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Abstract

The presence of temporal locality in web request traces has long been recognized, and has been incorporated

in synthetic web trace generators. However, the close proximity of requests for the same �le in a trace can be

attributed to two orthogonal reasons: long-term popularity and short-term correlation. The former re
ects the

fact that requests for a popular document simply appear \very frequently" thus they are likely to be \close" in an

absolute sense. The latter re
ects instead the fact that requests for a given document might concentrate around

particular points in the trace due to a variety of reasons, such as deadlines or swings in user interests, hence it

focuses on \relative" closeness.

In this work, we introduce a new measure of temporal locality, the scaled stack distance, which is insensitive

to popularity and captures instead the impact of short-term correlation. We then use the scaled stack distance

observed in the original trace to parametrize a synthetic trace generator. Finally, we validate the appropriateness

of using this quantity by comparing the �le and byte miss ratios corresponding to either the original or the

synthetic traces.
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1 Introduction

Understanding the nature of the web servers' workloads is crucial to properly designing and provisioning current and

future web services. Web increasingly becomes a core element of the business strategy. With the rapid growth of

web tra�c, most popular web sites need to scale up their server capacities. Issues of workload analysis, performance

modeling and capacity planning become ever more critical.

Previous studies identi�ed di�erent types of locality in web tra�c:

� static locality or concentration of references [2], the observation was made that 10% of the �les accessed on the

server typically account for 90% of the server requests and 90% of the bytes transferred;

� temporal locality of references [1, 3], which implies that recently accessed documents are more likely to be

referenced in the near future;

� spatial locality of references [1, 3] which implies a correlation structure in the reference stream.

All these di�erent types of locality strongly in
uence the tra�c access patterns in web servers, and de�ne indi-

vidual tra�c access pro�les speci�c for particular web sites. Understanding the nature of locality will help to design

more e�cient middleware for caching, load balancing and content distribution systems.

Three main elements de�ne web server performance: the number of requests the server must process, the number

of bytes the server must transfer from disk, and the number of bytes the web server must transfer to the network.

It is well known that web server performance greatly depends on e�cient RAM (cache) usage. A web server works

faster when it pulls pages from a cache in RAM. Moreover, its throughput is much higher too. The typical measure

of web cache e�ciency is the (�le) hit ratio: the fraction of times (over all accesses) the �le was found in the cache.

Since the �les are of di�erent size, another complementary metric is also important: byte hit ratio { the fraction of

\bytes" returned from the cache among all the bytes accessed.

The upper bounds for memory requirements can be identi�ed from the static workload analysis. The interesting

(to some extent, contradictory issue) is that web server workload exhibits high concentration of references (i.e., a high

percentage of requests account for a small percentage of the �les), and the fact that there is a very high percentage

(40%-70%) of rarely accessed �les, which often account for a majority of bytes transferred. Authors in [1] state that

�le requests are clustered and that the stack distance, characterizing temporal locality, has lognormal distribution.

Temporal locality introduces additional important parameter in web server workload characterization.

Good models of reference locality will allow us to generate synthetic web traces which accurately \mimic" essential

characteristics of the real web server logs for performance analysis studies.

In the �rst part of this paper, we analyze static locality in web server workloads. Our case study is based on four

access logs from very di�erent servers (Section 2 describes them in details). The static locality characterization is

based on the frequency-size pro�le of the �les from the web server log: we rank �les through their frequency (number

of times they are requested in a trace) and their size (which is critical in determining cache behavior and server

memory requirements).

The second part of the paper concentrates on temporal locality characterization. We introduce a new measure of

temporal locality, the scaled stack distance, which captures impact of short-term correlation.

Finally, we merge these two characterization (static and temporal locality) by using frequency, size, and stack

distance distributional information to generate a synthetic trace. To validate how well we captured the original trace

characterization, we compared the �le and byte miss ratios corresponding to either the original or the synthetic

traces.

