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Abstract Fueled by advances in computer technology and online business, data 
collection is rapidly accelerating, as well as the importance of its analysis—data 
mining.  Increasing database sizes strain the scalability of many data mining 
algorithms.  Data clustering is one of the fundamental techniques in data mining 
solutions.  The many clustering algorithms developed face new challenges with 
growing data sets.  Algorithms with quadratic or higher computational 
complexity, such as agglomerative algorithms, drop out quickly. More efficient 
algorithms, such as K-Means EM with linear cost per iteration, still need work to 
scale up to large data sets.  This paper shows that many parameter estimation 
algorithms, including K-Means, K-Harmonic Means and EM, can be recast 
without approximation in terms of Sufficient Statistics, yielding an superior 
speed-up efficiency.  Estimates using today’s workstations and local area network 
technology suggest efficient speed-up to several hundred computers, leading to 
effective scale-up for clustering hundreds of gigabytes of data.  Implementation of 
parallel clustering has been done in a parallel programming language, ZPL.  
Experimental results show above 90% utilization.   

 
Keywords: Parallel Algorithms, Data Mining, Data Clustering, K-Means, K-
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1. Introduction 
Clustering is one of the principle workhorse techniques in the field of data mining.  Its 
purpose is to organize a dataset into a set of groups, or clusters, which contain 
“similar” data items, as measured by some distance function. Example applications of 
clustering include document categorization, scientific data analysis, and 
customer/market segmentation. 

Many algorithms for clustering data have been developed in recent decades, 
however, they all face a major challenge in scaling up to very large database sizes, an 
accelerating trend brought on by advances in computer technology, the Internet, and 
electronic commerce. Clustering algorithms with quadratic (or higher order) 
computational complexity, such as agglomerative algorithms, scale poorly.  Even for 
more efficient algorithms, such as K-Means and  Expectation-Maximization (EM), 
which have linear cost per iteration, research is needed to improve their scalability for 
very large and ever increasing data sets. In this paper, we develop a class of iterative 
parallel parameter estimation algorithms—covering K-Means, K-Harmonic Means, 
and EM algorithms—that are both efficient and accurate. 

There have been several recent publications in scaling up K-Means and EM by 
approximation.  For example, in BIRCH [19] and Microsoft-TR by Bradley et. al.  [4], 
a single scan of the data and subsequent aggregation of each local cluster into 
Sufficient Statistics (SS) enables a data set to be pared down to fit the available 
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memory.  Such algorithms provide an approximation to the original algorithm and 
have been successfully applied to very large datasets.  However, the higher the 
aggregation ratio, the less accurate the result is in general.  As reported in the BIRCH 
paper that the quality of the clustering depends on the original scanning order.  

There is also recent work on non-approximated, parallel versions of K-Means 
[10].  The Kantabutra and Couch algorithm requires re-broadcasting the data set to all 
computers each iteration, which leads to heavy communication overhead.  Their 
analytical and empirical analysis estimates 50% utilization of the processors. The 
technology trend is for processors to improve faster than networks are improving, 
making the network a greater bottleneck in the future. Finally, the number of slave 
computing units in their algorithm is limited to the number of clusters to be found.  

In this paper, we produce a parallel K-Means algorithm that limits inter-processor 
communication to SS only, reducing the network bottleneck.  The dataset is 
partitioned across the memory of the processors and does not need to be 
communicated between iterations.  The number of computing units is not limited in 
any way by the number of clusters sought.  The method applies not only to K-Means, 
but also to other iterative clustering methods, such as K-Harmonic Means and EM.  

There is no approximation introduced by the method; the results are exactly as if 
the original algorithm were run on a single computer.  Further, it is also 
complementary to aggregation techniques (as in BIRCH), and by combining the two 
approaches in a hybrid, even larger data sets can be handled or better accuracy can be 
achieved with less aggregation. 

