E HEWLETT
"B pPACKARD

BuiBingDependab B In€rnet
Servces with E-speak

Swend Frg bind, Fernando Pedone,
Jm Pruyne, Aad van Moorse 1
Softv are Tedi nobgy Laboratory
H PLaboratories Pab Allb

H PL-2000-78
June, 2000

E-speak,
dependabi Bty,
high -

avai hbi Iy,
E-servcs

The process of mowuvng business o tte Intrnet trough
e-conmerce solitions seems ® haw gained unstoppab il
momentum. We be lene, howe\er, tat the sucess and pac
with which business serMces willmigrat to tte Internetwil
be dictatd by te abilty © proMde tiem with dependabi Ity
guarantes. In tis shortpaper we suney the progress we are
mak ing towards proMding fau Etolrating mecdh anisms in e-
speak, the Open Source software phtorm for bui Ming e-
conmerce app Bcations. Among the \various issues we discuss
are te intreptor programming mode I as infrastructural
enab Br of dependabi Bty, high-avai hbi Ity fatures of the e-
speak phtorm ite FE and exacth-one semantics and
transactiona Bproperties for serMces running on top ofe-speak .

o] Copyrigh tH ew B'tEPack ard Com pany 2000

Building Dependable Internet Services with E-speak

Svend Frglund, Fernando Pedone, Jim Pruyne, Aad van Moorsel
Hewlett-Packard Laboratories, 1501 Page Mill Rd., Palo Alto, CA
frolund,pedone, pruyne,aad@hpl.hp.com

Abstract

The process of moving business to the Inter-
net through e-commerce solutions seems to have
gained unstoppable momentum. We believe, how-
ever, that the success and pace with which busi-
ness services will migrate to the Internet will be
dictated by the ability to provide them with de-
pendability guarantees. In this short paper we sur-
vey the progress we are making towards providing
fault-tolerating mechanisms in e-speak, the Open
Source software platform for building e-commerce
applications. Among the various issues we discuss
are the interceptor programming model as infras-
tructural enabler of dependability, high-availability
features of the e-speak platform itself, and exactly-
once semantics and transactional properties for
services running on top of e-speak.

1 E-Speak

E-speak is an Open Source effort initiated by
Hewlett Packard that targets the rapid develop-
ment of Internet business applications [5, 8]. It
anticipates a world in which ‘e-services’ will inter-
act dynamically, transparently and securely over
the Internet to offer a multitude of services. This
service-centric scenario is known as ‘Chapter 2’
of the Internet, following the current chapter of
document-centric standalone e-commerce sites.

In this paper we discuss how to build depend-
able Chapter 2 e-services with e-speak. We restrict
our attention to dependability as far as it relates to
fault-tolerance.! Robustness against failures (ac-

1We use the terms dependability, reliability and avail-

Service

K Service
Service Code

E-Speak Library

: TV

Service
lepository Web Access /
N
N

Core

Internet

Service

Figure 1. E-Speak Architecture

cidental or malicious) is crucial for e-commerce so-
lutions, since service breaches correspond to busi-
ness (and thus money) loss.

Let us first introduce e-speak to the ex-
tent relevant for dependability solutions. More
complete or alternatively focused presenta-
tions can be found on the e-speak web site
http://www.e-speak.net, or in [5], which pro-
vides a web-centric discussion. In e-speak, each
service consists of an engine that provides web ac-
cess to the service and mediates all communica-
tion through its core (see Figure 1). The tasks
of the core include message routing, service ad-
vertisement, service discovery, local naming, and
dealing with various aspects of security. To store
names and service handles, the core uses a reposi-
tory. Note that the core’s advertisement and dis-
covery functions are staples of the Chapter 2 vision
behind e-speak.

Applications (that is, services) running on e-
speak link with the e-speak library to connect to

ability liberally and interchangeable in this paper. If nec-
essary, we introduce precise terminology for various system
properties in the respective sections.

the core (the current e-speak implementation is
all Java). Various programming models for ser-
vices are offered, including synchronous method
invocation and asynchronous XML document ex-
change. The engine’s web access module allows
browsers to interface with e-speak services [5], and
to complete the interoperability picture, gateways
to non-e-speak aware services can be added.

