[cickano

Sending Message into a Definite Future:
Non-Parallelizable Case

Wenbo Mao

Trusted E-Services Laboratory
HP Laboratories Bristol
HPL-2000-86

7th July, 2000*

E-mail: wm@hplb.hpl.hp.com

time-lock puzzle, We construct a proof of membership protocol that uses logz t
zero-knowledge steps to prove an element to have the structure at (mod n)
proof given public values n, a, t where n is the product of two large

secret primes. Such a proof serves a concrete basis of trust for a
time-lock puzzle scheme and its applications in timed-release
cryptography. The achieved efficiency expressed in logz t
(number of modulo exponentiation) manifests plainly that the
proposed proof technique is practical in the applications of
timed-release crypto problems.

* Internal Accession Date Only Approved for External Publication
O Copyright Hewlett-Packard Company 2000

Sending Message into a Definite Future:
Non-Parallelizable Case

Wenbo Mao
Hewlett-Packard Laboratories
Filton Road, Stoke Gifford
Bristol BS34 8QZ
United Kingdom
wm@hplb.hpl.hp.com

July 3, 2000

Abstract

We construct a proof of membership protocol that uses log, ¢ steps
to prove an element to have the structure a? (modn) given public
values n,a,t where n is the product of two large secret primes. Such
a proof serves a concrete basis of trust for a time-lock puzzle scheme
and its applications in timed-release cryptography. The achieved ef-
ficiency expressed in log, ¢ (number of modulo exponentiation) man-
ifests plainly that the proposed proof technique is practical in the
applications of timed-release crypto problems.

1 Introduction

Rivest et al proposed a time-lock puzzle scheme [4]. A time-lock puzzle is
a timed-release crypto problem which is given along with a routine for find-
ing the solution within a precisely specified number of computational steps.
Based on the puzzle scheme, the MIT Laboratory for Computer Science has
implemented “LCS35 Time Capsule Crypto-Puzzle” and started its solving

1

routine on 4th April 1999. It is expected that the solution the LCS35 Time
Capsule Crypto-Puzzle will be found in 35 years from 1999, or on the 70
years from the inception of the MIT-LCS (see a detailed description in [5]).

The time-lock puzzle scheme of Rivest et al is based on an asymmet-
ric property of an integer-factorization-based crypto algorithm. Let n be a
composite integer of two large prime factors and let a, ¢ be any non-secret
integers such that gcd(a,n) = 1. Knowing the factorization of n a puzzle
maker can construct a puzzle (which we denote by P,(t))

P.(t) ¥ o* (mod n) (1)

at ease. The construction can be done via using Euler’s phi-function ¢(n) to

compute first
def

e = 24(mod ¢(n)), (2)

and then
def

P,(t) = a®*(modn). (3)
These computations can be done at ease because they need O(logn) multi-
plications only where logn is a relatively small constant. This is the compu-
tational cost for the puzzle maker to construct a puzzle.

The computational cost for a puzzle solver will be very different from
logn. In the puzzle scheme of Rivest et al, the task of solving a puzzle is
to find P,(t) using the given public numbers a,t,n. Without knowing the
factorization of n, ¢(n) is unknown (assume that n is adequately large so
that factoring of n is infeasible) and thereby one cannot compute a short e
using (2). It seems that the only known method to construct P,(t) (other
than via factoring of n) is to perform repeated squaring mod n starting from
a. The puzzle maker can properly construct n such that almost all a < n
has a large multiplicative order mod n, and 2 has a large multiplicative order
mod ¢(n) (here “large” means >> ¢ for any ¢ that a puzzle may use; these
two requirements are easily satisfiable by choosing n properly). Clearly ¢
such squarings will reach P,(t) from a. What is important to notice is that
¢ squarings are also necessary since without knowing ¢(n), 2' is a number of
t+1 binary bits to be used as the exponent in (3) (the space requirement is not
needed since 2¢ has a straightforward structure). What is more important to
notice is that there exists no effective way to speed up the needed ¢ squarings.
Parallelization of many processors will not do a good job because of the

2

following two reasons. First, each step of squaring can only be performed
on the result output from the immediate previous step and hence we cannot
cut the big job of repeated ¢ squarings mod n into many smaller sub-jobs to
be processed in parallel. Second, parallelization of one squaring step cannot
speedup the problem in a great deal because performing one squaring only
takes a trivial amount of computational resource and parallelization of such
a trivial operation will be penalized by communication delays among the
Processors.

