

Ne sted Block De codable
Runlength Lim ited Codes

Josh H ogan, Ron M. Roth , Gitit Ruck enste in
H P Laboratorie s Palo Alto
H PL-2000-9 1
July 10th , 2000*

block de codable
e n code rs,
de te rm inistic
e n code rs,
n e sted e ncode rs,
runle n gth -
lim ited
constraints

Conside r a (d 1, k 1)-RLL constraint th at is contain ed in a
(d 2, k 2)-RLL constraint, w h e re k 1 8 2d 1 and d 2 > 0, and fix a
code w ord le n gth q > k 2. It is sh ow n th at w h e n e ve r th e re e xist
block de codable e n code rs w ith code w ord le n gth q for th ose tw o
constraints, th e re e xist such e n code rs w h e re on e is a subgraph
of th e oth e r; furth e rm ore , both e n code rs can b e d ecoded by
e sse n tially th e sam e d ecode r. Spe cifically, a (d 1, k 1)-RLL
constrain ed w ord is de coded by first using a block de code r of th e
(d 2, k 2)-RLL e n code r, and th e n applying a ce rtain function to
th e output of th at de code r.

* Inte rnal Accession Date Only Approved for Exte rnal Publication
 Copyrigh t H e w le tt-Pack ard Com pany 2000

Nested Block Decodable Runlength Limited
Codes

Josh Hogan* Ron M. Rotht

July 10, 2000

Abstract

Gitit Ruckensteint

Consider a (d1, k1)-RLL constraint that is contained in a (d2' k2)-RLL con­
straint, where k1 ~ 2d1 and d2 > 0, and fix a codeword length q > k2• It is
shown that whenever there exist block decodable encoders with codeword length
q for those two constraints, there exist such encoders where one is a subgraph of
the other; furthermore, both encoders can be decoded by essentially the same de­
coder. Specifically, a (d1, kI}-RLL constrained word is decoded by first using a
block decoder of the (d2' k2)-RLL encoder, and then applying a certain function to
the output of that decoder.

Keywords: Block decodable encoders; Deterministic encoders; Nested encoders;
Runlength-limited constraints.

1 Introduction

In secondary storage systems, it is usually required that the recorded binary sequences
satisfy certain constraints. In the most common types of constraints, lower and upper
bounds are set on the runs of 'D's in binary words. Hereafter, by a 'runlength' in a binary

·Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, CA 94304, USA.
tComputer Science Department, Technion, Haifa 32000, Israel. Work done in part while on sabbatical

leave from Technion at Hewlett-Packard Laboratories, Palo Alto, CA 94304, USA, and in part while at
Hewlett-Packard Laboratories-Israel, Haifa, Israel.

*Computer Science Department, Technion, Haifa 32000, Israel. Work done as a summer student of
Hewlett-Packard Laboratories-Israel and Hewlett-Packard Laboratories, Palo Alto, CA 94304, USA.

word we mean the length of a run of 'O's which is delimited either by 'l's or by the
beginning or end of the word. For instance, the runlengths in the word

1000010001000000000010 (1)

are 0,4,3, 10, and 1. The (d, k)-runlength limited (RLL) constraint consists of all binary
words in which each runlength is at most k and-with the exception of the first and last
runlengths-at least d. For example, the current compact disk and DVD standards use
the constraint (d, k) = (2,10) (the word in (1) satisfies this constraint). The set of all
finite binary words that satisfy the (d, k)-RLL constraint will be denoted by S(d,k)'

Arbitrary input sequences need to be encoded into sequences that satisfy the con­
straint. An encoding model that is commonly used for this matter is that of a finite-state
encoder at a fixed rate P : q, where the input binary sequence is divided into blocks of
a fixed length P, and each such block is mapped, in a state-dependent manner, into a
codeword of length q. The sequence of generated codewords forms a word that satisfies
the constraint. A primary requirement from encoders is that we should be able to decode
(reconstruct) the input binary sequence from the output constrained sequence.

Of particular interest are block decodable encoders. Such encoders can be decoded by
a block decoder, which maps every codeword of length q into the respective p-block, inde­
pendently of the context of that codeword within the output sequence of generated code­
words. Whether a block decodable encoder exists depends on the specific constraint-i.e.,
on d and k-and on the parameters P and q. Block decodable encoders are preferable
due to their simple decoding structure and their immunity against error propagation.

In the current emerging technology and development of erasable and writable dense
optical disks, we may face the scenario where recorders will differ in their writing capabil­
ities, thereby requiring different constraints. For example, home recorders might use an
encoder £1 at rate PI : ql for a (d1, kd-RLL constraint; on the other hand, manufacturers
of optical disks may be able to record data using an encoder £2 at a higher rate P2 : q2
for a (d2, k2)-RLL constraint where d2 ~ d1 and k2 ~ k1 .

In spite of the different encoders, we would still like a disk player to have the capability
of decoding both encoding schemes. As an alternative approach to having on board a
separate decoder for each encoder, the authors have recently suggested in [5] that the
encoders £1 and £2 be designed so that their decoders can be combined to a great extent.
To this end, we assume that ql = q2 (and so PI ~ P2)' A decoder 1>2 of £2 will decode­
as before-sequences of the (d2 , k2)-RLL constraint by dividing each sequence of output
symbols into non-overlapping words of length q, and mapping each such word into an
input binary P2-block. A decoder 1>1 of £1 will be obtained by first applying 1>2 to the
sequence of the (d1, kd-RLL constraint to produce a sequence of binary P2-blocks; then,

2

a combinational circuit (function) 'I/J will map each decoded input P2-block into an input
PI-block (see Figure 1). If such a combined decoding scheme exists, we will say that the
encoder £1 is (block) observable from £2 and that (£1, £2) is an observable pair.

q bits Decoder P2 bits Function PI bits
V 2 of £2 'I/J

Decoder VI of £1

Figure 1: Decoding of an observable pair (£1' £2)'

The main result of this work is presented in Sections 3 and 4, where we consider any
two (di , ki)-RLL constraints that satisfy

Given two respective rates Pi : q where q > k2 , we show that whenever there exist
block decodable encoders for those constraints at the given rates, one can construct
such encoders that form an observable pair. Furthermore, the encoders are nested: the
underlying graph presentation of one encoder is contained in the other. Our result relies
to a great extent on the characterization of Gu and Fuja in [4] for the range of parameters
for which there exist (individual) block decodable RLL encoders.

An example for the case (db kd = (3,10) and (d2 , k2) = (2,10), which may have
practical applications, is presented in the appendix.

The next section contains the necessary background material.

2 Background

The definitions we provide next are taken from [5] and [8] and are tailored for the special
case of RLL constraints.

