
and the time it takes for messages to reach their destinations, it is possible that at a given time
during the execution, database servers disagree on the current epoch, and so, multiple primaries
may actually be able to process transactions simultaneously.

To prevent database inconsistencies (i.e., non-serializable executions) that may arise from
transactions executing concurrently on different primaries, a transaction passes a validation test
before committing. In order to do that, every transaction is broadcast together with the epoch
when it executed. The validation test ensures that a transaction is only committed by some
database server if the epoch when the database server delivers the transaction and the epoch
when the transaction was executed are the same.

Figure 2 depicts a scenario where two primaries try to commit transactions ¢ and #'. When
Primary 1 broadcasts transaction ¢, it has not delivered the new epoch message. Transaction #'
is committed by every database server after it is delivered since #' executed in the same epoch as
it is delivered. When transaction t is delivered by some database server, t is aborted since ¢ did
not execute in the epoch when it is delivered. Although not shown in Figure 2, after validating
a transaction, each database server sends the transaction outcome to the client.

del i ver (new epoch)

br oadcast (t) i del iver(tc’it)aliver(t)

Primary 1 ((

br oadcast (new epoch)
broadcast (t

Primary 2 [

abort t
deliver(t)

del i ver (new epoch)

deliver(t’)

Backup

commit t’ abort t

— epoch e%‘f— epoch e+l

Figure 2: Two primaries scenario

According to the protocol, a transaction passes through some well-defined states. A transac-

tion starts in the executing state and remains in this state until a commit or abort is requested.

If the client requests to commit the transaction, the transaction passes to the committing state
and is broadcast to all database servers by the primary. A transaction delivered by a database
server is in the committing state, and it remains in the committing state until its fate is known by
the database server (i.e., commit or abort). The executing and committing states are transitory

states, whereas the committed and aborted states are final states.

3.2 The Detailed Algorithm

Algorithm 1 is the client side of the Pronto protocol. The algorithm is divided into two parts.
In the first part, the client locates the primary server, and in the second part the client executes
the transactional job. A transactional job is modeled as a function that receives the results from

the previous request to generate the next request. The first request generated by a job j, is
begin(t,) (i.e., jo(L) = begin(t,)).

e Locating the primary server (lines 2-14). Initially, the client chooses one database
server (lines 7-8), tries to start the transaction on this server (line 9), and waits for an
answer or suspects the server to have crashed (line 10). If the client suspects the server
to have crashed (line 11), the client chooses another server and, as before, tries to start
the transaction in this server. Notice that client ¢ suspects database server process s; if

si € De.

¢ Executing a transactional job (lines 15-25). The client sends the transaction re-
quests, resulting from the execution of the transactional job, to the primary. After sending
a request (line 17), the client waits until it receives an answer or it suspects the primary
to have crashed (line 18). If the primary decides to abort the transaction, the client re-
executes the job using the same database server. A suspicion leads the client to loop back
to the first part of the algorithm, and re-execute the job on a new primary, if the previous

has crashed.

In both parts of the algorithm, when a client suspects a primary p. (lines 11 and 19), before
trying to execute the transaction in another server, the client sends an abort transaction message
to pe (lines 12 and 20). This is done because the client may falsely suspect the primary, and in
this case, before starting a new transaction, the client terminates the previous one.

Algorithm 2 (pages 12 and 13) is the server side of the Pronto protocol. Except for lines
15-19, the algorithm is executed as a single task with several entry points (lines 5, 28, 44, and
46).

¢ Executing transactions (lines 5-26). This is the primary’s main procedure. If a client

sends a begin(t,) request to a backup, the backup refuses to process the request (lines

10

Algorithm 1 Database client c

1: To execute submit(j,)...