The huge asymmetric costs between that of a small constant number of
multiplications for the puzzle maker to arbitrarily tune ¢ in the range from
triviality to the difficulty of factoring n, and that of ¢ non-shortcutable and
non-parallelizable squarings for the puzzle solver to solve the puzzle forms the
uniquely desirable property to underlie the time-lock puzzle scheme proposed
by Rivest et al.

The LCS35 Time Capsule Crypto-Puzzle has been constructed with a
good faith of correctness. However there exists no efficient method for a
puzzle maker to prove the correct construction of a puzzle. A time-lock
puzzle usually takes a great deal of length of time to solve (in the case
of the LCS35 Time Capsule Crypto-Puzzle, t = 79685186856218 and the
estimated time for reaching the solution is 35 years with the consideration of
the advances of the microprocessor technology). A proof of the correctness of
a puzzle is necessary in order to interest solvers. Imagine that if a puzzle is so
constructed that a maker can demonstrate with a high degree of confidence
that the solution is actually the factorization of n (see Section 2 for how an
example of embodiment), then solvers will be excited to compete for being
the first person who can (counter)sign an open cheque payable to the first
signer which designates n as the public verification key for the signature.
Obviously, in absence of a validity proof, few will be interested in risking
being fooled by a cheating puzzle maker.

Mao proposed different time-lock puzzle scheme which requires a solver
to extract the discrete logarithm of a given element where the target discrete
logarithm has a precisely specified length which forms the evidence of the
correct construction of the puzzle and this evidence can be demonstrated in
an efficient zero-knowledge proof by the puzzle maker [2]. However, unlike the
non-parallelizable property for finding the P,(t) that we have discussed above,
the problem of extraction of a discrete-logarithm can be parallelized (e.g.,

using the parallelized Pollard’s kangaroo algorithm [3] due to Van Oorschot
and Wiener [6]). Therefore Mao’s time-lock puzzle scheme suffers from a
parallelization attack.

In this paper we will construct an efficient interactive protocol for proof
of membership regarding the language

L, ® {o*(modn) | gcd(a,n) =1, t <n }.

This is the first protocol that proves the structure in log, ¢ steps. It will also
prove that the public modulus n can be factored (and hence can entitle the
first signer with due credit) at the end of ¢ steps of repeated squaring mod
n.

2 Time-lock Puzzle with Provable Correct-
ness

2.1 Puzzle Construction

Let Alice be a puzzle maker. She begins with constructing a composite
n = pq where p, q are two large primes. She should construct n to satisfy

)

where (f) denotes the Jacobi symbol of z mod n.

Alice then constructs a time-lock puzzle pair (P, (t), P,(2t)) via the calcu-
lations in (2) and (3) using values a,t. For P,(2t) € L,, P,(2t — 1) which we
denote by g, is a square root mod n of P,(2t). This root is itself a quadratic
residue since it can be reached by t — 1 squarings mod n starting from P,(t).
As a quadratic residue, g has the positive Jacobi symbol:

-+ o

With the knowledge of n’s factorization Alice can also construct another

element A such that 5
&)
n

4

and
h? = P,(2t) (mod n). (7)

Since g and h are two square roots of P,(2t) and have different Jacobi
symbols, we know
ged(g+ h, n) > 1.

The factorization of n using g and h is guaranteed because g # +h (mod n)
due to the conditions in (4-6).

Thus, if Alice has constructed a correct time-lock puzzle pair (P,(t), P,(2t))
€ L, x L, and then discloses them along with n,a,t, h, the puzzle can be
solved in the manner of factoring n upon discovery of g = FP,(2t — 1) after
t — 1 squarings mod n, starting from P, ().