3

2.1 Finite-state encoders

A (finite-state) encoder for S(d,k) at rate p : q is a finite labeled directed graph £ ­
(V, E, L) with a nonempty finite set V of states, a set E of edges, and an edge labeling
L : E -7 {O, 1}q such that the following three conditions hold: (i) there are 2P outgoing
edges from each state in £; (ii) the concatenation of labels of paths in £ are all words in
S(d,k); and (iii) £ is lossless, namely, any two distinct paths with the same initial state
and terminal state generate different words.

A label of an edge will be referred to as a codeword. The set of all codewords that
actually label edges of £ will be denoted by ~(£).

An encoder for S(d,k) at rate p : q exists if and only if

p/q ~ l~~ ~ log2IS(d,k) n {O, 1}il ,

the right-hand side being the capacity of S(d,k) [1]' [10]. It is known that the capacity of
S(d,k) equals the logarithm to base 2 of the largest positive root of the equation

k-d

zk+
1

- L zj = °.
j=O

Table 5.4 in [6, p. 91] lists the capacity values of several (d, k)-RLL constraints.

A tagged encoder for S(d,k) at rate P : q is an encoder £ = (V, E, L) where the
outgoing edges from each state in £ are assigned distinct input tags from {O,1}p. For
tagged encoders, we will extend the definition of the mapping L : E -7 ~(£) to L :
V x {O, 1}P -7 E(£'), where L(u, 8) is the label of the outgoing edge from state u that is
tagged by 8.

Encoding with a tagged encoder £ is carried out as follows. Given a positive integer
f, an unconstrained input binary word of length pf is regarded as an input tag sequence
8 = 8182 ... 8i of length f over {O, 1}p. The sequence 8 defines a path of length f in £'
starting at some prescribed initial state Uo, and the image (encoding) of 8 is the sequence
of codewords W = WIW2 ... Wi that label the edges along that path. The sequence W

is a word of length q£ in S(d,k), and the lossless condition is needed in order to able to
decode the sequence 8 from the word w.

An encoder £ is deterministic if the outgoing edges from any given state are labeled
distinctly. An encoder £ is irreducible if every state is accessible from any other state in
E.

4

Let C1 = (VI, E1, £1) and C2 = (\12, E2 , £2) be encoders (for possibly different con­
straints at possibly different rates). We say that C1 is nested in C2-or that (C1' C2) is a
nested pair-if VI ~ V2 , E 1 ~ E 2 , and £1 is the restriction of £2 to E 1•

Note that encoders are deterministic or nested according to whether their underlying
untagged graphs are.

A tagged encoder is block decodable if edges labeled by the same codeword are tagged
by the same input tag. A block decodable encoder C at rate P : q can be decoded through
a block decoder which is a function V : :E(c) -4 {O, l}P that maps a codeword w to the
input tag assigned to any edge labeled w. A block decodable encoder is necessarily
deterministic (with respect to the labels of the edges).

2.2 Observable encoders

Let C1 be a block decodable encoder for S(dl,kI) at rate PI : q and let C2 be a block
decodable encoder for S(d2,k2) at rate P2 : q such that S(dl,kl) ~ S(d2,k2). Except for
degenerate cases we will always have PI < P2. We say that C1 is (block) observable from
C2 if the following two conditions hold:

1. every sequence of codewords that is generated by a path in C1 can also be generated
in C2, and-

2. a block decoder VI : :E(cd -4 {O,l}Pl of C1 and a block decoder V 2 : :E(C2) -4

{O, 1}p2 of C2 are related for some function 'l/J : {O, 1}P2 -4 {O, 1}Pl by

We say that C1 is weakly-observable from C2 if condition 1 is relaxed to require only that
:E(cd ~ :E(C2)'

We mention that condition 1 (respectively, its relaxed form) allows to assume that
when no errors are present, the decoder V 2 is fed by sequences of codewords (respec­
tively, by individual codewords) that can be generated by C2, even when V2 is applied to
sequences generated by C1. This provides the possibility of incorporating an error detec­
tion mechanism into V 2 : such a mechanism will track sequences (respectively, codewords)
that cannot be generated by C2'

The following example is essentially Example 3.1 in [5] and is repeated here for the
purpose of demonstrating the definitions introduced in this section.

5

Example 2.1 The capacity of the (2, 3)-RLL constraint is approximately 0.2878. An
encoder for 8(2,3) at rate 1: 4 is shown in Figure 2, where the notation s/w on an edge
indicates the input tag s and the codeword (label) w that are associated with that edge.
This encoder, denoted £1, is a block decodable encoder for 8(2,3) at rate 1: 4, with the
following block decoder V 1 : ~(£d -t {O, I}:

0/0001 0/0100

Figure 2: Rate1: 4 finite-state encoder for 8(2,3)'

The capacity of the (1, 3)-RLL constraint is approximately 0.5515, and an encoder for
8(1,3) at rate 2 : 4 is shown in Figure 3. This encoder, denoted £2, is a block decodable
encoder for 8(1,3) at rate 2 : 4, with a block decoder V 2 : ~(£2) -t {OO, 01,1O,11} defined
by

V 2(0001) = V 2(1010) = 00, V 2(00l0) = V 2(100l) = 01,

V 2 (0100) = 10, and V 2 (0l01) = 11.

It is easy to see that £1 is nested in £2' Furthermore, £1 is observable from £2. Indeed,
let 'IjJ : {OO, 01, 1O} -t {O, I} be given by

'IjJ(00) = 'IjJ(10) = 0 and 'IjJ(01) = 1 .

Then, V 1(w) = 'IjJ(V2 (w)) for every w E {0001, 0010, 0100, 100l}.

We can transform £2 into another encoder for 8(1,3) by eliminating state {3 in £2 and
redirecting all its incoming edges (excluding self-loops) into state 'Y. This yields a two­
state encoder c~ for 8(1,3) at rate 2 : 4. Since E(cD = E(C2), the encoder c~ can be

6

10/0100

Figure 3: Rate 2 : 4 finite-state encoder for 5(1,3)'

decoded by the same block decoder 1)2, and £1 is weakly-observable from £~. On the
other hand, £1 is not (fully) observable from £~: the codeword sequence '00100010' can
be generated in £1 but not in £~. 0

We refer the reader to [5] for a second example (Example 3.3 therein) of a block
decodable encoder for 5(3,7) at rate 5 : 14, which is observable from a block decodable
encoder for 5(2,13) at rate 7 : 14. 0

In the appendix, we present a block decodable encoder for 5(3,10) at rate 6 : 16, which
is weakly-observable from a block decodable encoder for 5(2,10) at rate 8 : 16. In addition
to producing sequences that satisfy the respective constraints, these encoders also possess
certain properties that allow for DC control (see [6, Section 2.5], [7], [9]).