[S o S S
L~

15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

—_
e

pc <0
findPrimary < true
repeat
repeat
request + jo (1)
if findPrimary = true then

De + (p. mod n) +1 {choose some server and...}
send (t,,request) to p. {...try to begin to, on this server}
wait until (receive (t,,result) from p.) or (p. € D) {wait response or suspect server}
if not(received (t,,result) from p.) then {if suspect the server...}

send (t,,abort(t,)) to p. {...abort t, (in case of false suspicion)}

until (received (t,,result) from p.) and (result # “I’'M NOT PRIMARY”)
findPrimary « false

repeat
request < j,(result)
send (t,, request) to p {send request to primary, and...}
wait until (receive (t,,result) or (p. € D,) {...wait result or suspect primary}
if not(received (t,,result) from p.) then {if suspect primary...}
send (t,,abort(t,)) to p. {...abort t,}

result <~ ABORT
findPrimary <+ true
until (result = COMMIT) or (result = ABORT)
until (request = ABORT) or (request = COMMIT and result # ABORT)
response(result)

11

Algorithm 2 Database server s;

1: Initialization...

»

e; +1 {current epoch at s;}
pi 1 {primary in epoch e;}

@

4: To execute a transaction...

5: when receive (request) from ¢

6: case request = begin(t,):

7: if s; # p; then {if not the primary...}
8: send (e;,tq, “I’'M NOT PRIMARY”) to ¢ {...refuse to process t,}
9: else
10: state(t,) EXECUTING {set ta’s current state and...}
11: begin(t,) {...start transaction}
12: wait for response (t,,result)
13: send (t,,result) to ¢
14: case (request = exec(t,,sql-st)) and (state(t,) = EXECUTING):
15: exec task {ezecute SQL statement...}
16: exec(ty,sql-st) {... concurrently with other requests}
17: wait for response(t,, result)

18: if result = ABORTED then state(t,) < ABORTED

19: send (t,, result) to ¢
20: case (request = commit(t,)) and (state(t,) = EXECUTING):
21: state(t,) + COMMITTING {update to’s current state, ...}
22: sqlSeq(t,) + all exec(t,,sql-st) statements in order {gather SQL statements for t,, and...}
23: broadcast(s;, €;, ¢, tq, sqlSeq(t,)) {...broadcast everything to everybody}
24: case (request = abort(t,)) and (state(t,) = EXECUTING):
25: state(t,) + ABORTED {update to’s current state, and...}
26: abort(t,) {...tell the database to abort t.}

27: To commit a transaction...

28: when deliver(s;, e;, ¢, tq, sqlSeq(t,))

29: if e; < e; then {if to didn’t ezecute in the current epoch...}
30: state(t,) < ABORTED {...ta has to be aborted}
31: abort(t,) {...ditto}
32: else

33: if s; # p; then {if to didn’t ezecute on s;...}
34: state(t,) ¢ COMMITTING {...update current status, and...}
35: begin(t,) {...send whole transaction to the database}
36: for every exec(ty,sql-st) € sqlSeq(t,) do

37: exec(tq,sql-st)

38: wait for response(t,, result)

39: commit(t,) {ta can be committed now...}
40: wait for response(t,, result)

41: state(t,) + COMMITTED {...donef}
42: send (t,, state(t,)) to ¢ {in any case, send results to the client}

12

Algorithm 2 (cont.) Database server s;

43: To change an epoch...

44: when p; € D;

45:

46:
47:
48:
49:
50:
51:
52:
53:

broadcast(e;, “NEW EPOCH”)

when deliver(e;, “NEW EPOCH”) and (e; = e;)

if p; = s; then
for every t, such that state(t,) = EXECUTING do
state(t,) < ABORTED
abort(t,)
send (t,, ABORTED) to ¢
p; + (e, mod n) +1
e; e +1

7-8), but if the client sends the begin(t,) request to the primary, the primary initializes the
transaction’s state (lines 10-12) and returns an acknowledgement that the database is ready
to process exec(tq, —) requests. If the request is an exec(t,,sql-st), the server executes
it as an independent task (lines 15-19). This is done to prevent the server from executing
requests sequentially against the database. If the primary receives a commit request for
transaction t,, it updates t,’s current state to committing (line 21), and broadcasts t,’s
identifier, the epoch when t, executed, the client identifier associated with t,, and t,’s
operations to all database servers (line 23). The exec(t,, —) statements are broadcast as
a sequence. This allows the backups to execute t,’s requests in the same order as the

primary.

