

Line ar Spe e d -Up for a Paralle l Non-
Approxim ate R e casting of Cente r-Based
Cluste ring Algorith m s, including K-M e ans,
K-H arm onic M e ans, and EM

Ge orge Form an, Bin Z h ang
Softw are Te ch nology Laboratory
H P Laboratorie s Palo Alto
H PL-2000-9 3
July 13th , 2000*

E-m ail: gform an,b z h ang@h pl.h p.com

Expe ctation-
Maxim iz ation,
m ultidim ens ional
data cluste ring, data
m ining,
ve ry large database s,
paralle l algorith m s,
scale -up

Data cluste ring is on e of th e fundam e ntal te ch niques in scie n tific data
analysis and data m ining. It partitions a data se t into groups of sim ilar
ite m s, as m e asured by som e distance m e tric. Ove r th e ye ars, data se t
sizes h ave grow n rapidly w ith th e e xpon ential grow th of com pute r
storage and incre asingly autom ated business and m anufacturing
process es . To cluste r such large data se ts, e fficie n t paralle l algorith m s
are called for, both to reduce th e com putation tim e , and to bring th e
re sources of m ultiple m ach ines to b ear on a give n large proble m in orde r
to scale up th e largest proble m si z e on e can h andle .

W e de scibe a te ch nique for paralle liz ing ce n te r-based data cluste ring
algorith m s. Th e ce n tral ide a is to com m unicate only sufficie n t statistics,
yie lding linear speed-up w ith e xce lle n t e fficie n cy. Th e te ch nique doe s not
involve approxim ation and m ay be used orth ogonally in conjunction w ith
sam pling or aggre gation -based m e th ods, such as BIRCH , to less en th e
quality de gradation of th e ir approxim ation or to h andle large r data se ts.

W e h ave d em onstrated elsew h e re th e d ecom position and th e ore tical
spe e d-up be h aviors for th re e cluste ring algorith m s: K-M e ans, K -
H arm onic M e ans and Expe ctation Maxim iz ation (EM) [Z h ang, H su,
Form an '00]. H e re w e pre s e nt e xpe rim e ntal m e asure m e n ts of th e ir
paralle l b e h aviors, e .g., 9 3% spe e d-up e fficie n cy for EM on a m illion data
points spre ad ove r 128 com pute rs conn ected via 100base T Eth e rn e t.

* Inte rnal Accession Date Only Approved for Exte rnal Publication
 Copyrigh t H e w le tt-Pack ard Com pany 2000

 1

Linear Speed-Up for a Parallel Non-Approximate Recasting of
Center-Based Clustering Algorithms, including

K-Means, K-Harmonic Means, and EM 1

1 ACM SIGKDD Workshop on Distributed and Parallel Knowledge Discovery, KDD-2000, Boston, MA, August 20, 2000.

George Forman and Bin Zhang

Hewlett-Packard Labs, Data Mining Solutions Dept.
1501 Page Mill Rd. MS 1U-4; Palo Alto, CA 94304

gforman,bzhang@hpl.hp.com

July 12, 2000

ABSTRACT

Data clustering is one of the fundamental techniques in scientific
data analysis and data mining. It partitions a data set into groups
of similar items, as measured by some distance metric. Over the
years, data set sizes have grown rapidly with the exponential
growth of computer storage and increasingly automated business
and manufacturing processes. To cluster such large data sets,
efficient parallel algorithms are called for, both to reduce the
computation time, and to bring the resources of multiple machines
to bear on a given large problem in order to scale up the largest
problem size one can handle.

We describe a technique for parallelizing center-based data
clustering algorithms. The central idea is to communicate only
sufficient statistics, yielding linear speed-up with excellent
efficiency. The technique does not involve approximation and
may be used orthogonally in conjunction with sampling or
aggregation-based methods, such as BIRCH, to lessen the quality
degradation of their approximation or to handle larger data sets.

We have demonstrated elsewhere the decomposition and
theoretical speed-up behaviors for three clustering algorithms:
K-Means, K-Harmonic Means and Expectation Maximization
(EM) [Zhang, Hsu, Forman ’00]. Here we present experimental
measurements of their parallel behaviors, e.g., 93% speed-up
efficiency for EM on a million data points spread over 128
computers connected via 100baseT Ethernet.