It was shown by Franaszek in [3] that there exists a deterministic encoder for 5(d,k)

at rate p : q if and only if there exists a block decodable encoder for the same con­
straint at the same rate. Gu and Fuja obtained in [4] an almost-full characterization
of the parameters p, q, d, and k for which there exist deterministic-and hence block
decodable-encoders for 5(d,k) at rate p : q (see Section 3 below).

In [5], a wider notion of observability was defined which applies to encoders that are
not necessarily block decodable. It was then shown in [5] that for irreducible deterministic
encoders, the requirement of having nested encoders is equivalent to having observable
encoders (for the respective constraints at the same rates). On the other hand, it was
demonstrated in [5, Example 3.2] that there are cases where there exist nested pairs of
block decodable encoders, yet there are no observable pairs of block decodable encoders.

7

3 Observable encoders for d2 > 1

Denote by IN the set of all nonnegative integers. Given a (d, k)-RLL constraint, a positive
integer q, and two sets R, R' ~ IN, let £(q, d, k, R, R') be the set of all words of length
q in S(d,k) in which the first runlength (of 'D's) is in R and last runlength is in R'. For
r E IN, we will use the notation "2::r" to denote the set {x E IN : x 2:: r}. Similar
notations such as "<r" or "=r" will have their obvious meanings.

Next we present a construction of a block decodable encoder £1 for S(dl,kI) at rate
PI : q that is observable from a block decodable encoder £2 for S(d2,k2) at rate P2 : q. Our
construction assumes that the parameters di , ki , and q satisfy the chain of inequalities

(2)

note that the second and fourth inequalities are necessary for having S(dl,kl) ~ S(d2,k2).

In addition, by [4] it follows that for i = 1,2 it is required that

in order to have block decodable encoders at rates Pi : q for S(di,k;) (regardless of observ­
ability). To avoid degenerate cases, we will further assume that a strict inequality holds
in (2) in either the second or the fourth inequality (or both), and that PI < P2.

(The condition (2) is sufficient for our construction to work, and it may as well be the
case that this condition can be relaxed, although we do not discuss such a relaxation here.
Also observe that the first and third inequalities in (2) appear also in the Beenker-Immink
construction [2], which can be viewed as a predecessor of the Gu-Fuja construction [4].)

We will assume in this section that d2 > 1, deferring the treatment of the case d2 = 1
to Section 4.

For i = 1,2, we define ni = 2Pi , Ii = {0,1, ... ,ni-1}, and ~i = ki - di + 1; so,
n2 2:: 2nl and ~2 > ~1. We adopt the convention that bit locations in a binary word
are indexed starting with o. The first runlength in a binary word w will be denoted by
f(w).

3.1 Encoding tables

Our encoders, £1 and £2, are defined through two tables, 7 and A, each consisting of n2
distinct words of length q. Only the first nl entries in each table will be used by £1. The
tables are described next, followed by the definition of the encoders in Section 3.2.

8

For i E {I, 2} and a word W E £(q, d2, k2, >.6.i, <k2), let 'Pi(W) be the word obtained
from W by inverting the '0' at location £(w) - .6.i. The entries in T = (T(j)).

JEY 2

are distinct elements of £(q, d2, k2, ?:.d2, <k2) such that the following two conditions are
satisfied for j E 1'1:

1. T(j) E £(q, d1 , k1 , ?:.d1 , <kd.

2. If T(j) E £(q, d1 , k1 , ?:..6.1 + d2, <k1) then T(j + nl) = 'Pl(T(j)).

Hereafter, we will use the short-hand notation £(j) for £(T(j)). We will also let p(w)
denote the word obtained from a binary word w by inverting the bit at location 0 in w.

Clearly, there is much freedom left in setting the entries in T. For example, we
may fill the first nl entries in T consecutively by words from £(q, d1 , k1 , =r, <kd for
descending values of r, starting with r = k1-1 and ending with r = d1• Then, we
continue filling the table consecutively with elements from £(q, d1 , k1 , =r, <k1) for r =
d1-1, dl-2, ... , d2 so that T(j +nd = 'PI (T(j)), until we reach the largest index j E 1'1
that satisfies T(j) E £(q, d1, k1, ?:..6.1 + d2, <kd. The remaining entries in T are words
from £(q, d2, k2, ?:.d2, <k2) that haven't been inserted so far.

The entries in A = (A(j)). are distinct elements of £(q, d2, k2, ::;1, <k2) that
JEY 2

satisfy the following conditions:

3. A(j) E £(q, d1, k1, ::;1, <kd for j E 1'1'

4. If £(j) = .6.i + 1 for an index j E 1'i then A(j) = 'Pi(T(j)).

For example, for every JET2, we can let A(j) be p(T(j)) except when £(j) E
{d2 , .6.2 +1} or when j E T 1 and £(j) E {d1 , .6.1+1}. For the remaining undetermined
entries (i.e., when £(j) = d2 or when JET1 and £(j) = dd, the relationship between the
entries A(j) and T(j) might be somewhat more involved.

Next we show (Proposition 3.1 below) that tables T and A that satisfy conditions 1-4
can indeed be constructed. We first point out that if we deleted condition 4, then the
existence of T and A would follow from the Gu-Fuja construction [4]. Indeed, Lemma A5
in [4] states that

I£(q, d, k, ?:.d, <k)1 ::; I£(q, d, k, ::;1, <k)1

whenever 1 ::; d < k and q ?:. d. Recalling that nl and n2 are required to satisfy

(3)

9

there are sufficiently many elements in £(q, d1, k1, ~dl, <kd and £(q, db k1, ~1, <k1)

which can be assigned to the first nl entries in T and A, respectively, while satisfying
conditions 1 and 3. Also, there are enough remaining elements in £(q, d2, k2~d2, <k2)
and £(q, d2, k2, ~1, <k2) that can be used for the remaining entries of T and A; note
that to this end, condition 2 poses no impediment (recall that n2 ~ 2nd.

It is condition 4 where the Gu-Fuja result needs to be refined, since this condition
introduces cases where certain elements of £(q, d1 , k1 , ::;;1, <kd are forced to be assigned
to entries A(j) while the respective entries T(j) are not in £(q, d1, k1, ~dl, <k1) (hence,
the inequality I£(q, d1, k1, ~dl, <kdl ~ I£(q, d1, k1 , ~1, <kdl does not guarantee that we
have enough available elements in £(q, d1, k1, ~1, <k1) that can be assigned to the first
nl entries in A). By condition 4, such a situation occurs when (and only when) T(j)
belongs to the set

Since the image under 'P2 of each word w E X is in £(q, d1, k1 , =1, <kt}, it follows that
w violates the (d1, kd-RLL constraint only in its first runlength, which may be equal to
either k1 + lor k1 + 2. This implies that X is nonempty only if ~2 E {kI, k1+1} and

if ~2 = k1

if ~2 = k1 + 1

Since I£(t, d1 , k1 , ~dl, <kt}1 is nondecreasing with t, we thus have

(4)

Proposition 3.1 Suppose that

and that (3) is satisfied by nl and n2 where n2 ~ 2nl' There exist tables

each consisting of distinct entries, such that conditions 1-4 hold.