Committing transactions (lines 28-42). Committing transactions are delivered by
the when statement at line 28. After delivering some transaction t,, a server first validates
tq (line 29). The validation consists in checking whether the epoch t, executed in is the
current epoch. If it is not, ¢, is aborted by the server (lines 30-31). If ¢, executed in
the current epoch, t, passes the validation test and is locally committed (lines 33-41). At
the primary, committing ¢, consists of issuing a database commit request and waiting for
the response (lines 39-40). At the backups, committing ¢, consists of executing all ¢,’s
exec(tq, —) operations (lines 34-38), issuing a database commit operation, and waiting for

the response.

Changing epochs (lines 44-53). The when statements at lines 44 and 46 handle epoch
changes. When a server s; suspects the current primary to have crashed, s; broadcasts
a 'new epoch’ message (lines 44-45). Upon delivering the 'new epoch’ message, a server

determines the new primary from the epoch number (line 52) and updates the current

13

epoch (line 53). If the primary has not crashed (i.e., in case of false suspicion), it also
delivers the 'new epoch’ message, and before passing to the next epoch, it aborts all local
transactions in execution (lines 48-51). Aborting local transactions in execution before
passing to the next epoch is an optimization as no such transaction will pass the validation

test: these transactions will not be delivered in the epoch in which they executed.

3.3 Algorithm Correctness

Correctness proofs are given in the Appendix. We present here the intuitive ideas behind the
correctness of the Pronto protocol. In order for the protocol to be correct, properties RDB-1

(safety) and RDB-2 (liveness) have to be guaranteed.

The protocol is safe. Property RDB-1 follows from the fact that (a) at any epoch e, the
primary and the backups that do not crash commit the same transactions in the same order,
and (b) an execution involving several epochs (or primaries) is equivalent to an execution with

only one epoch (or primary).

(a) To commit a transaction in e, the primary first has to deliver this transaction. From
the properties of the broadcast primitive, the backups that do not crash also deliver this
transaction. Since the transaction commits in the primary, and the validation test is
deterministic, the transaction is committed in the backups. Commit order is preserved
since transactions are delivered in an order that satisfies the execution order generated by
the 2PL scheduler on the primary, and backups commit transactions in the order they are

delivered.

(b) Committed transactions that execute in some epoch e are serialized by the primary, and
committed transactions that execute in different epochs, say e and e + 1, are guaranteed
to execute sequentially: no transaction that executes in epoch e and is not delivered and
committed before the epoch changes to e + 1 will pass the validation test in any server.
Therefore, every operation performed by a committed transaction that executed in epoch
e happens before any operation performed by every transaction that executes in epoch

e+ 1.

The protocol is live. It can be proved that any client that submits a job j, and does not
crash eventually contacts a primary that executes and commits a transaction ¢, generated by
Jja- The argument is that, firstly, no client blocks forever in the wait statements at lines 9 and

16. In both cases, if the primary crashes, the client suspects it, and tries to execute the job

14

in another server. If the primary does not crash, it will send a response to the client. Thus,
the only reasons why a client would not be able to execute job j, are (a) the client cannot find
the primary, or (b) the client finds the primary and starts executing the job in the primary
but before terminating the job, the epoch changes and another server becomes primary (i.e.,
the transaction generated by the job is aborted due to an epoch change), or (c) the primary
does not change but keeps aborting the transactions generated by j,. Cases (a) and (b) never
happen because there is a time when some server p that does not crash is not suspected by any
other process to have crashed. This server eventually becomes primary and remains primary
forever. So, the client will eventually contact p, start a transaction on p, and never suspect p.
The only alternative left is (c), where the primary keeps aborting transactions generated by j,.
However, this cannot happen because it would contradict database property DB-2. Therefore,
every client that does not crash eventually contacts a primary that executes and commits a

transaction generated by j,.