2 Data Collection Sites

In our study, we used four access logs from very di�erent servers:

� HP WebHosting site, which provides service to internal customers. Our logs cover a four-month period, from

April to July, 1999. In April, the service had 71 hosted \subsites" while, by the end of July, it had 89 hosted

web sites. Interestingly, in spite of the updated and modi�ed content during these months, the server' logs

exhibit many common features in their \tra�c pro�le" or, so-called, site \personality". For our analysis, we

chose the month of May, which represents well the speci�cs of the site.
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� OpenView site (www.openview.hp.com): which provides the complete coverage on OpenView solutions from

HP: the product descriptions, white papers, demos illustrating the products usage, the software packages,

business related events, conferences on the topic, etc. The log covers a duration of 2.5 months, from the end

of November, 1999 to the middle of February, 2000.

� HPLabs site (www.hpl.hp.com), which provides information about HP Laboratories, its current projects and

research directions, lists current job openings. It also provides access to an archive of published HPLabs

research reports and hosts a collection of personal web pages where researches describe their old and current

projects as well as share \parts" of their personal lives. The access log was collected during February, 2000.

� HP site (www.hp.com), which provides diverse information about HP: HP business news, major HP events,

detailed coverage of the most software and hardware products, and the press related news. The access log

covers a few hours1 during February, 2000, and is a composition of multiple access logs collected on several web

servers supporting the HP.com site (sorted by time).

3 Access Log Analysis

3.1 Raw data

The access log records information about all the requests processed by server. Each line from the access log provides

a description on a single request for a document (�le). A typical entry contains the following �elds:

hostname - - [dd/mm/yyyy:hh:mm:ss tz] request status bytes

Each log entry speci�es the name of the host machine making the request, the timestamp the request was made, the

�lename of the requested document and size in bytes of the reply. The entry also provides the information about

the server's response to this request. Status code 200 means that the request was successfully completed by the

server. Status code 304 relates to the documents cached somewhere in the Internet (or by proxy caches) which send

a \request-validation" whether the document was \modi�ed since" the last requested time, no data bytes need to be

transferred in this case. The rest of the codes specify \unsuccessful" requests which the web server was not able to

satisfy (typically, a reason why the response was unsuccessful is given).

Since the successful responses with code 200 are responsible for all of the documents (�les) transferred by the

server, we will concentrate our analysis only on those responses. Thus, for the remaining analysis in the paper, we

used reduced access logs, with successful, \200 code" responses only.

In Table 1, we summarize the main information about the reduced access logs, such as the access log duration,

number of successful requests, and number of accessed �les.

WebHosting OpenView HPLabs HP.com

Access Log Duration 1 month 2.5 months 1 month few hours

Total Requests (200 code) 952,300 3,423,225 1,877,490 14,825,457

(1)

The four access logs provide information on web servers with di�erent workload. HP WebHosting, OpenView, and

HPLabs servers had somewhat comparable number of requests (if normalized per month). HP.com site had three

orders of magnitude heavier tra�c.

3.2 Traditional \90% Percentile" Characterization

Several studies [1, 2, 3, 5] address the characterization of web workloads. In [2], the authors showed that web tra�c

exhibits a strong concentration of references: \10% of the �les accessed on the server typically account for 90% of

the server requests and 90% of the bytes transferred". We call this \static" locality because this characterization

only uses basic per-�le frequency-size information.

Figure 1 shows the \concentration of references" for the four access logs used in our study. For three sites

(OpenView, HPLabs, and HP.com), 90% of the server requests come to only 2%-4% of the �les. The WebHosting

site exhibits less \reference locality": 90% of its most popular requests cover 12% of the overall �le set.

Figure 2 shows the bytes transferred due to these requests for all four access logs used in our study. The

1As this is business-sensitive data, we cannot be more speci�c.
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Figure 1: Four Traces Compared: Concentration of References.
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Figure 2: Four Traces Compared: \Bytes-Transferred" Characterization.

bytes transferred due to these requests vary in much broader range: from 26% for the HPLabs site to 80% for the

WebHosting site, stressing the importance of this complementary metric.

