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Data cluste ring is on e  of th e  fundam e ntal te ch niques in scie n tific data 
analysis and data m ining.  It partitions a data se t into groups of sim ilar 
ite m s, as m e asured by som e  distance  m e tric.  Ove r th e  ye ars, data se t 
sizes h ave  grow n rapidly w ith  th e  e xpon ential grow th  of com pute r 
storage  and incre asingly autom ated business and m anufacturing 
process es .  To cluste r such  large  data se ts, e fficie n t paralle l algorith m s 
are  called for, both  to reduce  th e  com putation  tim e , and to bring th e  
re sources  of m ultiple  m ach ines to b ear on  a give n  large  proble m  in orde r 
to scale up th e  largest proble m  si z e  on e  can  h andle . 

W e  de scibe  a te ch nique for paralle liz ing ce n te r-based data cluste ring  
algorith m s.  Th e  ce n tral ide a is to com m unicate  only sufficie n t statistics, 
yie lding linear speed-up w ith  e xce lle n t e fficie n cy.  Th e  te ch nique doe s  not 
involve  approxim ation  and m ay be  used  orth ogonally in conjunction  w ith  
sam pling or aggre gation -based  m e th ods, such  as BIRCH , to less en  th e  
quality de gradation  of th e ir approxim ation  or to h andle  large r data se ts. 

W e  h ave  d em onstrated  elsew h e re  th e  d ecom position  and th e ore tical 
spe e d-up be h aviors for th re e  cluste ring algorith m s:  K-M e ans, K -
H arm onic M e ans and Expe ctation  Maxim iz ation  (EM ) [Z h ang, H su, 
Form an '00].  H e re  w e  pre s e nt e xpe rim e ntal m e asure m e n ts of th e ir 
paralle l b e h aviors, e .g., 9 3% spe e d-up e fficie n cy for EM on a m illion data 
points spre ad ove r 128 com pute rs conn ected  via 100base T Eth e rn e t. 
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ABSTRACT 

Data clustering is one of the fundamental techniques in scientific 
data analysis and data mining.  It partitions a data set into groups 
of similar items, as measured by some distance metric. Over the 
years, data set sizes have grown rapidly with the exponential 
growth of computer storage and increasingly automated business 
and manufacturing processes.  To cluster such large data sets, 
efficient parallel algorithms are called for, both to reduce the 
computation time, and to bring the resources of multiple machines 
to bear on a given large problem in order to scale up the largest 
problem size one can handle. 

We describe a technique for parallelizing center-based data 
clustering algorithms. The central idea is to communicate only 
sufficient statistics, yielding linear speed-up with excellent 
efficiency.  The technique does not involve approximation and 
may be used orthogonally in conjunction with sampling or 
aggregation-based methods, such as BIRCH, to lessen the quality 
degradation of their approximation or to handle larger data sets. 

We have demonstrated elsewhere the decomposition and 
theoretical speed-up behaviors for three clustering algorithms: 
K-Means, K-Harmonic Means and Expectation Maximization 
(EM) [Zhang, Hsu, Forman ’00].  Here we present experimental 
measurements of their parallel behaviors, e.g., 93% speed-up 
efficiency for EM on a million data points spread over 128 
computers connected via 100baseT Ethernet. 

Keywords  
Expectation-Maximization, multidimensional data clustering, data 
mining, very large databases, parallel algorithms, scale-up. 

1. INTRODUCTION 
Multidimensional data clustering is one of the principal tools data 
mining, scientific data analysis, and visualization. Its purpose is to 
organize a dataset into a set of groups, or clusters, which contain 
“similar” data items, as measured by some distance function. 
Center-based clustering algorithms iteratively position abstract 
‘centers,’ which define a Voronoi partition on the data space (each 
data item belongs to the center that it is closest to, as in 
K-Means), or into fuzzy clusters given by the local density  

 
 
functions (as in K-Harmonic Means or EM). Example 
applications include document categorization, customer/market 
segmentation and exploratory analysis of the US Census data [e.g. 
14,12]. The latter represents an example of a very large data set—
an increasing trend brought about by advances in computer 
technology, Internet connectivity, and pervasive automation of 
science, business, and manufacturing processes. 