4 Evaluation of the Protocol

4.1 The Cost of Broadcasting Transactions

In a system with a single database server, when a client requests the commit of some transaction,
the server tries to execute the commit operation against the database, and returns the answer
to the client. In the Pronto protocol, before a server tries to execute the commit operation, it
has to deliver and validate the transaction. Since the validation test is very simple (actually an
integer comparison), the overhead introduced in the transaction response time by the Pronto
protocol is expected to be mostly due to the broadcast primitive.

To discuss the cost of broadcasting transactions, we consider the broadcast algorithm pre-
sented by Chandra and Toueg [4] (CT-broadcast), and the Optimistic Atomic Broadcast algo-
rithm presented in [12] (OPT-broadcast). Both algorithms are non-blocking and tolerate an
infinite number of false failure suspicions. Briefly, with the CT-broadcast algorithm, broadcast
messages are first sent to the servers, and then the servers decide on a common delivery order for
the messages. The OPT-broadcast makes some optimistic assumptions about the system (e.g.,
by taking into account the hardware characteristics of the network) to deliver messages fast. The
key observation is that in some cases, there is a good probability that messages arrive at their
destinations in a total order, and so, servers do not have to decide on a common delivery order.
Servers have to check whether the order is the same, and if this is the case, OPT-broadcast
is “cheaper” (i.e., requires fewer messages) than CT-broadcast. Otherwise, OPT-broadcast is

“more expensive” than CT-broadcast.

15

Table 1 compares CT-broadcast and OPT-broadcast to atomic commitment protocols. This
comparison is only done for reference purposes, as atomic commitment protocols have tradition-
ally been used by databases to terminate transactions. Table 1 shows best case scenarios for each
algorithm.? When comparing protocols with the same resilience, both CT-broadcast and OPT-
broadcast outperform atomic commitment protocols. 2PC is as expensive as OPT-broadcast,
however, OPT-broadcast does not block the system in the event of crashes. Therefore, the
overhead introduced by broadcasting transactions in Pronto is smaller than the cost of a non

blocking atomic commitment protocol.

Protocol Resilience | Number of | Number of
steps messages
CT-broadcast | non-blocking 4 4(n—1)
OPT-broadcast | non-blocking 3 3(n—1)
2PC blocking 3 3(n—1)
3PC non-blocking 5 5(n—1)

Table 1: Cost of broadcasting a transaction

4.2 Transaction Operations and the Validation Test

Pronto uses a very simple validation test. It only requires to know whether the epoch when a
transaction executed is the same as the current epoch. This actually comes down to comparing
two integers. We can compare this validation test to more detailed validation tests used in
optimistic concurrency control protocols [2, 9]. On one side, the Pronto validation test needs
little information about transactions (only the epoch number), does not require much storage
space, and allows for a fast validation mechanism. On the other side, by using limited information
about transaction operations, the Pronto validation test aborts more transactions than detailed
validation tests.

For example, consider that in epoch e, database servers validate a transaction ¢ that has
executed in some epoch (e — 1). According to the Pronto validation test, ¢ has to be aborted.
However, if ¢ does not access any data item accessed by any transaction committed in epoch
e, t could actually be committed in epoch e and database consistency would still be preserved.
This example shows a tradeoff between the amount of information the validation test has about

transactions and the number of transactions that pass the test. We have opted for a simple

2A best case scenario for 2PC and 3PC is an execution with no crashes. The best case for CT-broadcast and
OPT-broadcast is an execution with no crashes and no failure suspicions. For OPT-broadcast, it is also the case

that the optimistic assumption is verified.

16

validation test not only for the reasons already mentioned, but also because a more complex test

would require parsing SQL statements to know which data items are accessed by the transactions.