3.3 Site Pro�le

For each access log, we build a site pro�le by evaluating the following characteristics:

� WS - the combined size of all the accessed �les (in bytes during the observed period, so-called \working set");

� BT - the \bytes transferred" during the observed period;

� (fr; s) - the table of all F accessed �les with their frequency (number of times a �le was accessed during the

observed period) and their size.

The site working set characterizes the memory requirements of the site. If the working set �ts in RAM, only the �rst

request for a �le will require a disk access (a \cold miss"), resulting in high server performance. The number of bytes

transferred, BT , gives an approximation of the load o�ered to a server by the tra�c to the site. These parameters
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provide a high-level characterization of web sites and their system resource requirements. Table 2 shows the sites'

working sets and the amount of bytes transferred. From the Table 2, high-level, \at-a-glance" site speci�cs can be

observed.

WebHosting OpenView HPLabs HP.com

Working Set Size 865.8 MB 5,970.8 MB 1,607.1 MB 4,396.2 MB

Bytes Transferred 21.3 GB 1,079.0 GB 43.3 GB 72.3 GB

Number of Accessed Files 17,489 10,253 21,651 114,388

(2)

If we compare the characteristics of the OpenView and HP.com sites, there is a drastic di�erence in the number of

accessed �les and their cumulative sizes (working sets). The OpenView working set is the largest of the four sites

considered, while its �le set (number of accessed �les) is the smallest one: it is more than 10 times smaller than the

number of �les accessed on the HP.com site. In spite of comparable number of requests (normalized per month) for

the WebHosting, OpenView, and HPLabs sites, the amount of bytes transferred by the OpenView server is almost

20 times greater than for the WebHosting and HPLabs servers, but still an order of magnitude less than the bytes

transferred by HP.com. The amount of bytes transferred (in addition to the number of hits) provides a valuable

insight into the tra�c the server needs to support.

3.4 File Size and Request Size Distribution

There is a high degree of variation in documents stored and accessed on di�erent web servers. To some extent, this

depends on the role and objective of the site. Thus, the HP.com site has many short updates on HP business news,

di�erent HP events, promotional coverage of newly introduced software and hardware products, and press-related

news. On the other hand, the HPLabs site provides access to an archive of published HPLabs research reports

(postscript and pdf �les) which tend to be rather large �les.

We will analyze both �le size distribution (i.e., the sizes of documents stored on the site) and the request size

distribution (i.e., the request sizes for the most frequently accessed �les).

Figure 3 shows the �le size distribution for our collection of four logs. To plot this distribution, we use the (fr; s)

table of all accessed �les (from the site pro�le in Section 3.3) sorted in increasing �le size order.
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Figure 3: Four Traces Compared: File Size Distribution.
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For example, the OpenView �le size distribution clearly shows three main groups of �les:

1. \small" �les (with sizes between 100 bytes and 10 Kbytes), which account for about 20% of the �les;

2. \medium" �les (with sizes between 10 and 15 Kbytes), the largest group, with almost 65% of the �les;

3. \large" �les (with sizes 15 Kbytes to 126 Mbytes), accounting for the remaining 15% of the �les.

The HP.com site has the smallest set of large documents: only 3% of the �les are larger than 100 Kbytes.

Next, Table 3 shows few points of the �le size distribution above (remember that to calculate these points we use

the (fr; s) table of all accessed �les sorted in increasing �le size order).

� the average �le size for 30% / 60% / 90% / 99% of the �les;

� the average �le size across all the �les (100%);

� the maximum �le size on the site.

Web Site Average File Size Maximum File

30% 60% 90% 99% 100% Size

WebHosting 1.1KB 2.9KB 8.7KB 22.4KB 50.7KB 19.7 MB

OpenView 6.3KB 9.0KB 11.1KB 228.1KB 596.3KB 126.0 MB

HPLabs 1.2KB 2.8KB 9.0KB 34.4KB 76.0KB 75.2 MB

HP.com 1.7KB 6.0KB 10.5KB 18.3KB 39.4KB 44.0 MB

(3)

These few points from the entire �le size distribution accurately re
ect the �le set speci�cs. Clearly, the OpenView

site exhibits quite a di�erent pro�le from the other three sites we consider. However, to understand how much this

matters, we need to analyze the request size distribution as well.