Proof. In view of the foregoing discussion, it suffices to show that

10

Letting J-L(q) stand for l.c(q, d1, k1, ?:.dI, <k1)!, we first note that

kl+l
J-L(q) = L J-L(q-i).

i=dl +1

Substituting q-1 for q, we get

kl+l kl+2
J-L(q-1) = L J-L(q-1-i) = L J-L(q-i).

i=dl+l i=dl+2

We now subtract respective sides of (5) and (6) to yield

(5)

(6)

with the inequality holding since t t--+ J-L(t) is nondecreasing. Noting that J-L(q-i) =
1.c(q,d1,k1,=i-1,<k1)1 for i = 1,2, we thus obtain from (7),

J-L(q) < J-L(q-1) + J-L(q-2) - J-L(q-k l -2)
l.c(q, d1, k1, =0, <k1)1 + l.c(q, d1, k1, =1, <k1)1- J-L(q-k l -2)

< l.c(q, d1, k1, ~1, <k1)1 - lXI,

where the second equality follows from (4). This leads to the desired result. D

Following arguments similar to those in [4], it can be shown that through a proper
ordering of the entries in T and A, enumerative coding can be applied to compute
efficiently the values T(j) and A(j) for any given index j [6, p. 117]. In practice, the
tables are generated only once and then hard-wired into the encoders.

3.2 Encoder graphs

For i = 1,2, the tagged encoder Ci = (Vi, E i , Li) consists of a set of ki states,

Vi = {O, 1, ... , ki -1} .

We regard the input tags as integers j E Ii and define the labeling L i : Vi X Ii -t
.c(q, di , ki , ?:.O, <ki) for every u E Vi and j E Ii as follows:

if k i - f(j) ?:. u and u < d1

if ki - f(j) < u < di

if {ki - f(j) < u and u ?:. di } or u?:. d1

11

The terminal state of an edge labeled w is v, where v equals the last runlength in w.
Note that Li(u,j) is well-defined when ki - £(j) < u < di: in this case we always have
£(j) > ~i and, so, T(j) belongs to the domain of 'Pi.

One can readily verify that each sequence of codewords that is generated by Ei forms
a binary word that belongs to S(di,ki)'

Lemma 3.2 For i = 1,2, the set ~(Ei) can be partitioned into ~(Ei) = Ii U 4?i U Ai,
where

Ti = {T(j)} JEIi ' and Ai = {AU)} . .
JEIi

In particular, for every w E ~(Ei),

if £(w) 2 di

if 1 < £(w) < di

if £(w) :::; 1

Proof. By the definition of the labeling Li : Vi X T i --+ £(q, di, ki, 20, <ki) it follows
that ~(Ei) ~ Ii U 4?~ U Ai, where

4?~ = { ·(T(.))}
z 'Pz J JEIi : l(j»~i •

Furthermore, by the way A is constructed (condition 4) we have

4?~ \ 4? = {lfl·(T(JO))} C A·
z Z.,..-Z JEIi : l(j)=~i+l - z·

Therefore, ~(Ei) ~ Ti U 4?i U Ai.

Conversely, we have Li(O, j) = T(j) and Li(d1 , j) = A(j) for every j E T i, and
Li(ki-£(j)+l, j) = <pi(T(j)) when £(j) > ~i. Therefore, Ti U 4?~ U Ai ~ ~(Ei).

The sets Ti , <Pi, and Ai are disjoint, thereby forming a partition: from the definition
of T, <Pi, and A, the first runlength of any given word w E ~(Ei) determines the partition
element to which w belongs. 0

When u > v 2 d1, states u and v in Ei are in fact identical: in these states, the
outgoing edges that are tagged by j have the same label, A(j), and therefore also the
same terminal state (which is determined by the last runlength of A(j)). Therefore, we
can merge the states d1, d1+1, ... , k i -1 by deleting them and re-directing their incoming
edges into one new state, [d1 , ki -1], whose outgoing edges-with their tagging, labeling,

12

and terminal states-are the same as those in u = d1 • This turns each encoder £i into
an encoder with only d1 + 1 states. (Furthermore, if we ignored observability and were
interested only in constructing a block decodable encoder for S(d2,k2h then £2 could be
simplified to have at most d2 + 1 states.) Yet, for clarity, we will maintain hereafter the
definition of £i in its unmerged form, namely, having ki states.

(In the typical case where ni is strictly smaller than I£(q, di, ki , ?:.di , <ki)1 we have
more flexibility in selecting the codewords when constructing the encoders. For example,
the codewords can sometimes be restricted to be from a set £(q, di , ki , ?:.O, <r) where r
is now smaller than ki . In fact, this is the case in the Beenker-Immink construction [2]'
where we have r = ~i, and this will be done in the appendix, where r = 9 while
ki = 10. The additional flexibility in selecting the codewords may allow more merging
opportunities, thereby reducing the number of resulting states. The reader is referred
to [8, Section 4.6.1] for more general settings in which merging can be applied.)

3.3 Decoding

For i = 1, 2 let
Vi : ~(£i) --t Y i

be defined as follows. For a codeword w E ~(£i), let w' be obtained from w by inverting
the (first) '1' at location £(w). Then,

{

T(j) = W

Vi(w) = index j for which T(j) = w'
A(j) = w

Lemma 3.3 Vi is a block decoder of £io

if £(w) ?:. di

if 1 < £(w) < di

if £(w) ~ 1
(8)

Proof. This follows directly from the partition in Lemma 3.2.

Let
V : ~(£d U ~(£2) --t Y 2

be the following extension of '02 to the domain ~(£d U ~(£2):

o

{

T(j) = w
V(w) = index j for which 7(j) = w'

A(j) = w

13

if £(w) ?:. d2

if 1 < £(w) < d2

if £(w) ~ 1
(9)

Obviously, D2(w) = D(w) for every w E ~(t'2)' Note that the domains of D and D2
might differ, since ~(t'd is not necessarily a subset of ~(t'2)' This means that (t'1' t'2) is
not necessarily a weakly-observable pair.