In what follows, we provide e-speak with fault-
tolerance in three steps. First, we introduce
basic ‘infrastructural’ support for dependability
through interceptors and reliable messaging. Then
we make the core and repository of the platform
dependable. Finally, we provide protocols for ser-
vice dependability. We note that not all of the
infrastructural and platform aspects are part of
the Open Source, but we will make that clear in
the text. The service-level dependability solutions
are mostly based on recent research results, some
of them accompanied by prototypes on different
platforms than e-speak. In other words, we dis-
cuss both implemented solutions and research re-
sults in this paper, together representing our vi-
sion on what constitutes dependable Internet ser-
vices, and how to build them. This vision can best
be characterized as focused on end-to-end, service-
level, dependability solutions, built in an (as much
as possible) application-transparent manner.

2 Infrastructure Support for Depend-
ability

Some of e-speak’s features provide inherent sup-
port for dependability: the dynamic discovery of
services helps to facilitate fail-over mechanisms,
and the use of a repository helps to create ser-
vice state persistence. As discussed in the follow-
ing sections, e-speak’s infrastructure includes two
more aspects important for dependability: an in-
terceptor programming model and reliable persis-
tent messaging.

2.1 Interceptor Programming M odel

One of the primary design concerns behind our
work is transparency to application code. Sepa-
rating dependability features from the application
code is beneficial for various reasons, one being

Client Application Service Application

]

Stub Interceptor
Interceptor 1

Skeleton I nterceptor

Interceptor M

Interceptor 1

Al

Interceptor N

E-Speak Platform: Core to Core Communication

Figure 2. Logical Representation Interceptors

that properties can be guaranteed across applica-
tions, without modifying the application code. An
important building block in our approach to pro-
viding this separation is the addition to e-speak of
an interceptor programming model [7].

An interceptor logically resides between the ap-
plication and the e-speak middleware, see Figure
2. At this level, the interceptor is able to inspect
and alter all interactions between the application
and the middleware. This permits one to modify
the interactions between application components,
such as to introduce the platform and service-level
dependability protocols described in Section 3 and
Section 4. Obviously, the use of interceptors is not
limited to reliability, but can be useful for all sorts
of QoS properties, as well as functional features.
In addition to the hooks for interceptors, we also
built an operational management platform to al-
low dynamic insertion and removal of these inter-
ceptors to running services (this is not part of the
Open Source release.)

Interceptor control is part of the e-speak library.
When a service registers with a core, an intercep-
tor control service for it is also created. The con-
trol interface is invoked by the e-speak dispatch
code on each remote method invocation, and is re-
sponsible for insuring that the proper interceptor
modules are called. Similarly, on the client side,
interceptor control is invoked by the stub object
generated by the IDL compiler.

The critical run-time interceptor objects are the
‘request’ object, the ‘control’ object, and the ac-
tual interceptor implementation object. The re-
quest object stores a reified representation of each

remote invocation, facilitating inspection, alter-
ation or forwarding of the call. The control ob-
ject controls the use of interceptors, such as in-
stalling and removing them. In addition, inter-
ceptors can be executed in series and the control
object does record keeping on the chain. Creat-
ing a new interceptor involves subclassing an ab-
stract class containing methods initialize and
invoke. When a new interceptor is installed, the
control object calls its initialize method. The con-
trol object starts execution of interceptors by call-
ing invoke on the appropriate interceptor, and
the interceptor calls invokeNext (with the possi-
bly modified request object) to give control back
to the control object for passing down the chain
of interceptors. In [7] one can find further details,
and also some examples of the use of interceptors.
In this paper, we will point out for individual cases
how we use interceptors to provide dependability
to services in a transparent manner.

It should be noted that interceptors are widely
used in middleware systems, such as CORBA
and DCOM. The e-speak interceptor program-
ming model is slightly different, and in some ways
more practical to use. In particular, e-speak in-
terceptors do not rely on upcalls, which makes it
much easier to insert logic that would otherwise
use multiple upcalls. We refer to [4] for more de-
tails.