The many algorithms for data clustering developed in recent 
decades all face a major challenge in scaling up to very large 
database sizes. Clustering algorithms with quadratic (or higher 
order) computational complexity, such as agglomerative algorithms 
[7], do not scale up.  Even for more efficient algorithms, such as 
K-Means and Expectation-Maximization (EM), which have linear 
cost per iteration, research is needed to improve their scalability 
for ever growing data sets. 

In a companion paper [17], we developed a class of iterative 
parallel parameter estimation algorithms—covering K-Means [10] 
[6],  K-Harmonic Means [16], and EM algorithms [4]0—that is 
both efficient and operates without approximation of the original 
algorithms.  For a detailed decomposition and theoretical analysis, 
refer to that paper.  In this paper, we briefly lay out the parallel 
algorithms in Section 2 and discuss our experiments to determine 
their empirical speed-up and scale-up behaviors in Section 3. But 
first, we provide some background on parallel data-clustering 
algorithms. 

1.1 Background  
There have been several recent publications in scaling up K-Means 
and EM by approximation.  For example, in BIRCH [18] and in 
the technical reports [1][3], a single scan of the data and 
subsequent aggregation of each local cluster into a single 
representative “point” containing sufficient statistics for the 
points it represents enables a data set to be pared down to fit the 
available memory.  Such algorithms provide an approximation to 
the original algorithm and have been successfully applied to very 
large datasets.  However, the higher the aggregation ratio, the less 
accurate the results are in general.  It is also reported in the 
BIRCH paper that the quality of the clustering depends on the 
original scanning order.  
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There are many papers on cleverly organizing the data set or the 
centers to optimize sequential K-Means [e.g. 6,13].  Some of these 
optimizations may be combined with the parallel K-Means 
presented here to reduce the runtime cost of K-Means on each 
processor independently.  These types of optimizations typically 
demand additional memory, but this can be provided by leveraging 
the resources of multiple computers. 

There is also recent work on non-approximated, parallel versions 
of K-Means.  The Kantabutra and Couch algorithm [8] re-
broadcasts the data set to all computers each iteration, which leads 
to heavy network loading and significant communication protocol 
processing overhead. Their analytical and empirical analysis 
estimates 50% utilization of the processors. The technology trend 
is for processors to improve faster than networks are improving, 
making the network a greater bottleneck in the future. Also, their 
algorithm limits the number of computing units to the number of 
clusters to be found.  The parallel algorithm by Dhillon and 
Modha [5] was discovered independently and is an example of the 
class of parallel algorithms we described in [17]. This paper 
extends their result to 8 times as many processors and covers two 
other algorithms. 

In our previous paper [17], we described a parallel decomposition 
of a class of iterative parameter relaxation methods, which includes 
center-based clustering algorithms, that limits inter-processor 
communication to sufficient statistics only, reducing the network 
bottleneck.  The dataset is partitioned randomly across the 
memory of the processors and does not need to be transferred 
between iterations.  Load balancing can be achieved trivially by 
migrating data points selected arbitrarily.  The number of 
computing units is not limited in any way by the number of 
clusters sought.  There is no approximation introduced by the 
method; the results are exactly as if the original algorithm were run 
on a single computer.  The method can be used in conjunction with 
sampling or aggregation techniques (as in BIRCH); by combining 
with our approach, even larger data sets can be handled or better 
accuracy can be achieved by less aggregation.  

We emphasize running the parallel clustering algorithm on existing 
networking structures (LAN) because of practical and economic 
considerations.  The total computing resources in a collection of 
'small' computers, modern PCs or desktop workstations, easily 
exceeds the total computing resources available in a 
supercomputer. Small computers, which are already everywhere, 
are much more accessible and can even be considered a free 
resource if they can be used when they would otherwise be idle. 