(Indeed, suppose that d2 > 2 and let j Ell be such that ~1 + 1 < f(T(j)) < ~1 +d2.
Consider the word w = 'PI (T(j)). On the one hand, Lemma 3.2 implies that w E ~(t'1)'

On the other hand, since 1 < f(w) < d2 , the word w is neither an entry in A nor in T;
furthermore, the second runlength in w is ~1 -1 and, as such, w cannot be in the range
of 'P2. Hence, it follows from Lemma 3.2 that w rt ~(t'2)')

Yet, the next lemma will show that we are nearly done in obtaining a weakly­
observable pair.

Let 'l/Jrnod : 12 -+ 11 map each integer in 12 to its remainder in 11 when divided by n1'
That is, recalling that ni = 2Pi , the function 'l/Jrnod chops off the P2 - PI most-significant
bits of the binary representation of its argument.

Lemma 3.4 D1(w) = 'l/Jrnod(D(w)) for every w E ~(t'd.

Proof. Let w be a word in ~(t'd. Clearly, D(w) = D1(w) whenever f(w) ~ d1 or
f(w) < d2. Assume now that 1 < d2 ~ f(w) < d1 and let jEll be the value of V 1(w).
In this case we have w = 'P1(T(j)) where T(j) E £(q, d1,k1,~~1 +d2, <kd. By the way
T is constructed it follows that T(j + n1) = 'P1(T(j)) = w and, so, j = V(w) - n1 =
'l/Jrnod(V(W)). 0

We may interpret Lemma 3.4 as stating that t'1 is 'almost observable' from t'2: indeed,
D, when restricted to the domain ~(t'2)' is a decoder of t'2'

3.4 Incorporating full observability

We next modify the encoder t'2 to obtain (full) observability. Specifically, we construct
a tagged encoder t'~ = (V;, E~, L~) with V; = \12, where each state has n2 outgoing edges
that are tagged by T 2. The labeling L~ : V2 x 12 -+ £(q, d2,k2, ~O, <k2) is defined for
every (u, j) E \12 x T 2 as follows:

L' (u J') = { 'PI (T(~))
2' L2(U,J)

if JET1 and d1 - d2 ::; k1 - f(j) < u < d1
otherwise

The terminal state of an edge labeled w in t'~ is a state v, where v equals the last
runlength in w.

14

We first need to establish that £~ is an encoder for S(d2,k2)' By construction, each
state in £~ has n2 outgoing edges, and it is easy to see that £~ generates only sequences
in S(d2,k2)' The next lemma implies the losslessness of £~.

Lemma 3.5 (The untagged version of) £2 is deterministic.

Proof. Suppose to the contrary that there is a state u E VI and two input tags,
j E 11 and j' E 12 \ 11, such that d1- d2 ::; k1- i(j) < u < d1 and

Using the notations of Lemma 3.2, this implies that 'PI (T(j)) E <PI n (T2 U <P2 U A2). Since
the first runlength of each word in <PI is greater than 1 and the second runlength equals
~1-1, the set <PI intersects with neither A2 nor <P2' It follows that 'P1(T(j» E <PI nT2 ,

which occurs only when jf = j + n1 and 'PI (T(j» = T(j'). This, in turn, implies

Hence, k1- i(j) < d1- d2 , thus contradicting our assumption on j.

Lemma 3.6 (The untagged version of) £1 is nested in £~.

o

Proof. Given (u, j) E Vi XII, we show that there exists jf E 12 such that L~ (u, j') =
L1(u,j). To this end, we distinguish between several cases.

Case 1: k1- i(j) ~ u and u < d1. In this case we have L~(u,j) = L2(u,j) = T(j) =
L 1(u,j).

Case 2: d1- d2 ~ k1- f(j) < U < d1. Here we have L~(u,j) = 'P1(T(j» = L1(u,j).

Case 3: k1 - f(j) < d1- d2 and k1- f(j) < u < d1. In this range,

which, in turn, implies that T(j + nd = 'P1(T(j» and that

Hence,

15

where in the last equality we make use of the condition k1 - f(j) < u < d1•

Case 4: u 2:: d1• Here we have, L~(u,j) = L2 (u,j) = A(j) = L1 (u,j).

It follows from all cases that every codeword that can be generated from state u in
£1 can also be generated from state u in £~, while terminating in the same state. This
implies that £1 is nested in £~. 0

We point out that even though £1 is nested in £~, the assignment of input tags to
codewords may differ in the two encoders. In fact, from the proof of Lemma 3.6 we
see that such a difference occurs in (and only in) case 3, where we have L 1(u,j) =
L~(u,j +nd; that is, edges labeled by L1(u,j) are assigned the input tag j in £1 and the
input tag j' = j + n1 in £~. It follows that if V~ : E(£~) --t T 2 is a block decoder of £~

then the block decoder of £1 satisfies V 1(w) = 7/Jmod(V~(W)) for every w E E(£l)' One
can readily check that a block decoder of £~ is obtained by restricting the mapping V
in (9) to the domain E(£~). Hence, we reach the following conclusion.

Proposition 3.7 (t\, £~) is a nested and observable pair.

4 The case d2 = 1

Our construction for the case d2 = 1 follows the framework presented in Section 3, with
a modification in the way the tables are constructed. The case d1 = 1 is treated in
Section 4.1, while the construction for larger values of d1 is presented in Section 4.2.

In this case we have ~i = ki ; so, conditions 2 and 4 on T and A in Section 3.1 become
vacuous. On the other hand, both T and A may now contain entries whose first runlength
is 1; so, we will require that the two tables coincide on such entries. Specifically, we
require that each ofthe tables T and A consist of distinct entries such that the following
conditions hold for i = 1,2 and every j E T i :

1. T(j) E £(q, 1, ki , 2::1, <ki).

2. If f(j) = 1 then A(j) = T(j).

3. If f(j) > 1 then A(j) E £(q, 1, ki , =0, <ki).

16

For example, we can let A(j) = p(7(j)) whenever f(j) > l.

Given such tables, the encoders are defined as in Section 3.2. For di = 1, the labeling
L i : Vi x Ii -t ~(£i) reduces to

if u = 0
ifu> 0

(10)
if l(w) ~ 1
if l(w) = 0 '

It follows that encoder £1 is nested in £2; furthermore, edges in the two encoders that are
labeled by the same codewords have the same input tags. Note that the states of each
encoder £i can be merged into two states, 0 and [1, ki-l].

A block decoder V 2 : ~(£2) -t 12 of £2 is given by

V 2 (w) = index j for which {~g~ :
and a block decoder of £1 is obtained by restricting the domain of V 2 to ~(£1)'

4.2 dl > 1 and d2 = 1

In this case, the table A is not shared by the two encoders. Specifically, we define three
tables, T = (T(j)). ,A = (A(j)). ,and Al = (AI (j) '\ . : while T and A are

JEl2 JEl2) JEll
still accessed by £2 and the first nl entries in T are accessed by £1, the latter encoder
will now access Al instead of the first nl entries in A.