Note that because anybody can construct a quadratic residue mod n from
any given element (i.e., anybody can form a pair of square root and quadratic
residue), the disclosure of h as a square root of P,(2t) will not reduce the
difficulty for factoring n in any sense.

2.2 A Building Block

A building block of the proposed scheme is a simple protocol for proving the
squaring relation between two discrete logarithms to the same base. It is
simplified from the previous protocols for reasoning about discrete logarithm
equality [1]. The simplification improves the verification performance by
doubling the speed up.

Let elements a, y, z satisfy
y = a®(mod n), z=a” (modn).
Protocol SQ(a, y, z) will prove that
(log, ¥)? = log, z (mod Ord,),

where Ord, is the multiplicative order of the element a.

SQ

Common input: a,y,z,n,

1. Alice picks a random number k < ¢(n) and sends to Bob:

Al (ay)* (mod n);

2. Bob picks a random challenge ¢ and sends it to Alice;

3. Alice replies with the response r g+ cz(mod ¢(n));

4. Bob accepts if (ay)” = A(yz)°(modn), or rejects otherwise.

Theorem 1 The properties of SQ.

Completeness If a,y, z satisfy (log,(y))? = log,(z)(mod Ord,), then Bob
always accepts the proof.

Soundness If (log,(y))? # log,(z)(mod Ord,), then Alice, even computa-
tionally unbounded, cannot convince Bob to accept a proof with probability
greater than 1/0rd,.

Zero-knowledge Bob (may be dishonest but with a bounded computing
power) does not learn any information aside from the validity of Alice’s claim.

Proof
Completeness Immediate from inspection of the protocol.

Soundness Alice’s response has allowed Bob to generate yz (modn) from
ay (mod n). So there exists x such that

y = a”(mod n)

and
z = y*(mod n)

These imply
z = log,(y) = log,(z)(mod Ord,)

Then by the logarithm property,

log,(z) = log,(y) log,(2) = z? = (log,(y))*(mod Ord,).

If this congruence does not hold then in order to let Bob accept the proof,
Alice must have prepared z to satisfy

p="" log,, A

(mod Ord,).

Note that ¢ is sent to Alice after she has committed log,, A(modOrd,),
therefore she will have at most 1 in Ord, probability to have responded
¢ with r correctly.

Zero-Knowledge We assume that Bob has a bounded computing power
but may be dishonest. Then however the challenge ¢ is chosen, he cannot
control the distribution of (ay)"(mod n) with his bounded computing power.
Such a proof view can be simulated perfectly. Consequently, Bob gains no
information other than the validity of Alice’s proof. O

The verification of SQ is very efficient, Bob only needs to compute two
modulo exponentiation mod n.

Using a secure one-way hash function (let H() denote a suitable secure
one-way hash function), SQ can be turned into a non-interactive protocol. To
generate a non-interactive proof, Alice performs the following.

Alice picks a random number k£ < ¢(n). She then computes
A (ay)*(mod n);

c ¥ H(a,y, z, A);

r g+ cz(mod ¢(n));

The non-interactive proof (certificate) consists of a,y,2,¢,7,n and the
description of H().

To verify a non-interactive proof, Bob computes
A (ay) (y2)~*(mod).
He accepts the proof if
c= H(a,y,z, A)
or rejects it otherwise.

In our application to be described in a moment, Alice will always use SQ
in the non-interactive version. For this reason we can view SQ as an algorithm
and denote by

z := SQ(a,y,n)

7

an instance of the acceptance run of the algorithm. By this denotation, we
imply that in an acceptance run of the algorithm, z will be assigned with the
following value:

z 1=y (mod n).

2.3 Efficient Proof of Membership in L,

Let Alice have constructed P,(t) € L, using an element a and ¢. Recall
P.(t) ¥ o (mod n).