2.2 Persistent Reliable M essaging

To facilitate communication-level dependability
properties, e-speak incorporates persistent and re-
liable messaging. At the time of writing it is not
clear what parts will be in a future Open Source
release.

Persistent messaging is implemented using a
persistent store, and reliable messaging is based
on a three-way messaging protocol. Together,
these two messaging services make it possible to
assure exactly-once message delivery. If clients
want this property, they can query for a service
provider that offers persistent and reliable messag-
ing. This way of identifying and possibly negotiat-
ing dependability properties is of great interest for
multi-party service-level dependability guarantees
we discuss in Section 4.

Cluster.of Cores

Cl ugter of Cores
Figure 3. Client-Side Core Fail-Over
3 Platform Dependability

Having the infrastructural tools in place, the
next step in providing dependable Internet ser-
vices through e-speak is to harden the platform
itself. In particular, the e-speak core and the as-
sociated repository should be made fault-tolerant.
To achieve this, we use basic and widely accepted
fault-tolerance techniques: database clusters and
process groups.

The core repository contains data about ser-
vices registered with the core, stored in a database.
If one takes the core perspective, the repository
contains its recovery state, and it is therefore extra
important to make the repository reliable. To do
this, we use a database clustering solution, such as
HP ServiceGuard and Microsoft Wolfpack. Such
clusters have multiple CPUs, which share a disk.
If a database crashes, its failure is diagnosed as
such, and a database is restarted on one of the two
CPUs. It should be noted that in basic database
clustering the recovery time is strongly dependent
on the time to replay the recovery log, which may
take minutes. When we discuss three-tier service-
level dependability in Section 4.3, we introduce
a novel alternative to alleviate this recovery time
bottleneck [6].

To improve the availability of the core, we use
process groups. In a group of cores, each core han-
dles its clients, and in case of a core crash one of
the other cores takes over the jobs of the crashed
core. This type of fault tolerance is typical for soft-
ware processes such as web servers, and improves
both reliability and performance.

Let us first consider core failures at the client
side, illustrated in Figure 3 (the initial communi-
cation is the solid line, and the fail-over path is

Cluster of Cores Cluster.of Cores

Figure 4. Service-Side Core Fail-Over

dashed). In the grouping solution, when a client
connects with a core, it gets information about a
list of core names (CC1, CC2), of which it selects
one. Say the client connects with CC1. Since it
knows which cores belong to the group, if core CC1
fails, the client can reconnect to another core (this
time core CC2). All state information needed by
core CC2 is available in the repository. To im-
plement this solution, we can make use of the in-
terceptor framework for failure detection and re-
tries. The details of such an implementation are
currently under investigation.

Consider now service-side core failures. Follow-
ing the scenario depicted in Figure 4, the client
rebinds to SC2 when SC1 fails. When the service
registers with the different cores in the group, a
unique name is created at each core, and using
the standard e-speak connection set-up fail-over is
established. Note that the repository is assumed
to be shared among the cores. We therefore in-
troduce a light-weight registration operation that
only creates a handle to the service, but does not
advertise the service multiple times, nor store re-
dundant service information. Failure detection as
well as rebinding may be implemented through a
client-side interceptor.

4 Dependable Services

The ultimate objective of our dependability
work is to guarantee dependability properties for
the actual services running on e-speak. In this
section, we introduce several solutions for service-
level dependability. We discuss first recovery of a
single service, then end-to-end dependability for
three-tier applications, and finally dependability
for service-level ‘transactions’ spanning multiple

parties (a Chapter 2 scenario).

4.1 Service Recovery

There is a base mechanism for recovering ser-
vices from crash failures. It uses e-speak’s web
access persistent queue as reliable storage for the
service state. A recovery manager controls the
restart of the service if a failure is detected.

4.2 ThreeTier Solutions |: Exactly-Once Trans-
actions

We discuss protocols to provide exactly-once se-
mantics in three-tier applications, given that crash
failures can occur in both services and databases.
Many current (Chapter 1) e-commerce applica-
tions follow a three-tier structure. In this setting,
front-end clients are thin, for example browsers
and applets. Middle-tier application servers are
stateless, examples include traditional web servers
as well as application servers, such as BEA We-
bLogic or Microsoft COM+. The back-end is typi-
cally one or more standard database systems, such
as Oracle 8i.