Not all the �les are equally \popular": some of the �les (related to current news, interesting papers or press

releases, and new s/w or h/w products) are extremely \hot" and requested by many users, while others can be of

interest to a very small group only. To plot the request size distribution, shown in Figure 4, (with respect to most

\popular" �les), we use the (fr; s) table of all accessed �les (from the site pro�le in Section 3.3) sorted in decreasing

�le frequency order.

0

20

40

60

80

100

100 1000 10000 100000 1e+06 1e+07

 C
um

ul
at

iv
e 

R
eq

ue
st

s 
(%

 o
f T

ot
al

)

File Size in Bytes

WebHosting
OpenView

HPLabs
HP.com

Figure 4: Four Traces Compared: Request Size Distribution.
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The request size distribution does look quite di�erent from the �le size distribution for those sites. For example,

most of the requests to the HP.com site (about 90% of total) account for small �les, which are less than 1 Kbyte.

The number of large �les transferred from HP.com is negligible. The OpenView site has a fairly large percentage

of large requests: �les larger than 50 Kbytes constitute 10% of the requests. The OpenView site is an interesting

representative of the site with many \very popular" large �les.

Next, Table 4 shows a few points of the request size distribution above (to calculate these points we use the (fr; s)

table sorted in decreasing �le frequency order).

� the average response size for 30% / 60% / 90% / 99% of all the requests;

� the average request size across all the requests (100%);

� the maximum request size on the site.

Web Site Average Request Size Maximum Request

30% 60% 90% 99% 100% Size

WebHosting 0.8 KB 1.6 KB 4.6.KB 9.5 KB 22.9 KB 19.7 MB

OpenView 0.3 KB 0.4 KB 2.0 KB 53.4 KB 322.8 KB 126.0 MB

HPLabs 0.6 KB 0.8 KB 3.1 KB 6.9 KB 23.6 KB 75.2 MB

HP.com 0.3 KB 0.5 KB 1.1 KB 2.7 KB 5.0 KB 44.0 MB

(4)

In spite of the di�erence in �le sets, the pro�le for the most popular 90% of the requests for all the sites under

consideration look somewhat similar: the most popular 90% of the requests come for rather \small" size �les: from

1.1Kbytes (HP.com site) to 4.6 Kbytes (WebHosting site) on average. The remaining 10% of the requests introduce

a lot of variation in the site pro�les: OpenView exhibits a signi�cant percentage of the requests due to very large

�les.

Additionally, as it was shown in Section 3.2, 90% of all the requests come to a very small set of extremely popular

�les which account from 2% (OpenView site) to 12% (WebHosting site) of all accessed �les on those sites. So, the

popular �les { are very popular.

What is the pro�le for the remaining �les? How many of the �les are accessed once? For this analysis, we selected

the �les accessed up to \1 / 5 / 10 times".

Web Site Files Requested up to

1 time 5 times 10 times

WebHosting 37.1% 62.7% 71.4%

OpenView 49.2% 70.9% 76.2%

HPLabs 48.8% 68.4% 74.5%

HP.com 28.2% 66.1% 76.4%

(5)

There is a signi�cant percentage of \onetimers": from 28% (HP.com site) to 49% (OpenView site) of the �les are

accessed only once for duration of the log. The collection of \rarely accessed" �les (accessed no more than 10 times)

accounts for 71%-76% of all the �les.

To visualize the frequency-size distribution of the requests, we use the 3-D plots shown in Figure 5. These plots

were obtained by placing the F �les into frequency-size \buckets" of exponentially increasing width. The horizontal

X and Y axes correspond to the frequency (number of requests) and size (Kbytes) bucket, while the vertical Z axis

counts the number of �les falling into that bucket. Note that a log scale is used on all three axes. File in the buckets

corresponding to frequency equal one are onetimers.