5 Related Work

In the following, we review commercial database products and research projects that address
similar topics as the Pronto protocol. Failover mechanisms with strong consistency constraints
(i.e., serializability) have often been related to parallel database systems by the main commercial
database players. A parallel database system has a cluster of database processes that access the
same data. Such systems typically provide a notion of failover. If a client accesses the database
through one process, it can switch to another process if the first one fails. Besides failover
for availability, a parallel database system also provides concurrent processing of SQL queries.
There are two main ways to build a parallel database system: shared disk and shared nothing.

The Oracle Parallel Server (OPS) [11] is an example of a shared disk approach. All processes
access the same disk, but they have separate transaction logs, and they coordinate their updates
through a distributed lock manager. The Informix Extended Parallel Server (XPS) [17] uses the
shared nothing approach. Each process has its own disk, but if a process fails, another process
mounts the failed process’ disk. Compared to traditional single-process database systems, a
parallel database system provides faster recovery because clients can fail over to another process.
However, a fail-over still requires log-based recovery: if one process takes over for a failed process,
it must reconcile its own state with the log of the failed process. Moreover, to use a parallel
database system as a highly available transaction processing system, we need database processes
on different machines to access the same disks. This requires special hardware/software, such as
high-availability clusters. In contrast, our approach does not inject log-based recovery into the
fail-over process, and we rely on standard hardware and software. Further, we do not use our
database ensemble as a parallel-processing platform — we focus exclusively on high availability.

A number of commercial database systems support asynchronous data replication. A primary
database processes transactions, and asynchronously sends data updates to a number of standby
databases. For example, the Tandem Remote Data Facility (RDF) [14] ships the transaction
log to remote sites, and the Microsoft SQL Server [10] ships data operations to remote sites
for committed transactions. Since these systems propagate data updates in an asynchronous
manner, data updates can be lost in a fail over. Moreover, these systems can typically not
provide consistency in the presence of multiple primaries. In contrast, our protocol provides
consistency in the multi-primary case. Furthermore, we do not lose transactions — the client

“stub” transparently replays in-progress transactions after the fail-over is complete.

17

Several academic and industrial research projects have addressed database failover mostly
based on some form of database replication. Database replication techniques can be divided in
two groups: active replication and primary backup [6, 8].

With active replication [15], all database servers, one way or another, execute the clients’
requests, and return the results to the clients. Database server communication is usually based
on a broadcast primitive with similar guarantees to the one described in this paper (i.e., Atomic
Broadcast). Database replication techniques based on active replication can provide fast failover
and, to a certain extent, failure transparency to the clients. Active replication, however, requires
strong deterministic assumptions on the way databases process transactions [1]. In general,
database replication techniques based on active replication require stronger assumptions about
individual databases than the assumptions made by the Pronto protocol (e.g., having access
to database internal modules), and/or assume a certain knowledge about the semantics of the
operations. An exception is [13], which presents a weaker form of active replication to solve
non-determinism due to preemption in replicated real-time applications.

Primary-backup replication techniques have been studied and applied from both a theoretical
and practical viewpoint [2, 3, 5, 7]. Recent work [18] has considered using virtual memory
mapped communication to achieve fast failover by mirroring the primary’s memory on the
backups. A common assumption made by most replication techniques based on primary-backup

is to assume a perfect failure-detector mechanism.

6 Conclusion

This paper introduces Pronto, a protocol that allows clients to access an ensemble of databases
as if it were a single database. Clients access the ensemble through a standard interface, such
as JDBC. The benefit of using an ensemble instead of a single database is that the ensemble
can provide un-interrupted service in the presence of database failures. This capability pro-
vides a highly-available transaction-processing system, and allows enterprise applications to be
continuously available.

Pronto relies on practical assumptions: clients access databases through standard interfaces,
databases from different vendors can be part of the ensemble (the only requirement is to support
the standard interfaces), and the correctness of the system does not need perfect failure detection.
Although Pronto is not fully operational yet, we expect that its synchronization mechanism will
orchestrate the database ensemble with a reasonable performance overhead.