Keywords
Expectation-Maximization, multidimensional data clustering, data
mining, very large databases, parallel algorithms, scale-up.

1. INTRODUCTION
Multidimensional data clustering is one of the principal tools data
mining, scientific data analysis, and visualization. Its purpose is to
organize a dataset into a set of groups, or clusters, which contain
“similar” data items, as measured by some distance function.
Center-based clustering algorithms iteratively position abstract
‘centers,’ which define a Voronoi partition on the data space (each
data item belongs to the center that it is closest to, as in
K-Means), or into fuzzy clusters given by the local density

functions (as in K-Harmonic Means or EM). Example
applications include document categorization, customer/market
segmentation and exploratory analysis of the US Census data [e.g.
14,12]. The latter represents an example of a very large data set—
an increasing trend brought about by advances in computer
technology, Internet connectivity, and pervasive automation of
science, business, and manufacturing processes.

The many algorithms for data clustering developed in recent
decades all face a major challenge in scaling up to very large
database sizes. Clustering algorithms with quadratic (or higher
order) computational complexity, such as agglomerative algorithms
[7], do not scale up. Even for more efficient algorithms, such as
K-Means and Expectation-Maximization (EM), which have linear
cost per iteration, research is needed to improve their scalability
for ever growing data sets.

In a companion paper [17], we developed a class of iterative
parallel parameter estimation algorithms—covering K-Means [10]
[6], K-Harmonic Means [16], and EM algorithms [4]0—that is
both efficient and operates without approximation of the original
algorithms. For a detailed decomposition and theoretical analysis,
refer to that paper. In this paper, we briefly lay out the parallel
algorithms in Section 2 and discuss our experiments to determine
their empirical speed-up and scale-up behaviors in Section 3. But
first, we provide some background on parallel data-clustering
algorithms.

1.1 Background
There have been several recent publications in scaling up K-Means
and EM by approximation. For example, in BIRCH [18] and in
the technical reports [1][3], a single scan of the data and
subsequent aggregation of each local cluster into a single
representative “point” containing sufficient statistics for the
points it represents enables a data set to be pared down to fit the
available memory. Such algorithms provide an approximation to
the original algorithm and have been successfully applied to very
large datasets. However, the higher the aggregation ratio, the less
accurate the results are in general. It is also reported in the
BIRCH paper that the quality of the clustering depends on the
original scanning order.

 2

There are many papers on cleverly organizing the data set or the
centers to optimize sequential K-Means [e.g. 6,13]. Some of these
optimizations may be combined with the parallel K-Means
presented here to reduce the runtime cost of K-Means on each
processor independently. These types of optimizations typically
demand additional memory, but this can be provided by leveraging
the resources of multiple computers.

There is also recent work on non-approximated, parallel versions
of K-Means. The Kantabutra and Couch algorithm [8] re-
broadcasts the data set to all computers each iteration, which leads
to heavy network loading and significant communication protocol
processing overhead. Their analytical and empirical analysis
estimates 50% utilization of the processors. The technology trend
is for processors to improve faster than networks are improving,
making the network a greater bottleneck in the future. Also, their
algorithm limits the number of computing units to the number of
clusters to be found. The parallel algorithm by Dhillon and
Modha [5] was discovered independently and is an example of the
class of parallel algorithms we described in [17]. This paper
extends their result to 8 times as many processors and covers two
other algorithms.

In our previous paper [17], we described a parallel decomposition
of a class of iterative parameter relaxation methods, which includes
center-based clustering algorithms, that limits inter-processor
communication to sufficient statistics only, reducing the network
bottleneck. The dataset is partitioned randomly across the
memory of the processors and does not need to be transferred
between iterations. Load balancing can be achieved trivially by
migrating data points selected arbitrarily. The number of
computing units is not limited in any way by the number of
clusters sought. There is no approximation introduced by the
method; the results are exactly as if the original algorithm were run
on a single computer. The method can be used in conjunction with
sampling or aggregation techniques (as in BIRCH); by combining
with our approach, even larger data sets can be handled or better
accuracy can be achieved by less aggregation.