It is interesting to note that the WebHosting trace is fairly nicely behaved, since, for a given size bucket, the

number of �les in each frequency bucket tends to decrease as the frequency increases and, vice versa, for a given

frequency bucket, the number of �les in each size bucket tends to decrease as the size increases. The HPLabs and the

HP.com pro�les also follow this pattern, although not as well. Finally, the OpenView pro�le is quite di�erent, with

steep peaks in correspondence to not-so-small or not-so-infrequent buckets, and a large plateau for sizes between 102

Kbytes and 102 Mbytes and frequencies between 1 and 103.
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Figure 5: Frequency-size pro�les

.

4 Temporal Locality and Web Server Cache Performance

We are interested in \extracting " a small number of parameters from the real web server access log to generate the

synthetic trace with similar \performance characteristics" to the original web server log.

The typical measure of web server cache e�ciency is a hit ratio: the number of times (from all the accesses)

the requested �le was found in the cache. Since the �les are of di�erent size, another complementary metric is also

important: byte hit ratio - the number of \bytes" returned from the cache as a fraction of all the bytes accessed. In

this work, we focus on two key quantities: �le miss ratio and byte miss ratio (complementary metric to hit and byte

hit ratio) to measure the \goodness" or \closeness" of the original and synthetic traces.

If we then restrict ourselves to using the Frequency-Size pro�le (fr; s) to capture the trace, we could then assume

that, in a trace containing R requests, these are uniformly distributed over the entire trace, and simulate the e�ect

of such a uniform distribution on the miss ratios, as a function of the amount of RAM available to the web server.

More precisely, we generate a synthetic trace corresponding to a random permutation of the trace

(1; 1; : : : ; 1| {z }
fr1

; 2; 2; : : : ; 2| {z }
fr2

; : : : ; F; F; : : : ; F| {z }
frF

) (6)
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Figure 6: File and byte miss ratios (original vs. synthetic uniform traces).
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and feed it to an analysis program that computes M(x), the miss ratio when the web server has a RAM of size x

available to store �les.

Since the four traces we consider vary in their overall working sets, we choose to specify x as a percentage of the

working set, in order to normalize the curves. In our study, we use 3%, 5%, 10%, 20%, 30%, 40%, 60%, 80%, and

100% of the working set. Note that, with a RAM equal to 100% of the working set, the only misses are the F \cold

misses" required to bring the �les from disk into memory for the �rst time, since all subsequent requests for a �le are

guaranteed to be \hits". When smaller amount of RAM are instead available, \warm misses" also become a factor.

Figure 6 illustrates the misses (cold plus warm) computed from the original traces and from the synthetic traces

under the uniform assumption.

In all cases, the uniform assumption results in a pessimistic assessment of both the �le and the byte miss ratio.

Since the original and the synthetic traces contain exactly the same number of occurrences frf for each �le f , the

di�erence cannot be due a mismatch in the \popularity" pattern. In addition to the temporal locality naturally

arising from the fact that the requests for a popular �le must of course appear \close" to each other in the trace,

requests for a given �le, then, must also tend to cluster together due to short-term correlation (for example, due to

deadlines, swings in user interest, and so on). This important distinction between long-term popularity and short-

term temporal correlations has also been observed recently in [6], indeed we have adopted their terminology for these

two aspects of temporal locality.

In the following section, we discuss approaches to capture this short-term correlation.

5 Stack distance

To improve the characterization of web �le requests, we resort to the concept of stack distance, which was introduced

in [8] and was later adopted in [1] for the study of temporal locality in web traces. To de�ne this notion, assume that

the �les are placed on a stack such that, whenever f is requested, it is either pulled from its position in the stack and

placed on the top, or it is simply added to the stack if it is not yet in it. The stack distance for the request is then

the distance of f from the top in the former case (a nonnegative integer), or unde�ned (or 1) in the latter case.