There has also been work done parallel clustering using special hardware [1] [2].  
The parallel algorithms we present require no special hardware or special networking, 
even though special networking may help further scale up the number of computers 
that can be deployed with high utilization.  We emphasize running the parallel 
clustering algorithm on existing networking structures (LAN) because of practical and 
economic considerations.  The total computing resources in a collection of “small” 
computers, modern “PCs” or desktop workstations, easily exceeds the total computing 
resources available in a supercomputer.  Small computers, which are already 
everywhere, are much more accessible and can even be considered a free resource if 
they can be utilized when they would otherwise be idle. 

An example application of this idea is in on-line commercial product 
recommendations where clustering is involved in calculating the recommendations 
(see collaborative filtering and recommender systems [14][15]).  Large numbers of 
PCs that are used during business hours for processing orders can be used at night for 
updating the clustering of customers and products based on the daily revised sales 
information (customer buying patterns). 

The parallel algorithm presented in this paper is not limited to data clustering 
algorithms.  We use the class of center-based clustering algorithms, which includes K-
Means [11], K-Harmonic Means [18] and EM [5][13], to illustrate the parallel 
algorithm for iterative parameter estimations.  By finding K centers (local high 
densities of data), M = {mi | i=1,…,K}, the data set, S = {xi | i=1,…,N}, can be 
partitioned either into discrete clusters using the Voronoi partition (each data item 
belongs to the center that it is closest to, as in K-Means) or into fuzzy clusters given 
by the local density functions (as in K-Harmonic Means or EM).   

The problem is formulated as an optimization of a performance function, Perf(S, 
M), depending on both the data items and the center locations.  A popular performance 
function for measuring the goodness of a clustering is the sum of the mean-square 
error (MSE) of each data point to its center.  The popular K-Means algorithm attempts 



  

to find a local optimum for this performance function.  The K-Harmonic Means 
(KHM) algorithm optimizes the harmonic average of these distances. KHM is very 
insensitive to the initialization of the centers, a major problem for K-Means. The 
Expectation-Maximization (EM) algorithm, in addition to the centers, optimizes a 
covariance matrix and a set of mixing probabilities. 

The next section presents an abstraction of a class of center-based algorithms and 
the following section presents the parallel algorithm.  Section 4 applies this to three 
examples: K-Means, K-Harmonic Means and EM.  Section 5 gives an analysis of the 
utilization of the computing units, and we conclude in section 6.  
 
2. A Class of Center-Based Algorithms  
Let  Rdim  be the Euclidean space of dimension  dim; S ⊆ Rdim  be a finite subset of data 
of size N = |S|; and  M = {mk  | k=1,…,K}, the set of parameters to be optimized.  (The 
parameter set M consists of K centroids for K-Means, K centers for K-Harmonic 
Means, and  K centers with co-variance matrices and mixing probabilities for EM.)  
We write the performance function and the parameter optimization step for this class 
of algorithms in terms of SS.  The performance function is decomposed as follows:  

Performance Function:  .)),(,......,),(),,((),( 210 ∑ ∑∑
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What is essential here is that f0 depends only on the SS, represented by the sums, 
whereas the remaining fi functions can be computed independently for each data point.  
The detailed form of fi, i=1,…,R, depend on the particular performance function 
considered.  It will become clear when examples of K-Means, K-Harmonic Means and 
EM are given in later sections. 

We write the center-based algorithm, which minimizes the value of the 
performance function over M, as an iterative algorithm in the form of Q SS (I() stands 
for the iterative algorithm, and ∑

∈Sx
jg , j=1,…,Q, stands for SS.): 
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M(u) is the parameter vector after the uth iteration.  We are only interested in algorithms 
that converge: M(u) � M.  The values of the parameters for the 0th iteration, M(0), are 
by initialization.  One method often used is to randomly initialize the parameters 
(centers, covariance matrices and/or mixing probabilities).  There are many different 
ways of initializing the parameters for particular types of center-based algorithms in 
the literature [3].  The computation carried out here will be identical to the traditional, 
sequential equivalent.  The set of quantities 
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is called the global SS of the problem (1)+(2).  As long as these quantities are 
available, the performance function and the new parameter values can be calculated 
and the algorithm can be carried out to the next iteration. We will show in Section 4 
that K-Means, K-Harmonic Means and Expectation-Maximization clustering 
algorithms all belong to this class defined in (1)+(2). 
 