We emphasize running the parallel clustering algorithm on existing
networking structures (LAN) because of practical and economic
considerations. The total computing resources in a collection of
'small' computers, modern PCs or desktop workstations, easily
exceeds the total computing resources available in a
supercomputer. Small computers, which are already everywhere,
are much more accessible and can even be considered a free
resource if they can be used when they would otherwise be idle.

2. PARALLEL SUFFICIENT STATISTICS
To find K centers, a center-based data clustering problem is
formulated as an optimization (minimization) of a performance
function, Perf(S, M), depending on both the N D-dimensional
points in the data set S and the K center location estimates M. A
popular performance function for measuring the goodness of a
clustering is the total within-cluster variance, or the sum of the
mean-square error (MSE) of each data point to its center. The K-
Means algorithm attempts to find a local optimum for this
performance function, and is one of the most popular, used widely
across many disciplines for its easily interpretable result. The K-
Harmonic Means (KHM) algorithm optimizes the harmonic
average of these distances. The advantages of KHM are that its
convergence rate can be adjusted with a parameter, and it is highly

insensitive to the initialization of the center locations, a major
problem for K-Means that many authors have tried to address
with clever initializations [2]. The Expectation-Maximization
(EM) algorithm is also widely used and, in addition to the centers,
optimizes a covariance matrix and a set of mixing probabilities.

These three algorithms fit a class of iterative center-based
clustering algorithms that parallelizes as follows:

1. Arbitrarily distribute the N elements of the data set S to the
local memories of a set of P computers.

2. Pick the K initial center location estimates M by any scheme,
such as a random sample. A coherent copy is kept on each
computer throughout the computation.

3. Iterate until the performance function converges, or after a
fixed number of iterations:
3.1. Each node independently computes its contribution to

a set of global sufficient statistics SS, which includes
information for computing the performance function.

3.2. Global reduction (summation across processors) of the
sufficient statistics, followed by broadcasting the global
results back to all nodes.

3.3. Independent local computation to adjust the center
location estimates. The results are identical on each
computer and are exactly the same as the uniprocessor
sequential algorithm would produce.

4. Output all the centers M.

Regarding the distribution of the data set: the initial partitioning is
random and has nothing to do with the clustering structure in the
data. It has no effect on the computed results and is static, unless
one wishes to migrate some data points for load balancing to
enhance speedup efficiency. The sizes of the partitions, besides
being constrained by the storage of the individual units, are ideally
set to be proportional to the speed of the computing units.
Partitioned thus, it will take about the same amount of time for
each unit to finish its computation in each iteration, improving
overall efficiency.

What varies among the individual algorithms are the sufficient
statistics, how they are used to update the centers, and the
performance function:

2.1 K-Means
The K-Means algorithm is a two step iteration corresponding to
steps 3.1 and 3.3 above:
1. For each data item, assign it to the closest center, resolving

ties arbitrarily. A proof can be found in [6] that this phase
gives the optimal partition for the given centers.

2. Recalculate all the centers. Each center is moved to the
geometric centroid of the points assigned to it. A proof can
be found in [6] that this phase gives the optimal center
locations for the given partition of data.

The (local contribution to the) sufficient statistics for this
algorithm consist of (1) for each center, the count and vector sum
of the (local) data points assigned to it, and (2) the sum of the
squared distance from each (local) point to its center—the
performance function. Once the sufficient statistics are globally
totaled, the vector sums divided by the counts determine the
revised center locations.

 3

2.2 K-Harmonic-Means
The K-Harmonic Means iteration step adjusts the new center
locations to be a weighted average over the entire data set, where
the contribution weight for point s∈S to center m∈M is given by

2

2||||
1

||||

1

−

− ∑
∈Mx

c

xs
ms

where ||s-m|| is the distance between the points, and c is a
parameter in the range (2,4] that controls the convergence speed.
(For comparison, in K-Means the weights are membership
functions selecting the nearest center.)

The sufficient statistics for this algorithm are, for each center, the
sum of the weights and the weighted vector sum of the (local) data
points. As before, the quotient of these determines the revised
center locations.