Thus, starting with an empty stack, the trace (f1; f2; : : : ; fR) de�nes a sequence (d1; d2; : : : ; dR) of trace distances,

exactly F of which are 1 (corresponding to the F cold misses). In particular, d1 =1 since the �rst request cannot

be for a �le in the stack, as the stack is empty.

The values of the stack distances (d1; d2; : : : ; dR) clearly a�ect the performance of the machine serving the requests,

as they a�ect the miss ratios. For example, if the stack distances are all quite small (except for the ones equal to

1), this means that �les are nicely clustered over the trace, and most requests will not require a disk access. Indeed,

the ideal trace shown in (6) will only cause cold misses, as long as the RAM is large enough to contain the largest

�le in the trace; we could say that this trace has perfect short-term correlation.

Thus, we now focus on the de�nition of a web request pro�le that can capture, in addition to the frequency-size

distribution of the trace, also its stack distance behavior.

To test how well the request pro�le captures the real traces, we use a synthetic trace generator having this pro�le

as input. We then place the generator in pipeline with the same analysis program used to compute the �le and byte

miss ratios for the original and synthetic case under the uniform assumption, and compare the results obtained.

5.1 Synthetic trace generation algorithm

The key idea in our synthetic generation algorithm is the use of a stack data structure to schedule the order in which

the requests are generated. Figure 7 shows the pseudo-code for our algorithm. The main variables used by it are:

� The global variables describing the request pro�le: R and F (integers), fr (integer vector), parameters to

describe the stack distance distribution (we experiment with several options for this).

� The local variable o = [o1; : : : ;oF ] (integer vector), the outstanding requests for each �le.

� An integer stack t, stored as a vector of �xed dimension F . The bottom position of the stack is 1 and the top

position, top, is initially F , but it is reduced as �les are removed from the stack when all their outstanding

requests have been generated. The stack is empty, and the generation process ends, when top reaches 0. The

contents of t re
ect the LRU stack corresponding to the stream of requests in reverse order, that is, the �le f in

ttop is always the next one to be generated, then it is pushed down on the stack a certain amount d determined
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1. procedure SyntheticTrace(fr) is

2. InitializeStack (t);

3. top  F ; � initial stack height

4. o  fr; � number of outstanding requests for each �le

5. while top > 0 � still requests to generate

6. f  ttop; � f is the �le to be emitted

7. output a request for f ;

8. of  of � 1;

9. if of = 0 then � eliminate f from the stack

10. top  top� 1;

11. else � push down f in the stack

12. d  GenerateStackDistance(top; f); � returns a value between 0 and top� 1 included

13. for i  top� 1 to top� d do � shift ttop�1 to ttop�d one position up

14. ti+1  ti;

15. end for;

16. ttop�d  f ;

17. end if;

18. end while;

19. end procedure;

Figure 7: Our algorithm to generate a trace of length R.

probabilistically using information about the stack distance distribution, or it is removed from the stack if its

number of outstanding requests of has reached 0. This way of \thinking in reverse" allows us to clearly de�ne

a policy for the order of �le generation that requires only O(1) operations to decide which �le to emit2.

The two functions used in our algorithm, InitializeStack and GenerateStackDistance, are critical to the correct

probabilistic behavior of the algorithm. The call InitializeStack (t) initializes the stack t with the F �les f1; : : : ; Fg

in some order. This order a�ects the placement of �le requests in the synthetic trace and it should be carefully

chosen, especially for short traces. After experimenting with several approaches, we found that initializing the stack

probabilistically according to the information in fr works very well. More speci�cally, we place �le f on the top of the

stack with probability frf=R; then, with probability frg=(R�frf ) we place �le g in the second position, where f is the

�le chosen for the �rst position, and so on. The key decision, though, is the de�nition of the function that attempts to

recreate the stack distance patterns presented in the original trace. The call GenerateStackDistance(top; f) computes

and returns a stack distance d for �le f when the stack contains top �les, and is used to push �le f d positions down

from the top. We experimented with three methods, corresponding to the way we captured the stack distance

information when analyzing the original trace.