The entries in T are distinct elements of £(q, 1, k2 , ~1, <k2), and the entries in Al
are distinct elements of £(q, d1 , k1 , :::;1, <k1) such that the following conditions hold for
every j E 11:

1'. 7(j) E £(q, d1 , k 1 , ?d1 , <kd·

2'. If T(j) E £(q, d1 , k1 , ?.6.1 + 1, <k1) then T(j + nd = CPl (T(j)).

3'. If l(j) (j. {d1 ,.6.1 + I} then A 1(j) = p(T(j)).

4'. If f(j) =.6.1 + 1 then A 1(j) = CPl(T(j)).

5'. If A 1(j) E £(q, d1 , k1 , =1, <kd then T(j + nd = A 1(j).

Conditions l' through 4' have their counterparts in Section 3.1 (with Al now replacing
A), except that condition 3' is now stronger. Note that since l(j) can never take the
value .6.2 + 1 = k2 + 1, condition 4' is simpler than condition 4 in Section 3.1.

17

Condition 5' is new and may affect the value ofT(j+nl) only when f(j) E {db ~1+1}.

The inequality n2 ~ l.c(q, 1, k2 , 2:1, <k2)1 guarantees that there are sufficiently many
distinct elements in £(q, 1, k2, ~1, <k2) which can be inserted in T, and the Gu-Fuja
construction allows to fill in the tables T and Al so that conditions 1'-5' hold.

The table A consists of distinct elements of .c(q, 1, k2 , ~1, <k2) that satisfy the fol­
lowing conditions for every j E Y 2:

6'. If A1(j) E .c(q,d1,k1,=0,<kd for j E Y1 then A(j) = A1(j).

7'. If f(j) = 1 then A(j) = T(j).

8'. If f(j) > 1 then A(j) E .c(q, 1, k2 , =0, <k2).

For example, when f(j) > 1, we can satisfy condition 8' by letting A(j) = p(T(j)),
unless A(j') = A1(j') = p(T(j)) for some j' E Y1 \ {j}. By conditions 3' and 4', the
excluded case can occur only when f(j') = d1, where instead we can let A(j) be p(T(j')).
Note that when j E Y1 and f(j) ¢ {dl,~l + I}, conditions 3',6', and 8' become

Al (j) = A(j) = p(T(j)) ,

and when j E Y1 and f(j) = ~l + 1, conditions 2',4',5' and 7' become

Irrespective of the value of f(j), we have

A1(j) E {A(j), A(j + nd} for every j E Y1 . (11)

The encoders Ci = (Vi, Ei, Li) are now defined as in Section 3.2, except that Cl now
accesses Al instead of A. That is, the labeling L 1 : Vi x Y 1 -t ~(cd is given by

if k1 - f(j) ~ u and u < d1

if k1 - f(j) < u < d1

if u 2: d1

if k2 - f(j) 2: u and u < d1

if k2 - f(j) < u or u 2: d1

A block decoder VI of Cl is obtained by substituting Al for A in (8), and a block
decoder V 2 of C2 is given by (10).

18

Lemma 4.1 (£1,£2) is a nested pair.

Proof. As was the case in the proof of Lemma 3.6, we show that for every (u, j) E
Vi X11 there is j' E 12 such that L 2 (u, j') = L 1(u, j).

Case 1: k1-l(j) ~ u and u < d1. In this case we have L1(u,j) = L2 (u,i) = 7(j).

Case 2: k1 - l(j) < u < d1• Here we have

L1(u,j) = <PI (7(j)) = 7(j + nr) = L2(u,j + nr) ,

where the last equality follows from

Case 3: u ~ d1 . By (11) we have,

L1(u,i) = A1(j) E {A(j),A(j+n1)}.

Hence, L1(u,j) E {L2 (u,i),L2(u,j+n1)}.

Lemma 4.2 'D1(w) = 'l/Jrnod('D2(W)) for every w E ~(E1).

Proof. Let i = 'D1(w) for a word w E ~(Er). Then,

o

{

7(j)
w = <PI (7(j))

A1(j)
A 1(j)

Therefore, 'D2 (w) E {i,i + nr}.

7(j + nr)
7(j + nr)

- A(j)

if l(w) ~ d1

if1 < l(w) < d1

if l(w) = 1
ifl(w)=0

o
The following result combines Lemmas 4.1 and 4.2.

Proposition 4.3 (E1, £2) is a nested and observable pair.

19

Appendix: (3, lO)-RLL and (2, lO)-RLL encoders

We describe here a block decodable (3,10)-RLL encoder £(3,10) at rate 6 : 16 which is
weakly-observable from a block decodable (2, lO)-RLL encoder £(2,10) at rate 8 : 16 (the
respective capacities of the constraints are approximately 0.4460 and 0.5418). Depending
on the encoder state, certain input tags can map to two codewords which differ in their
parity (odd/even) number of l's. This freedom allows to control the DC level of the
recorded signal [6]. Such a provision is present also in the compact disk and DVD coding
schemes [7] (yet, the encoding rate in the compact disk is 8 : 17, and the encoder in the
DVD standard is not block decodable).

The encoders herein have been obtained by combining the method presented in this
paper with the one in [9] (in fact, the encoder £(2,10) is very similar to one of the encoders
in [9]). This, in turn, has required some deviations from the model presented in Section 3.

The main building block of the two encoders is one encoding table, which consists of
547 distinct codewords, each of length 16 bits. The first 256 entries in the table form
the table T of Section 3.1, and the remaining 291 entries form essentially the table A;
the larger number of entries in A results from having more than one codeword mapped
to certain input tags. The encoding table, which will be denoted by TIIA, is shown in
Table 4, and Table 1 shows a partition of the address range of TIIA according to the
runlength properties of its entries. While £(2,10) accesses the whole table, the encoder
£(3,10) accesses the entries whose addresses have the form 3 + 4t for t = 0,1, ... ,116 (the
boldface entries in Table 4). Note that this deviates from our convention in Section 4,
according to which £(3,10) would access the first 64 entries in T and A; this modification,
however, allows to make use of the simple encoding scheme as presented in [9].

T

A

Address Contents of entries taken from
range address = 3 (mod 4) address ¥= 3 (mod 4)

[000,010) £(16,3, 10, =9, ::;8) £(16,2,10, {2, 10}, ::;8)
[010,054) £(16,3,10, {6, 7, 8}, ~8) £(16,2,10, {6, 7, 8, 9}, ~8)
[054,177) £(16,3,10, {3, 4, 5}, ~8) £(16,2,10, {3, 4, 5}, ~8)
[177,256) £(16,3,10, =2, ~8) £(16,2, 10, =2, ~8)
[256,377) £(16,3,10, =1, ~8) £(16,2,10, =1, ~8)
[377,468) £(16,3,10, =0, <8) £(16,2,10, =0, <8)
[468,547) £(16,2,10, =0, ~8)

Table 1: Skeleton of encoding table.