2.3 Expectation-Maximization (EM)
Unlike K-Means and K-Harmonic Means in which only the
centers are to be estimated, the EM algorithm also estimates the
co-variance matrices and the mixing probabilities. It is an iterative
algorithm with the following two steps:

E-Step: Estimate the percentage of s∈S belonging to each cluster
m, p(m|s). This is done entirely locally for each point.

M-Step: With the fuzzy membership function from the E-Step,
find the new center locations, co-variance matrices and mixing
probabilities that maximize the performance function.

The revised center locations are determined by an average over the
entire data set weighted by p(m|s). The sufficient statistics for this
algorithm are, for each center, the sum of the weights, the vector
sum of the weighted (local) data points, and the weighted matrix
sum of sTs for each data point (KD2 doubles); plus a scalar for the
performance function. Due to space limitations, we omit the
details of the mathematics here; please refer to [17].

2.4 Analysis
Table 1 shows the computation and communication workload per
node per iteration for each of the three algorithms. Since
computation scales with N but communication does not, speed-up
efficiency improves as N scales up. Increases in K or D, however,
affect both computation and communication equally; EM scales
both at D2. As a practical matter for clustering, N >> K and N >>
D. Since N is dominant, the bottleneck is computation, and so
increasing K or D will improve speed-up efficiency until the
sufficient statistics run up against the network bandwidth.
Typical message overhead has a large latency cost, but then
handles additional bytes more efficiently. Hence, significant
increases can be withstood before communication slows down
significantly.

Table 1. Comparison of algorithms

Algorithm Computation Communication

K-Means O(N K D / P) 1+K+KD
K-Harmonic Means O(N K D / P) K+KD
EM O(N K D2 / P) 1+K+KD +KD2

3. EXPERIMENTS
The ideal speed-up experiment compares a parallel
implementation against the best sequential implementation
available, though relative speed-up experiments compare only
against the parallel code running on a single processor, where it
wastes some overhead checking whether to send and receive from
its potential neighbors, etc. As groundwork, we compared the
performance of hand-written sequential C code, our parallel code
running on a single processor, and MATLAB generated sequential
C code. MATLAB is a high-level interpreted language and has the
capability to generate C code for compilation. For many,
MATLAB is the tool of choice, and only more so if its compiled
performance is good. We found the parallel code gave the best
uniprocessor performance, so although our comparisons are in fact
relative, the results are true speed-up figures.

We wrote our implementation in the parallel language ZPL [15],
which is especially adept at expressing data-parallel computations.
For example, our ZPL subroutine for K-Means is significantly
shorter and more readable than our sequential C version, which
would inflate and obfuscate substantially were we to add inter-
processor communication code. The ZPL compiler outputs
optimized C code in the single-program multiple-data (SPMD)
paradigm, which we compile and link with the MPI
communication library, providing efficient reduction and broadcast
primitives. Elapsed real-time measurements are taken by
performing a barrier synchronization across all processors before
and after many clustering iterations. We monitor page faults to
make sure we are not exceeding memory capacity.

We ran our experiments on a network of workstations (NOW) so
they would be generalizable to the computing infrastructure
commonly available in business and academic settings. Results on
a specialized multiprocessor with a low-latency, high bandwidth
interconnect would only improve speed-up. We obtained
measurements on a collection of 128 computers with 500 MHz
Pentium III processors connected via 100baseT.

Because of the nature of our parallel algorithms, the actual data set
values have absolutely no bearing on the performance
measurements, unlike BIRCH. Hence, we used random data.

3.1 Speed-Up
Speed-up is computed as the time on a uniprocessor divided by
the time on multiprocessor. Speed-up efficiency is speed-up
divided by the number of processors P. The three figures on the
following page show the speed-up and speed-up efficiency for
each of the three algorithms as we vary the number of processors
from 1 to 128 and data set sizes from 1 to 10 million (less a factor
of ten for the slower algorithm EM), where K=100 and D=2. The
graphs have uniform scales for visual comparison.