5.2 Collecting stack distance information

The lognormal distribution [7] has been shown to be a good model for the stack distance distribution [1] of real

web traces. Recall that a continuous random variable X has a lognormal distribution with parameters a 2 IR and

b 2 IR
+, we write X � Lognormal(a; b), if and only if Z = (logX � a)=b has a standard normal distribution,

Z � Normal(0; 1).

Given a sequence of observations (X1; X2; : : : ; Xn), the maximum-likelihood estimators for the parameters a and

b of the lognormal distribution �tting them are [7]:

a =

nX
i=1

lnXi

n

b =

vuuut
nX

i=1

(lnXi � a)2

n

=

vuuut
nX
i=1

(lnXi)
2

n

� a
2 (7)

2The action of pushing down �le f by d positions in a stack implemented as an array still requires O(d) steps, of course, but most

pushes are for small values of d in practice, due to temporal locality.
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Figure 8: Unscaled and scaled stack distance and supporting plots (WebHosting trace).

In our �rst experiment to capture the stack distance information and parametrize the synthetic generator, the R�F

stack distances in (d1; d2; : : : ; dR) not having value1 are the observations we use to obtain au and bu, the parameters

of the lognormal distribution according to (7). The \u" stand for \unscaled", as it will be clear shortly. Then, in

the synthetic trace generation, GenerateStackDistance(top; f) simply generates a random deviate according to the

distribution Lognormal(au; bu), regardless of the value of f , and return its rounded value d (if d would cause to push

f below the bottom of the stack, i.e., if d � top, this value is truncated to top� 1, the maximum distance a �le on

the top can be pushed down the stack).

The miss ratios resulting from this approach, which we call unscaled stack distance (USD), are shown in Figure 9.

It is clear that they are grossly optimistic. To understand the reason for this error, we need to recall that the

distribution of the stack distance is a�ected by two factors: the long-term popularity and the short-term correlation.

Considering the plot on the top left of Figure 8 (for the WebHosting trace), we see that the number of requests for

a given �le can vary dramatically: from 7,072 for the most popular �le, to 1, for each of the 6,493 onetimers in the
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trace. By collecting the stack distances observed ignoring the identity of the �le they refer to, the resulting lognormal

distribution has a very large variance: popular �les will tend to experience much shorter stack distances than rare

�les. Thus, a call to GenerateStackDistance will often return a large value which will then e�ectively put the �le to

the bottom of the stack. After a relatively small number of requests have been generated, most of the �les with few

requests will have been removed from the stack, so that only the most popular �les remain from that point on, and

the rest of the trace is mostly �lled with them. Clearly, this results in no misses as soon as the small set of frequent

�les �ts in memory. The plot in the same �gure on the top right shows the empirical distribution of the unscaled

stack distance for all �les together and its lognormal �t.

To avoid the e�ect of popularity on our stack distance observations, we could simply observe the stack distances

experienced by each individual �le separately. For example, the two plots in the middle of Figure 8 show the empirical

distribution of the stack distance for the most popular �le and for a generic �le, and their lognormal �ts. Essentially,

the shape of the empirical (or the �tted) pmf for all the �les together is obtained by merging the pmfs for each

individual �le f using as weight its number of requests frf ; however, these pmfs have widely varying averages, since

frequent �les tend to experience small stack distances, while infrequent �les tend to experience larger stack distances.

We then consider two di�erent ways to untie �le popularity from the short-term correlation captured by the pmfs

for the stack distances of individual �les. With the most \expensive" approach we collect the distribution of the stack

distances experienced by each �le individually. More precisely, for each �le f , we compute the values
Pfrf

i=2 ln d
f
i andPfrf

i=2(ln d
f
i )
2 where (d

f
1 ; d

f
2 ; : : : d

f

frf
) are the stack distances experienced by �le f , and the �rst one, d

f
1 , is of course

1. Then, we apply (7) for each �le f , obtaining two vectors a = [a1; : : : ; aF ] and b = [b1; : : : ;bF ]. Then, in the

synthetic generation algorithm, GenerateStackDistance(top; f) simply returns the rounded value of a random deviate

sampled from the distribution Lognormal(af ;bf ). Of course, again, values beyond the current stack height simply

cause f to be pushed to the bottom.