3. Parallelism of Center-Based Algorithms 
This decomposition of center-based algorithms (and many other iterative parameter 
estimation algorithms) leads to a natural parallel structure with minimal need for 



  

communication.  Let L be the number of computing units (with a CPU and local 
memory – PCs, workstations or multi-processor computers, shared memory is not 
required).  To utilize all L units for the calculation of (1)+(2), the data set is 

partitioned into L subsets, LDDDS ∪∪∪= ......21 , and the lth subset, Dl, resides 

on the lth unit.  It is important not to confuse this partition with the clustering: 
a) This partition is arbitrary and has nothing to do with the clustering in the data. 
b) This partition is static.  Data points in Dl, after being loaded into the memory of 
the lth computing unit, need not be moved from one computer to another. (Except for 
the purpose of load balancing among units, whose only effect is on the execution time 
of the processors and does not affect the algorithm.  See Section 5.) 

We need not assume homogeneous processing units. The sizes of the partitions, 
|Di|, besides being constrained by the storage of the individual units, are ideally set to 
be proportional to the speed of the computing units.  Partitioned thus, it will take 
about the same amount of time for each unit to finish its computation on each 
iteration, improving the utilization of all the units. A scaled-down test could be carried 
out on each computing unit in advance to measure the actual speed (do not include the 
time of loading data because it is only loaded once at the beginning) or a load 
balancing over all units could be done at the end of first iteration. 

The calculation is carried out on all L units in parallel.  Each subset, Dl, 
contributes to the refinement of the parameters in M in exactly the same way as the 
algorithm would have been run on a single computer.  Each unit independently 
computes its partial sum of the SS over its data partition. The SS of the lth partition are 
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One of the computing units is chosen to be the Integrator.  It is responsible for sums 
up the SS from all partitions (4), to get the global SS (3); calculates the new parameter 
values, M, from the global SS; evaluates the performance function on the new 
parameter values, (2);  checks the stopping conditions; and informs all units to stop or 
sends the new parameters to all computing units to start the next iteration.  The duties 
of the Integrator may be assigned as a part time job to one of the regular units. There 
may also be more than one computer used as Integrators, possibly organized in a 
hierarchy if the degree of parallelism is sufficiently high. Special networking support 
is also an option. If broadcast is supported efficiently, it may be effective to have 
every node be an Integrator, eliminating one direction of communication. Studies of 
this sort can be found in the parallel computing literature [6][9].   
The Parallel Clustering Algorithm: 
Step 0: Initialization: Partition the data set and load the lth partition to the memory of 

the lth computing unit. Use any preferred algorithm to initialize the para-
meters, {mk}, on the Integrator. 

Step 1: Broadcast the integrated parameter values to all computing units. 
Step 2: Compute at each unit independently the SS of the local data based on (4). 
Step 3: Send SS from all units to the Integrator 
Step 4: Sum up the SS from each unit to get the global SS, calculate the new 

parameter values based on the global SS, and evaluate the performance 
function. If the Stopping condition1 is not met, goto Step 1 for the next 
iteration, else inform all computing units to stop. 