Since we can always express an even t as

t

t=2x =

2

and an odd t as t_1

t=2x = 41,
X 2 +
we can express 2! as

[2% = (23)? if ¢ is even
T 2@FHD =2 x (2%7) iftis odd

. . t
Following these expressions, we can express a® (mod n) as

a[z(t/z)]2 if ¢ is even

((1,{2[(':—1)/2]}2)2 if ¢t is odd

(8)

aQt(mod n) =

In these expressions, t/2 and (¢ — 1)/2 are computed in the integers, 2(/
and 2[t=D/2] computed in mod ¢(n) (which can be done by Alice). These
expressions translate into the following membership decision algorithm which
will terminate within log, ¢t steps and decide P,(t) € Ly.

In the algorithm below, := denotes the value-assigning operation, |log, t]
denotes the integer part of log,t, == denotes the test of equality, and +
denotes division in the integers.

Membership(t, a, P,(t),n)
y := a?(mod n);
m := |logy t};
if (m == 0) then 2 := a?(mod n);
while (m > 0) do
(z:=5Q(a,y,n);
if (t > 2™) then t:=t — 2™
if (t+2™"! > 0) then z:= 2% (* i.e., the odd case in (8) *)

m:=m— 1;

\yI=Z;

accept if (P,(t) == z), or reject otherwise.

Clearly, a run of Membership(t, a, P,(t),n) will terminate upon comple-
tion of the |log, t| loops. Finally, P,(2t) € L, can be obtained by one more
step of calling SQ:

P,(2t) := sQ(a, P,(t),n).
As we have described in 2.1, the tuple (¢, P,(t), P,(2t), n, h) forms a correctly-
formed time-lock puzzle, where h is a square root of P,(2t) with the negative
Jacobi symbol. (Review 2.1 for the instruction for solving the puzzle.)

2.4 Performance

Because in each run of SQ, the verification job involves two exponentiations
mod n and because Membership calls SQ |log,t] + 1 times, the verification
job for deciding P,(2t) € L, involves

2(|log,(t)) + 1)

modulo exponentiations.

In the LCS35 Time Capsule Crypto-Puzzle [5], t = 79685186856218 which
is a 47-bit binary number. Thus the verification job that puzzle can be
completed within 96 modulo exponentiations.

3 Conclusion

We have constructed an efficient proof scheme for providing the verification of
the exact number of steps needed for solving a time-lock puzzle in the scheme
of Rivest et al [4]. The efficiency expressed by log, t means an extremely low
cost for providing such a proof, which is practical in the applications of
timed-release crypto problems.

Acknowledgments

I would like to thank Professor Ronald Rivest for his encouragement on
answering the challenge of the time-lock puzzle for the non-parallelizable
case, and Kenny Paterson for interesting discussions of the topic on the train
from Bruges to Brussels.

References

[1] Chaum, D. and Pedersen, T. P. Wallet databases with observers. Ad-
vances in Cryptology: Proceedings of CRYPTO 92 (E.F. Brickell, ed.),
Lecture Notes in Computer Science Springer-Verlag, 740 (1993), pages
89-105.

[2] Mao, W. Send message into a definite future. Information and Commu-
nication Security: Proceedings of ICICS 99, (V. Varadharajan, Y. Mu,
eds), Lecture Notes in Computer Science Springer-Verlag, 1726 (1999),
pages 244-251.

[3] Pollard, J.M. Monte Carlo method for index computation (mod p), Mth.
Comp., Vol.32, No.143 (1978), pages 918-924.

10

[4] Rivest, R.L., Shamir, A. and Wagner, D.A.
Time-lock puzzles and timed-release crypto. Manuscript. Available at
(http://theory.lcs.mit.edu/"rivest/RivestShamirWagner-timelock.ps).

[5] Rivest, R.L. Description of the LCS35 Time Capsule Crypto-Puzzle
http://wuw.lcs.mit.edu/about/tcapintro041299, April 4th, 1999.

[6] van Oorschot, P.C. and M.J.Wiener M.J. Parallel collision search with
cryptanalytic applications. J. of Cryptology, Vol.12, No.1 (1999), pages
1-28.

11