Overall, all three algorithms exhibit good linear speed-up. On the
smaller problem size, K-Means loses efficiency at high numbers of
processors. For P=128, there are less than 8000 points per
processor, and each iteration takes about 1/20th of a second.
Communication begins to dominate at this point, but it still
obtains ~70% speedup efficiency. K-Means falls off in efficiency
faster than the other two algorithms because it has significantly
less computation per point that can benefit from parallelism.
KHM was approximately six times slower and EM was over 200
times slower per point/iteration in these measurements.

 4

Figure 1. Speed-up and efficiency curves for K-Means

Figure 2. Speed-up and efficiency curves for K-Harmonic Means

Figure 3. Speed-up and efficiency curves for Expectation-Maximization (EM)

 5

Varying K & D: These results are for K=100 centers and D=2-
dimensional data. Per the discussion in section 2.4, we varied
K=10..1000 and D=2..200, measuring their effect on speedup
efficiency for K-Means on 8 processors networked with a slow 10
Mbps Ethernet. Even with K=1000 and D=200 dimensions
simultaneously, the computation bottleneck prevailed over the
communication, and the speed-up efficiency only improved. At
the low end, with K=10 and D=2, we saw a 7% drop in efficiency
because of the lack of computation to parallelize, not because the
sufficient statistics are large.

3.2 Scale-Up
In data mining with very large databases, the emphasis is on what
the largest manageable data set size is. The question becomes:
given that a single processor can handle data sets up to a given
size, how efficiently can the we scale up the data set if a
proportional number of processors are added simultaneously?
This leads to separate questions for space and time:

Space: We consider only K-Means here—the other algorithms are
similar. The major memory requirements for K-Means expressed
on a per-processor basis are O(ND/P+2KD+2K) 8-byte doubles.
Note that N/P dominates K. So, we expect linear scale-up. To
validate this, we experimentally determined the largest data size N1
(K=100, D=2) that fits on a workstation with 208 MB RAM
without substantial paging. N1=13 million. We repeated this for
eight workstations, finding N8 to be 104 million points (=8*N1),
yielding 100% efficiency, as expected. Similar results apply when
varying K and D.

Time: Given that a data set can be clustered on a uniprocessor in
time T1, how does this scale as we increase the dataset size and
processor pool size simultaneously? This is the question of
relative scale-up, defined as the ratio of time for N points on 1
processor vs. P*N points on P processors.

In the analysis in Table 1, the time per iteration is proportional to
N/P. Hence, multiplying N and P by the same factor should not
change the iteration time. To validate this, we took measurements
of K-Means and EM as we scaled the number of processors
P=1..128 and the data set size N=P⋅N1. (K=100, D=2) For K-
Means, each node has 100,000 points, but since EM runs so much
slower, we gave it just 1000 points per node. The results are
presented in Figure 4. As we expect, the time per iteration is flat.
(Considering the difference in problem sizes, EM is over 200
times slower per data point than K-Means.)

If we scale up the dataset by increasing K or D instead of N (with
N still being dominant), all three algorithms scale similarly, except
that EM is quadratic in D. For EM, a linear increase in the
number of processors cannot hope to keep up with large increases
in D. Fortunately, realistic data sets grow most naturally in N,
occasionally in the number of clusters in the distribution, but
rarely increase dramatically in dimensionality.

Figure 4. Scale-up curves for K-Means and EM.

4. CONCLUSIONS
By restructuring the mathematics of a class of iterative parameter
estimation algorithms, we produce a straightforward parallel
implementation based on communicating only a small amount of
data—sufficient statistics—yielding highly efficient speed-up and
scale-up for very large data sets. Here we have demonstrated the
parallel transformation for three algorithms, and experimentally
evaluated their speed-up efficiency.

Our experiments show that data sets can be effectively scaled up
linearly in computing resources. A practical result is that large
scale data clustering can be efficiently carried out on ordinary
workstations connected via Ethernet, as science and business
organizations commonly have available. Because such machines
are typically heterogeneous in computing power and memory
capacity, load balancing may be added to maximize efficiency.
Fortunately, these algorithms allow fine grain balancing of
arbitrary data points. Practical load balancing on heterogeneous
machines is a topic for future work.