It is very challenging to provide end-to-end re-
liability in three-tier systems without violating
their nice properties (scalability and manageabil-
ity). Fault tolerance efforts, such as in CORBA,
do not solve the end-to-end problem, but instead
deal with two separate issues (client-server and
server-database, respectively) that do not add up
[1]. We define the concept of an e-transaction
as a practical and desirable end-to-end reliability
guarantee for three-tier applications [2]. The ‘¢’
in e-transactions stands for exactly-once, and re-
flects the fact that clients want their requests to
be processed with exactly-once semantics. More-
over, with e-transactions, clients get transactional
guarantees, even though they are not part of the
‘real’ server-side transaction. Roughly speaking, if
a client submits a request ‘within’ an e-transaction
(and does not crash), the client will eventually
receive a reply, and this reply is the result of a
server-side transaction that has committed. Note
that since the notion of exactly-once in this sec-
tion relates to an end-to-end property, this notion
is more encompassing than that of exactly-once
messaging in Section 2.2.

We have also defined various protocols that im-
plement e-transactions in practical settings. We
assume off-the-shelf databases that run the XA in-
terface. We assume that clients may not recover,
and that clients cannot accurately detect server-
side failures. Finally, we maintain the stateless
nature of middle-tier servers as much as possi-
ble. With a single database, middle-tier servers
are completely stateless. With multiple back-end
databases, middle-tier servers communicate with
each other to coordinate their actions, but they
do not store recovery information on their local
disk.

In all our e-transaction protocols, some ba-
sic issues on the client side as well as the ser-
vice/database side must be addressed. We will
briefly outline these basic ideas behind our solu-
tions. In our protocols, it is the client’s task to di-
agnose service failures, and reissue requests. The
service, on the other hand, must be able to deter-
mine the outcome of a transaction for which the
client resubmits a request. If a client suspects a
failure, the client can not know whether the service
failed before or after the transaction was commit-
ted against the database, and hence the service
(in collaboration with the database) has mecha-
nisms to determine this. If the transaction was
committed, the result of the first transaction at-
tempt is returned. Otherwise a new transaction is
executed. Figure 5 displays a possible design for
an implementation based on interceptors. We note
that our current implementation is not in e-speak,
but in CORBA.

43 ThreeTier Solutions I1; Fast Database Fail-
Over

Typically, the high-availability bottleneck in
three-tier systems is the database. The reason is
that database failures normally result in log-based
recovery: to restart, the database has to estab-
lish a consistent pre-failure state from a persistent
transaction log. As we remarked when discussing
fault-tolerance of the repository in Section 3, this
can easily take minutes. Here we discuss a promis-
ing new approach, called Pronto [6], to expedite
database fail-over. We note that the applicability
of Pronto is not limited to three-tier systems, but

Client Code

interceptors :

. / \ Outcome Determination
Retry + Fail-Over } [Result Transfer

Figure 5. Interceptor-Based E-Transaction Im-
plementation

extends to any set-up in which databases need to
be highly available.

Pronto uses multiple off-the-shelf database
systems to mask the log-based recovery of
one database and continue processing transac-
tions against other databases when failures oc-
cur. The Pronto protocol is a hybrid ap-
proach that has elements of both active repli-
cation and primary-backup. Pronto deals with
database non-determinism by having a single (pri-
mary) database execute transactions in a non-
deterministic manner. But rather than checkpoint
the resulting state to backups, Pronto sends the
transaction itself to the backups along with order-
ing information that allows the backups to make
the same non-deterministic choices as the primary.
By shipping transactions instead of transaction
logs, we can have heterogeneous databases with
different log formats, and prevent the contamina-
tion that may result if the data in one database
becomes corrupt. Furthermore, the Pronto algo-
rithm does not rely on perfect failure detection,
an important property to make database fault-
tolerance work in an Internet environment.