None of the three elements in £(16,3,10, =10, ~9) can be generated by £(3,10), thereby
making condition 2 in Section 3.1 vacuous. Furthermore, although the construction in

20

Section 3.1 allows to include codewords whose last runlength is 9, the six elements in
£(16,2,10,2:0, =9) have been excluded from TIIA, thus resulting in fewer encoder states
(see below). In addition, when f(j) = ~i + 1 for an index j E T i , we have allowed A(j)
to take any value from £(16, di, ki ,=1, ~8) and re-defined 'Pi(T(j)) to be equal to A(j).
This has made condition 4 vacuous and introduced more flexibility in setting up the table
entries so as to accommodate the technique in [9].

Input tags are 8-bit bytes in {O, 1}8, where in the case of £(3,10) the two least-significant
bits of the bytes are fixed to be '11'. (Therefore, to bridge the difference between the
order of entries in the tables here and that in Section 3.1, we can associate each input
tag s = 8081' .. 87 E {O, 1}8 with an index j = j(s) E T2 = {O, 1, ... , 255}, where, say,
j(s) = 255 - 2:::=0 8i27-i.)

The encoder £(3,10) has four states, 1, 2, [3,5], and [6,8] (state notation follows the
one introduced in Section 3.2, namely, [r, r'l is the terminal state of all edges labeled
by codewords whose last runlength lies between rand r'). Again, this deviates from
Section 3.2, according to which we would expect £(3,10) to have-after merging-the set
of states {O, 1, 2, [3, 9]}. As explained in [9], we can gain DC control by not applying the
merging to its full extent; therefore, instead of having a state [3, 9], we have ended up
with more states, namely, [3,5], [6,8], and 9. On the other hand, it turns out that at
a rate 6 : 16, we can spare all codewords whose last runlength is either 0 or 9, thereby
deleting states 0 and 9.

The encoder £(2,10) has also four states, 0, 1, [2,5], and [6,8] (note again the difference
from Section 3.2 and that state 9 has been deleted also from £(2,10), since there are no
entries in TIIA whose last runlength is 9). Certain elements in £(16,2,10, =2, ~8) have
been placed among the first ten entries in TIIA so that they are inaccessible from state 1;
this prevents the 28-bit pattern '0001000100010001000100010001' from appearing any­
where in the coded bit stream, thus making such a pattern suitable for synchronization.

Encoding is carried out as follows: given an input byte s, a ten-bit address is formed
by prefixing s with two bits. This two-bit prefix depends on how the value, lsi, of s as
an integer compares with two thresholds, T 1 and T2 . These thresholds, in turn, depend
on the current state of the encoder. The thresholds and prefixes of each encoder are
summarized in Tables 2 and 3. The second column in those tables shows the address
range of the entries in TIIA that can be accessed from any given state.

There are cases where more than one prefix is possible, resulting in two different
codeword candidates which have different parity of number of 1's; such codeword candi­
dates are located in TIIA at addresses that are 256 apart. Furthermore, both codeword
candidates label edges that terminate in the same state and, therefore, replacement of a
codeword with its alternate can be done locally within a generated sequence of codewords

21

State Address Thresholds (decimal) Prefixes (binary)
range T 1 T2 0~lsl<T1 T1~lsl<T2 T2~lsl<256

1 [000,256) 000 000 - - 00
2 [010,377) 010 121 01 01 or 00 00

[3,5] [054,468) 054 212 01 01 or 00 00
[6,8] [177,468) 177 212 01 01 or 00 00

Table 2: Thresholds and prefixes for £(3,10)' The two least-significant bits of s are fixed
to be '11'.

State Address Thresholds (decimal) Prefixes (binary)
range T1 T2 0<lsl<T1 T1<lsl<T2 T2~lsl<256

0 [000,256) 000 000 - - 00
1 [010,377) 010 121 01 01 or 00 00

[2,5] [054,547) 035 054 10 or 01 01 01 or 00
[6,8] [177,547) 035 177 10 or 01 01 01 or 00

Table 3: Thresholds and prefixes for £(2,10).

without affecting preceding or following codewords. This simple encoding mechanism
follows from the fact that codewords generated from any given state are located in a
contiguous segment of TIIA. This applies also to £(3,10) if we regard only entries that are
located at addresses of the form 3 + 4t.

In order to obtain DC control, we need to be able to generate more than 64 codewords
from certain states in £(3,10), and more than 256 codewords in £(2,10). Consider for example
the codewords that can be generated from states u ~ d1 . While in Section 3.2 we have
restricted the generated codeword to be taken only from A, here we allow the codeword
to be also T(j) as long as ki - f.(j) ~ u. Also observe that in all instances where
a codeword it'i(T(j)) can be generated we necessarily have f.(T(j)) = ~i + 1 and, so,
it'i(T(j)) = A(j).

Yet, on the other hand, we require that two codeword candidates for the same input
tag have different parity, label edges that terminate in the same state, and be located in
TIIA at addresses 256 apart. Due to those conditions, only 53 entries in A are accessible
by £(3,10), compared to 64 entries in Section 3.2.

A block decoder w t--+ V(2,1O) (w) of £(2,10) is obtained by deleting the two most-

22

significant bits of the lO-bit address of the entry in TIIA that contains the codeword w.
When restricted to the domain E(£(3,10))' this is also a block decoder of £(3,10)' with the
range consisting of bytes having least-significant bits '11'.

The encoder £(3,10) is weakly-observable from £(2,10). Nesting and full observability
can be attained if we do not exclude the 28-bit pattern '00010001 ... 0001 from appearing
in the bit stream; we then need to slightly modify TIIA and unmerge state [2,5] in £(2,10)

into states 2 and [3, 5].

The power spectral densities of the two encoders are shown in Figure 4. We have used
the same scaling of the axes as in [9] and applied the same local optimization (through en­
coding look-ahead) when selecting the generated codeword between two codeword candi­
dates. The power spectral density of £(2,10) is virtually the same as that of the (2, 10)-RLL
encoder in [9].

dB
01----------,,....----------,.------...........-,••

• .00•• •
• ••••• 0

••• •• •••• •• 0
-5 1-- ----1I-- ~.....L:.'.::...-:.:..;.'"t---.---ri""c:::"0'-----;

• • 0
• • 0 000 0 OOoDoOaDDOOOo

•• 000 0 0 0
·8 0000

-10 1-- ----11--.........·,..·.0"--0_0 --+- ---;
D~'

oe~
••

• 0
o~

-15 1----------,.-=-11---------1--------;

• (2, lO)-RLL encoder

o (3, 10)-RLL encoder

-'••00
lie

-20 1------.....=------11---------1--------;
i

oa

oli
D~··

10- 1 f10-210-3

-25 1-----:-''---------1'---------1--------;.-,0.-
-30 DeO

10-4

Figure 4: Power spectral densities of £(2,10) and £(3,10)' with encoding look-ahead of two
bytes.