                                                           
1 Typically test for sufficient convergence or the number of iterations. 



  

4. Examples 
This section demonstrates the decomposition for three examples: K-Means, K-
Harmonic Means, and EM.   
 
4.1 K-Means Clustering Algorithm 
K-Means is one of the most popular clustering algorithms ([11][17] and other 
references therein).  The algorithm partitions the data set into K clusters, S = 
(S1,……,SK), by putting each data point into the cluster represented by the center 
nearest to the data point.  K-Means algorithm finds a local optimal set of centers that 
minimizes the total within cluster variance, which is K-Means performance function: 
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where the kth center, mk, is the centroid of the kth partition.  The double summation in 
(5) can instead be expressed as a single summation over all data points, adding only 
the distance to the nearest center expressed by the MIN function below: 
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The K-Means algorithm starts with an initial set of centers and then iterates 
through the following steps:  For each data item, find the closest mk and assign the 
data item to the kth cluster.  The current mk’s are not updated until the next phase (Step 
2).  A proof of optimality can be found in [8]. 
1. Recalculate all the centers.  The kth center becomes the centroid of the kth cluster.  

A proof can be found in [8] that this phase gives the optimal center locations for 
the given partition of data. 

2. Iterate through 1 & 2 until the clusters no longer change significantly. 
After each phase, the performance value never increases and the algorithm 

converges to a local optimum.  More precisely, the algorithm will reach a stable 
partition in a finite number of steps for finite datasets.  The cost per iteration is 
O(K·dim·N).   

The functions for calculating both global and local SS for K-Means are the 0th, 1st 
and 2nd moments of the data on the unit belonging to each cluster as shown in (7).  
Both the K-Means performance function and the new center locations can be 
calculated from these three moments. 
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�k (x) = 1 if  x is closest to mk, otherwise �k (x) = 0 (resolve ties arbitrarily).  The 
summation of these functions over a data set (see (3) and (4)) residing on the lth unit 
gives the count, nk,l, first moment, �k,l, and the second moment, sk,l, of the clusters (this 
is called the CF vector in the BIRCH paper [19]).  The vector {nk,l, �k,l, sk,l, | 
k=1,……,K}, has dimensionality 2·K+K·dim, which is the size of the SS that have to 
be communicated between the Integrator and each computing unit.  

The set of SS presented here is more than sufficient for the simple version of K-
Means algorithm.  The aggregated quantity, �k sk,l, could be sent instead of the 
individual sk,l.  But there are other variations of K-Means performance functions that 
require individual sk,l, for evaluating the performance functions.  Besides, the 
quantities that dominate the communication cost are �k,l. 



  

The lth computing unit collects the SS, { nk,l, �k,l, sk,l, | k=1,……,K }, on the data in 
its own memory,  and then sends them to the Integrator.  The Integrator simply adds 
up the SS from each unit to get the global SS,  
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The leading cost of integration is O(K·dim·L), where L is the number of 
computing units.  The new location of the kth center is given by mk =�k/nk from the 
global SS (this is the I() function in (2)), which is the only information all the 
computing units need to start the next iteration.  The performance function is 

calculated by (proof by direct verification),  ∑
=

=
L

l
kKM sPerf
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. 

The parallel version of the K-Means algorithm gives exactly the same result as 
the original centralized K-Means because both the parallel version and the sequential 
version are based on the same global SS except on how the global SS are collected.   
       
4.2 K-Harmonic Means Clustering Algorithm 

K-Harmonic Means is a clustering algorithm designed by the author [18].  A 
major strength is its insensitivity to the initialization of the centers (cf. K-Means, 
where the dependence on the initialization has been the major problem and many 
authors have tried to address the problem by finding good initializations). 

The iteration step of the K-Harmonic Means algorithm adjusts the new center 
locations to be a weighted average of all x, where the weights are given by  
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(K-Means is similar, except its weights are the nearest-center membership functions, 
making its centers centroids of the cluster.)  Overall then, the recursion equation is 
given by 
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where dx,k =||x – mk|| and s is a constant � 4. The decomposed functions for 
calculating SS (see (3) and (4)) are then 
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Each computing unit collects the SS,  
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on the data in its own memory, and then sends it to the Integrator.  The size of the SS 
vector is K+K·dim (g3 is a matrix).  The Integrator simply adds up the SS from each 
unit to get the global SS.  The new centers are given by the component-wise quotient: 
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which is the only information the units need to start the next iteration.  This 
calculation costs O(K·dim·L).  The updated global centers are sent to each unit for the 
next iteration.   If broadcasting is an option, this is the total cost in time.  If the 
Integrator finds the centers stop moving significantly, the clustering is considered to 
have converged to an optimum and the units are stopped.   
 