4.4 Multi-Party Transactional Guarantees. X-
Ability

With Chapter 2 of the Internet, an online ser-
vice may be implemented by a collection of e-
services. Thus, the notion of end-to-end reliabil-
ity now potentially spans a collection of indepen-
dently owned and operated e-services. This fur-
ther increases the complexity of providing depend-
ability guarantees compared to three-tier systems.
We can no longer define end-to-end reliability in
terms of how these e-services are implemented, for

‘client’ ‘service ‘environment’
contract:
- idempotence

- non-blocking

contract:
- exactly-once side-effect

Travel Service Car Service Broker Car Service

Figure 6. Contracts Between E-Services for
X-Ability

example, whether they store their state in a back-
end database. Just like we advertise and compose
service functionality in terms of attributes and in-
terfaces, we also need to specify and prove reliabil-
ity properties in terms of abstract, per-service ro-
bustness characteristics. We need a way to define
reliability contracts between services, and reason
about the end-to-end reliability in terms of these
contracts.

The notion of x-ability is a way to define such
reliability contracts [3]. An x-able service has two
contracts: one with its clients and one with its
environment (e.g., other services). The client-side
contract is based on idempotent, non-blocking re-
quest processing. The contract with the environ-
ment is based on exactly-once side-effect. Figure
6 displays part of a fictive multi-party interaction
involving the booking of a trip, with the x-ability
contracts between the various partners. With x-
ability, we can reason about reliability correctness
of a service as a local property. We can examine if
the service satisfies its contracts. With x-ability,
end-to-end reliability is compositional.

We note that our current x-ability work is of an
abstract and theoretical nature, and that many
implementation issues still need to be resolved.
Concerning such implementation, it seems natural
to use interceptors, guided by deployment man-
agement to establish contracts between partners.

5 Conclusion

The overview of the e-speak dependability fea-
tures in this paper distinguishes infrastructural so-
lutions, platform solutions, and service solutions,
respectively. Together, they establish service-level
dependability guarantees, which we implement as
transparent as possible in relation to the services.

From a research perspective, the dependabil-
ity challenge in Chapter 2 of the Internet lies in
service-level dependability. Most existing solu-
tions do not consider dependability from an end-
to-end perspective in three-tier systems, let alone
for dynamically created, multi-party, composed e-
services. Our work on x-ability is a first step, but
many more dependability issues need to be ad-
dressed at the level of concatenated, multi-party
services. A rich, and critical, area of dependability
research thus remains.

References

[1] S. Frglund and R. Guerraoui, “CORBA fault-
tolerance: Why it does not add up,” in Proceed-
ings of the IEEE Workshop on Future Trends of
Distributed Systems, December 1999.

[2] S. Frglund and R. Guerraoui, “Implementing e-
transactions with asynchronous replication,” in
The International Conference on Dependable Sys-
tems and Networks (FTCS-30 and DCCA-8), New
York, New York, USA, June 2000.

[3] S. Frglund and R. Guerraoui, “X-ability: A theory
of replication,” in Proceedings of Principles of Dis-
tributed Computing, Portland, Oregon, USA, July
2000.

[4] S. Frglund and J. Pruyne, “In support of generic
proxies,” in Workshop on Reflective Middleware
(in conjunction with Middleware 2000), New York,
New York, USA, April 2000. Position paper.

[5] S. Graupner, W. Kim, D. Lenkov, and A. Sa-
hai, “E-speak—an enabling infrastructure for web-
based e-services,” in International Conference on
Advances in Infrastructure for Electronic Business,
Science, and FEducation on the Internet, 1‘Aquila,
Ttaly, July 31-August 6 2000.

[6] F.Pedone and S. Frglund, “Pronto: A fast fail-over
protocol for off-the-shelf commercial databases,”
Technical report, Hewlett-Packard Laboratories,
April 2000. Submitted for publications.

[7] J. Pruyne, “Enabling QoS via interception in mid-
dleware,” Technical Report HPL-2000-29, Hewlett-
Packard Laboratories, February 2000.

[8] http://www.e-speak.net E-Speak Open Source.

Please refer to references within the above documents
for a more extensive survey of relevant literature.