23

References

[1] R.L. ADLER, D. COPPERSMITH, M. HASSNER, Algorithms for sliding block codes
- an application of symbolic dynamics to information theory, IEEE Trans. Inform.
Theory, 29 (1983), 5-22.

[2] G.F.M. BEENKER, K.A.S. IMMINK, A generalized method for encoding and de­
coding run-length-limited binary sequences, IEEE Trans. Inform. Theory, 29 (1983),
751-754.

[3] P .A. FRANASZEK, Sequence-state methods for run-length-limited coding, IBM J.
Res. Develop., 14 (1970), 376-383.

[4] J. Gu, T.E. FUJA A new approach to constructing optimal block codes for
runlength-limited channels, IEEE Trans. Inform. Theory, 40 (1994), 774-785.

[5] J. HOGAN, R.M. ROTH, G. RUCKENSTEIN, Nested input-constrained codes, IEEE
Transactions on Information Theory, to appear.

[6] K.A.S. IMMINK, Coding Techniques for Digital Recorders, Prentice Hall, New York,
1991.

[7] K.A.S. IMMINK, EFMPlus: The coding format of the multimedia compact disc,
IEEE Trans. Consum. Electron., 41 (1995),491-497.

[8] B.H. MARCUS, R.M. ROTH, P.H. SIEGEL, Constrained Systems and Coding for
Recording Channels, in Handbook of Coding Theory, V.S. Pless and W.C. Huffman
(Editors), Elsevier, Amsterdam, 1998, 1635-1764.

[9] R.M. ROTH, On runlength-limited coding with DC control, IEEE Trans. Commun.,
48 (2000), 351-358.

[10] C.E. SHANNON, The mathematical theory of communication, Bell Sys. Tech. J., 27
(1948), 379-423.

24

addr. Contents of table (hexadecimal)
(dec.) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

o 0024 0021 0022 0042 2222 0020 2221 0040 2220 2224 0048 0084 0041 0049 0081 0102
16 0201 0249 0089 0202 0109 0111 0121 0082 0101 0091 0092 0080 0122 0124 0224 0100
32 0248 0112 0244 0104 0211 0221 0241 0208 0222 0242 00440088 0090 0209 0108 0110
48 0120 0204 0212 0210 0220 0240 0401 0422 0489 0491 0801 0442 0889 0891 0909 0842
64 0921 1049 0409 0404 0421 0441 0481 0804 0811 0821 0841 0402 0901 0881 0492 0802
80 0892 0912 0922 1004 0449 0849 0482 0440 0822 0911 0882 0410 0411 0412 0902 0420
96 0809 0484 0844 0820 0424 0890 0448 0808 0488 0490 0824 0810 0848 0884 0812 0888
112 0904 0908 0910 1088 0880 0480 0840 1110 0900 1089 1091 1002 1241 1121 1209 1102
128 1221 1009 1011 1022 1041 1081 1101 1082 1249 1109 1092 1044 1122 1212 1222 1104
144 1012 1021 1042 1084 1211 1202 0924 0408 1124 1024 0444 1008 1224 1244 1248 1010
160 1112 1048 1201 1020 1090 1242 0920 1108 1120 1204 1208 1040 1220 1210 1080 1100
176 1240 2089 2091 2102 2111 2121 2209 2022 2049 2241 2409 2202 2421 2441 2481 2004
192 2011 2021 2041 2008 2101 2201 2249 2010 2449 2489 2491 2020 2122 2212 2092 2088
208 2412 2422 2442 2100 2012 2211 2492 2082 2109 2411 2402 2042 2081 2401 2112 2110
224 2009 2244 2248 2210 2444 2448 2484 2044 2490 2488 2048 2084 2242 2090 2408 2108
240 2124 2120 2204 2208 2424 2024 2404 2104 2410 2420 2480 2080 2482 2240 2440 2040
256 4804 4201 4892 4402 4492 4890 4041 4100 4124 4810 4808 4404 4101 4809 4081 4102
272 4249 4891 4811 4082 4409 4821 4411 4202 4489 4209 4812 4080 4412 4824 4848 4040
288 4888 4822 4448 4204 4211 4841 4421 4408 4212 4842 4924 4410 4820 4109 4120 4420
304 4048 4090 4112 4108 4024 4840 4011 4442 4921 4491 4009 4222 4889 4909 4849 4422
320 4449 4911 4089 4104 4221 4881 4441 4084 4111 4121 4901 4022 4481 4091 4922 4042
336 4912 4012 4802 4044 4401 4801 4882 4440 4122 4021 4482 4210 4241 4902 4242 4110
352 4049 4490 4844 4220 4424 4224 4910 4088 4488 4884 4908 4208 4248 4904 4092 4020
368 4484 4244 4920 4008 4880 4480 4900 4010 4240 9109 9209 8022 8489 8041 9121 8822
384 8491 9041 9021 8842 9011 8809 8409 8442 8811 9111 9222 8844 9112 8402 9242 8444
400 9082 9249 9022 8884 9221 8412 9008 8408 8404 9208 9048 8410 8804 9010 9004 8210
416 9122 8908 8821 8420 8224 8922 8910 8010 8248 9120 9090 8880 8448 9110 9040 8440
432 8040 8909 8021 8222 8249 8011 8921 8882 8081 8449 8201 8422 8911 9211 8889 8204
448 8411 8209 9081 8220 8841 8211 8109 8088 8089 8441 8881 8208 8492 8202 8912 8020
464 8802 8892 8102 8840 8112 8849 9042 8212 8101 8891 9102 8122 9101 8221 8082 8488
480 8241 9124 8808 9210 9244 9020 8820 9104 8104 9248 8124 9108 9212 8904 8848 8424
496 9224 8484 9044 8890 8108 8244 8920 9220 9088 8490 8080 9100 8042 8100 9240 8900
512 8824 8901 8242 9202 8902 8084 8091 8480 8044 9084 9204 9024 8481 9049 9201 8482
528 8121 8049 9241 8092 9091 8401 8801 9012 9009 9089 9002 8240 8012 8048 8024 9080
544 8120 9092 8924

Table 4: Encoding table 7\1A. The boldface entries indicate codewords accessed by
£(3,10)'

25