2. PARALLEL  SUFFICIENT  STATISTICS 
To find K centers, a center-based data clustering problem is 
formulated as an optimization (minimization) of a performance 
function, Perf(S, M), depending on both the N  D-dimensional 
points in the data set S and the K center location estimates M.  A 
popular performance function for measuring the goodness of a 
clustering is the total within-cluster variance, or the sum of the 
mean-square error (MSE) of each data point to its center.  The K-
Means algorithm attempts to find a local optimum for this 
performance function, and is one of the most popular, used widely 
across many disciplines for its easily interpretable result.  The K-
Harmonic Means (KHM) algorithm optimizes the harmonic 
average of these distances. The advantages of KHM are that its 
convergence rate can be adjusted with a parameter, and it is highly 

insensitive to the initialization of the center locations, a major 
problem for K-Means that many authors have tried to address 
with clever initializations [2]. The Expectation-Maximization 
(EM) algorithm is also widely used and, in addition to the centers, 
optimizes a covariance matrix and a set of mixing probabilities. 

These three algorithms fit a class of iterative center-based 
clustering algorithms that parallelizes as follows: 

1. Arbitrarily distribute the N elements of the data set S to the 
local memories of a set of P computers. 

2. Pick the K initial center location estimates M by any scheme, 
such as a random sample.  A coherent copy is kept on each 
computer throughout the computation. 

3. Iterate until the performance function converges, or after a 
fixed number of iterations: 
3.1. Each node independently computes its contribution to 

a set of global sufficient statistics  SS, which includes 
information for computing the performance function. 

3.2. Global reduction (summation across processors) of the 
sufficient statistics, followed by broadcasting the global 
results back to all nodes. 

3.3. Independent local computation to adjust the center 
location estimates. The results are identical on each 
computer and are exactly the same as the uniprocessor 
sequential algorithm would produce. 

4. Output all the centers M. 

Regarding the distribution of the data set: the initial partitioning is 
random and has nothing to do with the clustering structure in the 
data. It has no effect on the computed results and is static, unless 
one wishes to migrate some data points for load balancing to 
enhance speedup efficiency. The sizes of the partitions, besides 
being constrained by the storage of the individual units, are ideally 
set to be proportional to the speed of the computing units.  
Partitioned thus, it will take about the same amount of time for 
each unit to finish its computation in each iteration, improving 
overall efficiency.  

What varies among the individual algorithms are the sufficient 
statistics, how they are used to update the centers, and the 
performance function: 

2.1 K-Means  
The K-Means algorithm is a two step iteration corresponding to 
steps 3.1 and 3.3 above: 
1. For each data item, assign it to the closest center, resolving 

ties arbitrarily. A proof can be found in [6] that this phase 
gives the optimal partition for the given centers. 

2. Recalculate all the centers.  Each center is moved to the 
geometric centroid of the points assigned to it. A proof can 
be found in [6] that this phase gives the optimal center 
locations for the given partition of data. 

The (local contribution to the) sufficient statistics for this 
algorithm consist of (1) for each center, the count and vector sum 
of the (local) data points assigned to it, and (2) the sum of the 
squared distance from each (local) point to its center—the 
performance function. Once the sufficient statistics are globally 
totaled, the vector sums divided by the counts determine the 
revised center locations. 
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2.2 K-Harmonic-Means  
The K-Harmonic Means iteration step adjusts the new center 
locations to be a weighted average over the entire data set, where 
the contribution weight for point s∈S  to center m∈M is given by 
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where ||s-m|| is the distance between the points, and c is a 
parameter in the range (2,4] that controls the convergence speed.  
(For comparison, in K-Means the weights are membership 
functions selecting the nearest center.) 

The sufficient statistics for this algorithm are, for each center, the 
sum of the weights and the weighted vector sum of the (local) data 
points. As before, the quotient of these determines the revised 
center locations. 

2.3 Expectation-Maximization (EM) 
Unlike K-Means and K-Harmonic Means in which only the 
centers are to be estimated, the EM algorithm also estimates the 
co-variance matrices and the mixing probabilities. It is an iterative 
algorithm with the following two steps: 

E-Step:  Estimate the percentage of s∈S belonging to each cluster 
m, p(m|s).  This is done entirely locally for each point. 

M-Step:  With the fuzzy membership function from the E-Step, 
find the new center locations, co-variance matrices and mixing 
probabilities that maximize the performance function. 