4.3 Expectation-Maximization (EM) Clustering Algorithm  
We limit ourselves to the EM algorithm with linear mixing of K bell-shape (Gaussian) 
functions.  Unlike K-Means and K-Harmonic Means in which only the centers are to 
be estimated, the EM algorithm estimates the centers, the co-variance matrices, Σk, 
and the mixing probabilities, p(mk).  The performance function of the EM algorithm is  
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where the vector p =(p1, p2,……, pK) is the mixing probability.  EM algorithm is a 
recursive algorithm with the following two steps:   
E-Step:  Estimating “the percentage of x belonging to the kth cluster”, 
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where p(x|m) is the prior probability with Gaussian distribution, and  p(mk) is the 
mixing probability. 
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M-Step:  With the fuzzy membership function from the E-Step, find the new center 
locations new co-variance matrices and new mixing probabilities that maximize the 
performance function.    
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For details see [5][13].  The functions for calculating the SS are: 
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The vector length (in number of scalars) of the SS is 1+K+K·dim +K·dim2. The global 
SS is also the sum of the SS from all units.  The performance function value is given 
by the first global sufficient statistic.  The global centers are from the component-wise 
“ratio” of the third and the second global SS (see (16)), the co-variance matrices from 
(17) and the mixing probability from (18).  All these quantities, {mk, Σk, p(mk) | k = 
1,……,K}, have to be propagated to all the units at the beginning of each iteration. The 
vector length is K+K·dim +K·dim2. 
 
5. Time/Space Complexities  
The storage required at each node is O(dim·(N/L + K))—the data set S is partitioned 
across the processors and the list of centers M is replicated at each processor. In 



  

contrast, the algorithm in [10] partitions the centers across the processors. Utilization 
is determined by the percentage of time each unit works on its own data to adjust the 
centers and collect SS, vs. the time waiting between sending out the local SS to the 
Integrator and receiving the new global parameters (see Fig. 1).   

When the data size on each unit is far greater than the number of computing units 
(N>>L, which is true in general), the amount of work each unit has to do, 
O(K·dim·N/L), is far greater than the amount of work the Integrator has to do, 
O(K·dim·L).  Therefore, the integration time is marginal compared to the time for 
collecting SS.  The main source of waiting comes from network communication of the 
SS and global parameters.  The ratio between the speed of network communication 
and the speed of the computing units is an important factor for determining the 
utilization (see (19) later).  Since the size of the SS is very small compared with the 
original data size on each unit (see the following table), we will give an example to 
show that the speed ratio between the network transmission and CPU processing of 
current technology is sufficient to support high utilization.  If the network is slower 
(relative to the unit’s CPU speed), the number of units, L, has to be smaller to 
maintain high utilization.  The faster the network, the higher degree of parallelism can 
be achieved for a given utilization target.  Fig. 2 shows the breakdown of four periods 
in each iteration.   Since the parameters sent from the Integrator to all units are the 
same, broadcasting, if supported by the network, may shorten the waiting time of the 
units.  Let td be the unit of time to process one datum, tn be the unit of time to transmit 
one datum, and tc the communication latency for sending an empty message.  The 
utilization U  of the (slave) units can be estimated by (using K-Means as an example), 
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where C, C’, and C” are constants.  The communication latency is shared by all 
O(K·dim) data items that are transmitted together.   When K·dim is so large that the 
latency tc becomes negligible compared with the transmission time ntKC ⋅⋅⋅ dim" , the 

term dim/ ⋅Ktc  on the second line of (19) may be ignored. Both the computational 

cost at each unit and the communication costs grow linearly in dim and K.  Therefore, 
the ratio of the two costs, which is close to the utilization of the units if the starting 
cost of communication is ignored, does not depend on dim and K.   
 