There are multiple directions for future work. One interesting avenue of research we are

presently looking at is to define alternative data consistency criteria besides one-copy-serializability.

18

In practice, single databases typically support a range of isolation levels, but it is not clear how

to “translate” these per-database isolation levels into a global, ensemble level, data consistency

notion.

References

[1]

[10]
[11]

[12]

D. Agrawal, G. Alonso, A. El Abbadi, and I. Stanoi. Exploiting atomic broadcast in repli-
cated databases. In Proceedings of EuroPar (EuroPar’97), Passau (Germany), September
1997.

P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in
Database Systems. Addison-Wesley, 1987.

N. Budhiraja, K. Marzullo, F. B. Schneider, and S. Toueg. Optimal primary-backup pro-
tocols. In Distributed Algorithms, 6th International Workshop, WDAG 92, volume 647 of
Lecture Notes in Computer Science, pages 362-378, Haifa, Israel, 2-4 November 1992.

T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems.
Journal of the ACM, 43(2):225-267, March 1996.

L. Frank. Evaluation of the basic remote backup and replication methods for high avail-
ability databases. Software Practice and Ezperience, 29:1339-1353, 1999.

J. N. Gray, P. Helland, P. O’Neil, and D. Shasha. The dangers of replication and a solution.
In Proceedings of the 1996 ACM SIGMOD International Conference on Management of
Data, Montreal (Canada), June 1996.

J. N. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan
Kaufmann, 1993.

R. Guerraoui and A. Schiper. Software based replication for fault tolerance. IEEE Com-
puter, 30(4), April 1997.

H. T. Kung and J. T. Robinson. On optimistic methods for concurrency control. ACM
Transactions on Database Systems, 6(2):213-226, June 1981.

Replication for Microsoft SQL server 7.0, 1998. Microsoft Part Number 098-80829.
Oracle Parallel Server for Windows N'T clusters. Online White Paper.

F. Pedone. The Database State Machine and Group Communication Issues. PhD thesis,
Ecole Polytechnique Fédérale de Lausanne, Switzerland, December 1999. Number 2090.

19

[13] D. Powell, M. Chéréque, and D. Drackley. Fault-tolerance in Delta-4. ACM Operating
Systems Review, SIGOPS, 25(2):122-125, April 1991.

[14] Compaq remote database facility product family. Online white-paper.

[15] F. B. Schneider. Implementing fault-tolerant services using the state machine approach: A
tutorial. ACM Computing Surveys, 22(4):299-319, December 1990.

[16] S. White, M. Fisher, R. Cattell, G. Hamilton, and M. Hapner. JDBC API Tutorial and
Reference, 2nd edition. Addison-Wesley, Menlo Park, California, 1994.

[17] Informix extended parallel server 8.3. Online White-Paper.

[18] Y. Zhou, P. Chen, and K. Li. Fast cluster failover using virtual memory-mapped com-
munication. Technical Report TR-591-99, Department of Computer Science, Princeton

University, January 1999.

20

Appendix

For the following proofs, C'(£f) is the committed projection of the execution £, created by the
Pronto protocol during epoch e at database server process s;. C(Ef) is a partial order, that is,
C(&F) = (25, <§), where X is the set of committed transactions in £, and <§ is a set defining
a transitive binary relation between transactions in Xf. We define C(£¢) = C(€F) U C(E5) such
that 3¢ = X UX? and <*=<7 U <.