The revised center locations are determined by an average over the 
entire data set weighted by p(m|s). The sufficient statistics for this 
algorithm are, for each center, the sum of the weights, the vector 
sum of the weighted (local) data points, and the weighted matrix 
sum of sTs for each data point (KD2 doubles); plus a scalar for the 
performance function.  Due to space limitations, we omit the 
details of the mathematics here; please refer to [17]. 

2.4 Analysis 
Table 1 shows the computation and communication workload per 
node per iteration for each of the three algorithms. Since 
computation scales with N but communication does not, speed-up 
efficiency improves as N scales up. Increases in K or D, however, 
affect both computation and communication equally; EM scales 
both at D2. As a practical matter for clustering, N >> K and N >> 
D. Since N is dominant, the bottleneck is computation, and so 
increasing K or D will improve speed-up efficiency until the 
sufficient statistics run up against the network bandwidth. 
Typical message overhead has a large latency cost, but then 
handles additional bytes more efficiently. Hence, significant 
increases can be withstood before communication slows down 
significantly. 

Table 1. Comparison of algorithms 

Algorithm Computation Communication 

K-Means O(N K D / P) 1+K+KD 
K-Harmonic Means O(N K D / P)     K+KD 
EM O(N K D2 / P) 1+K+KD +KD2 

 

3. EXPERIMENTS 
The ideal speed-up experiment compares a parallel 
implementation against the best sequential implementation 
available, though relative speed-up experiments compare only 
against the parallel code running on a single processor, where it 
wastes some overhead checking whether to send and receive from 
its potential neighbors, etc. As groundwork, we compared the 
performance of hand-written sequential C code, our parallel code 
running on a single processor, and MATLAB generated sequential 
C code. MATLAB is a high-level interpreted language and has the 
capability to generate C code for compilation. For many, 
MATLAB is the tool of choice, and only more so if its compiled 
performance is good. We found the parallel code gave the best 
uniprocessor performance, so although our comparisons are in fact 
relative, the results are true speed-up figures.  

We wrote our implementation in the parallel language ZPL [15], 
which is especially adept at expressing data-parallel computations. 
For example, our ZPL subroutine for K-Means is significantly 
shorter and more readable than our sequential C version, which 
would inflate and obfuscate substantially were we to add inter-
processor communication code. The ZPL compiler outputs 
optimized C code in the single-program multiple-data (SPMD) 
paradigm, which we compile and link with the MPI 
communication library, providing efficient reduction and broadcast 
primitives. Elapsed real-time measurements are taken by 
performing a barrier synchronization across all processors before 
and after many clustering iterations. We monitor page faults to 
make sure we are not exceeding memory capacity.  

We ran our experiments on a network of workstations (NOW) so 
they would be generalizable to the computing infrastructure 
commonly available in business and academic settings. Results on 
a specialized multiprocessor with a low-latency, high bandwidth 
interconnect would only improve speed-up. We obtained 
measurements on a collection of 128 computers with 500 MHz 
Pentium III processors connected via 100baseT.  

Because of the nature of our parallel algorithms, the actual data set 
values have absolutely no bearing on the performance 
measurements, unlike BIRCH. Hence, we used random data. 

3.1 Speed-Up 
Speed-up is computed as the time on a uniprocessor divided by 
the time on multiprocessor. Speed-up efficiency is speed-up 
divided by the number of processors P. The three figures on the 
following page show the speed-up and speed-up efficiency for 
each of the three algorithms as we vary the number of processors 
from 1 to 128 and data set sizes from 1 to 10 million (less a factor 
of ten for the slower algorithm EM), where K=100 and D=2. The 
graphs have uniform scales for visual comparison. 