 

 
 
 
 
 

 
 
Fig 1.  The timeline of all the units in one iteration.  Network has no broadcasting feature.  The 
top unit is the Integrator given a lighter load of data.  The slope in period B and D are not same 
in general. Communication time from the Integrator to the units is drawn as sequential 
supposing of no support for broadcasting.  Period A and Period D overlap. 
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The length of each period is determined by the following factors: 
 

Table 1.  The Analysis of Computational Costs (N>>L). 
 The size of  SS 

from each unit (in # 
floating points). 

The size of 
data on each 
unit. 

The cost of 
collecting the SS on 
each unit/iteration. 

The cost of  
integration per 
iteration. 

KM 2·K+K·dim N/L O(K·dim·N/L) O(K·dim·L) 
KHM K+K·dim N/L O(K·dim·N/L) O(K·dim·L) 
EM 1+K+K·dim+K·dim2 N/L O(K·dim2 ·N/L) O(K·dim2 ·L) 

 
6. Experimental Results – Speedup Curves  
The parallel clustering algorithms presented in this paper have been implemented in 
the parallel programming language ZPL [16].  The plots in Fig. 2 show the speed-ups 
as the number of processors change from 1 to 8.  Four different data sizes are used, N 
= 50k, 100k, 500k, and 10M. At N=50,000 points, it takes only 0.24 seconds per 
iteration to cluster on 8 processors.  The dotted line represents 90% speed-up 
efficiency.  The data used in all experiments are randomly generated with uniform 
distribution, which could be any other distribution and has no effect on speed-up for 
the clustering algorithms.  The number of clusters K=100.  The dimensionality dim=2.  
We have shown analytically in Section 5 that the speed-ups are very insensitive to K, 
and dim.  The measurements are taken on 8 identical HP-UX 9000/735’s each with 
208 MB memory sharing a normal 10Mbps Ethernet. The HP 9000/735 has roughly 
the same floating point SPECmarks as the 233 MHz PentiumMMX, for comparison. 

 
Fig 2.  The speedup curves under various  N, and L. 

 
7. Dynamic Load Balancing  

Data items can be moved from one computing unit to another during the period 
(B+C+D) (see Fig. 1) without affecting the correctness of the algorithm.  Moving data 
around during this period to increase the utilization of the units in the future is called 
dynamic load balancing. Dynamic load balancing corrects the initial setup of the load, 
which may not give the best utilization of the computing units, especially if the data 
set consists of sparse vectors with variable numbers of non-zero elements in them.  
For dense vectors, the prediction of calculation time based on the number of data 
vectors is straightforward; a linear scale-up based on the test result from a small 
number of vectors will work well.  But for sparse vectors, the amount of data to be 
loaded on to each machine becomes more difficult to estimate, due to the variation of 



  

the actual vector lengths even though the cost of partitioning and collecting SS on 
each subset of data is still deterministic.  Only the first or maybe a second re-
balancing would be needed.  The necessity of a load re-balancing can be determined 
based on the utilization of the units calculated from the previous iteration.  
 
8. Conclusion 
We restructured the mathematics of a class of clustering algorithms to reveal a 
straightforward parallel implementation based on communicating only a small amount 
of data—SS—yielding highly efficient speed-up and scale-up for very large data sets.  
The ideas presented in this paper apply to iterative parameter estimation algorithms 
where the size of the SS is small relative to the data size.  By the time this paper is 
accepted, we have conducted many experiments.  One of them used 128 loosely 
connected processors.  The experimental results are published in KDD 2000 workshop 
on distributed and parallel computing in Boston [7]. 
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