A less expensive, but intellectually very appealing, approach is instead to observe that, if �les were uniformly

distributed over the trace, the expected stack distance experienced by a �le f would be

df =
X
g 6=f

frg

frg + frf � 1
;

a quantity that can be obtained exclusively form the vector fr. For an explanation of this expression, one can consider

the Coupon Collecting Problem discussed in Ross's textbook [9, p. 261-3]. The fraction in the summation represents

the probability that, if we focus on a particular occurrence of f in the trace and start searching forward, we will

�nd an occurrence of g before �nding a second occurrence of f : this is the same as the probability that g is above

f on the stack when this second occurrence of f on the trace is encountered. We use \frf � 1" in the denominator

because, unlike the rates in Ross's book, we use prede�ned numbers frf and frg of occurrences, hence we need to

account for the current occurrence of �le f from where we start searching.

With this second approach, we then de�ne the scaled stack distance by dividing the actual stack distance d

experienced by �le f by its expected value in the uniform case: d
scaled = d=df . Intuitively, an observed stack

distance df of 12 for a very frequent �le f whose expected stack distance under the uniform assumption is df = 10 is

actually \longer" than an observed stack distance dg of 800 for not-so-frequent �le g whose expected stack distance

under the uniform assumption is dg = 1000. Thus, we are e�ectively observing how much the actual stack distances

depart from what we would expect to observe on a trace under the uniform assumption, in a dimensionless way.

This way of observing the data eliminates the problems due to merging the \unscaled" pmfs of each �le. The

sequence of R � F �nite scaled distances, ignoring the �le identity, can then be used to obtain the parameters as

and b
s of a lognormal distribution, again using (7). The resulting empirical scaled distance pmf (for the WebHosting

trace) and its lognormal �t are shown at the bottom-right of Figure 8. On the left, we show instead the values

of df for the �le who are not onetimers, in decreasing popularity order. Thus, in the synthetic trace generation,

GenerateStackDistance(top; f) generates a random deviate x according to the distribution Lognormal(as; bs) and

scales it back by multiplying it by df (again, truncating values larger than top� 1).

The results for the miss ratios corresponding to these two approaches, individual stack distance (ISD) and scaled

stack distance (SSD), are shown in Figure 9. Both of them result in a closer match of the original trace than that

provided by the synthetic trace under the uniform assumption. Indeed, it is interesting to note that the simpler (in

terms of size of the data required to store it) SSD pro�le (fr; s; as; bs) performs at least as well as the ISD pro�le

(fr; s; a;b). We attribute this phenomenon to the variance of the distribution: while, in principle, a and b give more
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Figure 9: File and byte miss ratios (original vs. synthetic traces).
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detailed information than a
s and b

s, each of their entries af and bf is computed using a much smaller set of frf � 1

data points, while as and bs are obtained using R�F data points about the scaled stack distance of all �les together.

6 Conclusion

In this paper, we analyze static and temporal locality in web server workloads.

The static locality characterization is based on the frequency-size pro�le of the �les from the web server log: we

rank �les through their frequency (number of times they are requested in a trace) and their size (which is critical in

determining correct cache behavior and server memory requirements).

The temporal locality of references implies that recently accessed documents are more likely to be referenced in the

near future. However, the close proximity of requests for the same �le in a trace can be attributed to two orthogonal

reasons: long-term popularity and short-term correlation.

In this paper, we introduce a new measure of temporal locality, the scaled stack distance, which is insensitive to

popularity and captures instead the impact of short-term correlation. We merge the two characterizations (static

and temporal locality) by using frequency, size, and stack distance distributional information to generate a synthetic

trace. This results in a model of reference locality and allows us to generate synthetic web traces that accurately

\mimic" essential characteristics of the real web server logs for future performance analysis studies.
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