Overall, all three algorithms exhibit good linear speed-up. On the 
smaller problem size, K-Means loses efficiency at high numbers of 
processors. For P=128, there are less than 8000 points per 
processor, and each iteration takes about 1/20th of a second. 
Communication begins to dominate at this point, but it still 
obtains ~70% speedup efficiency. K-Means falls off in efficiency 
faster than the other two algorithms because it has significantly 
less computation per point that can benefit from parallelism. 
KHM was approximately six times slower and EM was over 200 
times slower per point/iteration in these measurements. 
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Figure 1.  Speed-up and efficiency curves for K-Means 

 

 
Figure 2.  Speed-up and efficiency curves for K-Harmonic Means 

 

 
Figure 3.  Speed-up and efficiency curves for Expectation-Maximization (EM)
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Varying K & D: These results are for K=100 centers and D=2-
dimensional data. Per the discussion in section 2.4, we varied 
K=10..1000 and D=2..200, measuring their effect on speedup 
efficiency for K-Means on 8 processors networked with a slow 10 
Mbps Ethernet. Even with K=1000 and D=200 dimensions 
simultaneously, the computation bottleneck prevailed over the 
communication, and the speed-up efficiency only improved. At 
the low end, with K=10 and D=2, we saw a 7% drop in efficiency 
because of the lack of computation to parallelize, not because the 
sufficient statistics are large. 

3.2 Scale-Up 
In data mining with very large databases, the emphasis is on what 
the largest manageable data set size is.  The question becomes: 
given that a single processor can handle data sets up to a given 
size, how efficiently can the we scale up the data set if a 
proportional number of processors are added simultaneously? 
This leads to separate questions for space and time: 

Space: We consider only K-Means here—the other algorithms are 
similar. The major memory requirements for K-Means expressed 
on a per-processor basis are O(ND/P+2KD+2K) 8-byte doubles. 
Note that N/P dominates K. So, we expect linear scale-up. To 
validate this, we experimentally determined the largest data size N1 
(K=100, D=2) that fits on a workstation with 208 MB RAM 
without substantial paging. N1=13 million. We repeated this for 
eight workstations, finding N8 to be 104 million points (=8*N1), 
yielding 100% efficiency, as expected. Similar results apply when 
varying K and D. 

Time: Given that a data set can be clustered on a uniprocessor in 
time T1, how does this scale as we increase the dataset size and 
processor pool size simultaneously? This is the question of 
relative scale-up, defined as the ratio of time for N points on 1 
processor vs. P*N points on P processors.  

In the analysis in Table 1, the time per iteration is proportional to 
N/P. Hence, multiplying N and P by the same factor should not 
change the iteration time. To validate this, we took measurements 
of K-Means and EM as we scaled the number of processors 
P=1..128 and the data set size N=P⋅N1.  (K=100, D=2)  For K-
Means, each node has 100,000 points, but since EM runs so much 
slower, we gave it just 1000 points per node.  The results are 
presented in Figure 4.  As we expect, the time per iteration is flat.  
(Considering the difference in problem sizes, EM is over 200 
times slower per data point than K-Means.) 

If we scale up the dataset by increasing K or D instead of N  (with 
N still being dominant), all three algorithms scale similarly, except 
that EM is quadratic in D.  For EM, a linear increase in the 
number of  processors cannot hope to keep up with large increases 
in D.  Fortunately, realistic data sets grow most naturally in N, 
occasionally in the number of clusters in the distribution, but 
rarely increase dramatically in dimensionality. 

 

Figure 4.  Scale-up curves for K-Means and EM. 

 

4. CONCLUSIONS 
By restructuring the mathematics of a class of iterative parameter 
estimation algorithms, we produce a straightforward parallel 
implementation based on communicating only a small amount of 
data—sufficient statistics—yielding highly efficient speed-up and 
scale-up for very large data sets.  Here we have demonstrated the 
parallel transformation for three algorithms, and experimentally 
evaluated their speed-up efficiency. 

Our experiments show that data sets can be effectively scaled up 
linearly in computing resources. A practical result is that large 
scale data clustering can be efficiently carried out on ordinary 
workstations connected via Ethernet, as science and business 
organizations commonly have available. Because such machines 
are typically heterogeneous in computing power and memory 
capacity, load balancing may be added to maximize efficiency. 
Fortunately, these algorithms allow fine grain balancing of 
arbitrary data points.  Practical load balancing on heterogeneous 
machines is a topic for future work. 
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