ACKNOWLEDGMENTS
We would like to thank professor Larry Snyder, Brad Chamberlain
and the students of the ZPL Parallel Language and Optimizing
Compiler research project at the University of Washington for
ZPL and their support. Our deepest thanks to Sung-Eun Choi and
the Advanced Computing Lab, Los Alamos National Labs, for
running measurements on their large ‘rockhopper’ Linux cluster.
Thanks also to the anonymous reviewers who helped improve this
paper. We appreciate Douglas Low for cheerfully obtaining the
compiled MATLAB measurements. MATLAB is a trademark of
Mathworks Inc.

 6

REFERENCES

[1] Bradley, P., Fayyad, U. M., and Reina, C.A., “Scaling EM
Clustering to Large Databases,” Microsoft Technical Report,
1998.

[2] Bradley, P., Fayyad, U. M., and Reina, C.A., “Refining
Initial Points for KM Clustering”, Microsoft Technical
Report MSR-TR-98-36, May 1998.

[3] Bradley, P., Fayyad, U. M., and Reina, C.A., “Scaling
Clustering to Large Databases”, KDD98, 1998.

[4] Dempster, A. P., Laird, N.M., and Rubin, D.B., “Miximum
Likelihood from Incomplete Data via the EM Algorithm”,
Journal of the Royal Statistical Society, Series B, 39(1):1-38,
1977.

[5] Dhillon, I.S. and Modha, D.S. “A data clustering algorithm on
distributed memory machines,” ACM SIGKDD Workshop
on Large-Scale Parallel KDD Systems (with KDD99),
August, 1999.

[6] Gersho & Gray, “Vector Quantization and Signal
Compression”, KAP, 1992

[7] Anil K. Jain, Richard C. Dubes, “Algorithms for Clustering
Data (Prentice Hall Advanced Reference Series : Computer
Science)”, Prentice Hall, 1977.

[8] Kantabutra, S. and Couch, A.L., “Parallel K-Means
Clustering Algorithm on NOWs”, NECTEC Technical
Journal, Vol. 1, No. 1, March 1999.

[9] Kaufman, L. and Rousseeuw, P. J., “Finding Groups in Data:
An Introduction to Cluster Analysis”, John Wiley & Sons,
1990.

[10] MacQueen, J. Some methods for classification and analysis
of multivariate observations. Pp. 281-297 in: L. M. Le Cam
& J. Neyman [eds.] Proceedings of the fifth Berkeley
symposium on mathematical statistics and probability, v.1.
University of California Press, Berkeley. xvii + 666 p. 1967.

[11] McLachlan, G. J. and Krishnan, T., “The EM Algorithm and
Extensions.”, John Wiley & Sons, Inc., 1997.

[12] A commercial recommender system,
http://www.netperceptions.com

[13] Pelleg, D. and Moore, A, “Accelerating Exact K-Means
Algorithms with Geometric Reasoning”, KDD-99, Proc. of
the Fifth ACM SIGKDD Intern. Conf. On Knowledge
Discovery and Data Mining, page 277-281.

[14] Ruocco A. and Frieder O., "Clustering and Classification of
Large Document Bases in a Parallel Environment," Journal of
the American Society of Information Science, 48(10),
October 1997.

[15] Snyder, L., “A Programmer's Guide to ZPL (Scientific and
Engineering Computation Series)”, MIT Press; ISBN:
0262692171, 1999. See also:
http://www.cs.washington.edu/research/zpl

[16] Zhang, B. and Hsu, M., “K-Harmonic Means – A Data
Clustering Algorithm”, Hewlett-Packard Labs Technical
Report HPL-1999-124.

[17] Zhang, B., Hsu, M., and Forman, G. “Accurate Recasting of
Parameter Estimation Algorithms using Sufficient Statistics
for Efficient Parallel Speed-up: Demonstrated for Center-
Based Data Clustering Algorithms,” Hewlett-Packard Labs
Technical Report HPL-2000-6. To appear at the 4th
European Conference on Principles and Practice of
Knowledge Discovery in Databases (PKDD), September 13-
16, 2000.

[18] Zhang, T., Ramakrishnan, R., and Livny, M., “BIRCH: an
efficient data clustering method for very large databases”,
ACM SIGMOD Record, Vol. 25, No. 2 (June 1996), Pages
103-114 in: SIGMOD '96.