Lemma 1 Let sp) be the primary database server at epoch e. For every backup server sy()
that does not crash in epoch e, and all e > 1, C(Ey,)) = C(Ey)-

PROOF (SKETCH): We have to show that database servers Sp(e) and Spe) commit the same

transactions (i.e., X7

transaction ¢ during epoch e. Therefore, ¢ passed the validation test, and so, s

() = Zg(e)) in the same order (i.e., <;(e):<g(e)). Assume that s,(,) commits
n(e) has executed
t during epoch e, and has not delivered any message of the type (e, “’NEW EPOCH”) before
delivering message (Sp(c); €, —t, sqlSeq(t)). From the agreement and total order properties
of the broadcast primitive, server sy also delivers message (s,(), e, —t, sqlSeq(t)) before
delivering any message of the type (e, “NEW EPOCH”). Thus, ¢ passes the validation test at sy
and is committed by sp()-

We now show that <;(e)=<§(ey that is, if a transaction £, precedes another transaction ¢
inC (5;(e)), then ¢, also precedes t; in C (E,f(e)). Since server s,() executes transactions using a
2PL scheduler, if ¢, precedes t, then ¢, commits before #;. From the algorihm, it follows that ¢,
is delivered before ;. By the total order property of the broadcast primitive and the fact that
backups commit transactions in the same order as they are delivered, server sy delivers and

commits ¢, before ¢,. Therefore, ¢, precedes #, in database server sy). O

Lemma 2 For any execution € of the Pronto protocol, there exists a serial execution Es involving

the committed transactions in &€, such that C(E) is equivalent to C(&s).

PROOF (SKETCH): From property DB-1, for any execution 8;(¢ at epoch e, there exists a serial
execution ¢, involving the committed transactions in £7), such that C (5;(e)) is equivalent to
C(&5). By Lemma 1, for every backup sy that does not crash in epoch e, and all e > 1,
C’(é‘e(e)) = C(,f(e)). Thus, from the definition of committed projection, C(E;(e)) UC(&f) U

P bi(e)
.U C(é‘,fm(e)_1 (e)) = C(é’;(e)), where m(e) is the number of database servers that do not crash
in epoch e. Thus, C(E;(e)) U C(Sgl(e)) U...uU C(ggm(e)—l(e)) is equivalent to C(&f).

We claim that Ue=1C(E?) is equivalent to C(&;). The proof for the claim follows from the

fact that for all e > 1, the Pronto protocol ensures that executions £¢ and £¢*! are executed

21

sequentially. That is, every transaction that executes in epoch e + 1 starts after all transactions
that commit in epoch e have been committed. We conclude that for any execution &£, there

exists an execution &, such that C(€) is equivalent to C(E;). O

Lemma 3 If a client ¢ executes submit(j) and does not crash, then c eventually erecutes

response(result).

PROOF (SKETCH): We show that client ¢ eventually contacts a primary that executes and
commits a transaction t, generated by j,. The argument is that, firstly, no client blocks forever
in the wait statements at lines 9 and 16. In both cases, if the primary crashes, the client suspects
it, and tries to execute the job in another server. If the primary does not crash, it will send
a response to the client: in the wait statement at line 9, the client has requested a begin(—)
operation, and a database is always able to execute it; in the wait statement at line 16, if the
request cannot be processed by the primary (e.g., the transaction is deadlocked), the primary
aborts the transaction and replies to the client.

Thus, the only reasons why a client would not be able to execute job j are (a) the client
cannot find the primary, or (b) the client finds the primary and starts executing the job in the
primary but before terminating the job, the epoch changes and another server becomes primary
(i.e., the transaction generated by the job is aborted due to an epoch change), or (c) the primary
does not change but keeps aborting the transactions generated by j,. Cases (a) and (b) never
happen because there is a time when some server s, that does not crash is not suspected by any
other process to have crashed. This server eventually becomes primary and remains primary
forever. So, the client will eventually contact s,, start a transaction on s,, and never suspect sp,.
The only alternative left is (c), where the primary keeps aborting transactions generated by j,.
However, this contradicts database property DB-2 because s, does not crash, ¢ does not suspect
it and keeps sending transactions generated by executions of j)a, so, eventually, one transaction
terminates and job j, is successfully executed. We conclude that any client eventually contacts

a primary that executes and commits a transaction generated by j,. O

22

