
 

Drawing Venn Triangles 
 
Jeremy J. Carroll 
Publishing Systems and Solutions Laboratory  
HP Laboratories Bristol 
HPL-2000-73 
December 21st , 2000* 
 
 
venn diagram, 
triangles, 
corners 

 

We use a straight-line graph-drawing algorithm to draw                     
overlapping triangles. The graphs and extended co-linearity 
constraints are chosen to be graphs of 6-Venn diagrams, using a 
graph theoretic brute-force search. A method for identifying the 
corners in a family of intersecting simple closed curves is
described. Hence Grunbaum's problem of drawing a Venn                     
diagram of six triangles is solved. Two of the 126 distinct 
solutions are presented. 

 

 

* Internal Accession Date Only    Approved for External Publication  
 Copyright Hewlett-Packard Company 2001 



 1

Drawing Venn Triangles 
Jeremy J. Carroll  

Hewlett-Packard Laboratories Bristol, UK 
jjc@hpl.hp.com 

 

 

 

Abstract 
We use a straight-line graph-drawing algorithm to draw overlapping 
triangles. The graphs and extended co-linearity constraints are 
chosen to be graphs of 6-Venn diagrams, using a graph theoretic 
brute-force search.  A method for identifying the corners in a family 
of intersecting simple closed curves is described. Hence 
Grünbaum’s problem of drawing a Venn diagram of six triangles is 
solved. Two of the126 distinct solutions are presented. 
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1. Introduction 
This paper presents an extended example of how to use the straight-line 
graph drawing algorithm presented in Carroll [2]. This consists of a solution 
to Grünbaum’s Venn diagram of six triangles problem. 

We find all 126 graph theoretic solutions using an exhaustive graph-
theoretic brute force search, and then draw them using the straight-line 
graph-drawing algorithm. 
Issues that occur in this problem that may reoccur in other straight line 
drawing problems are: 

• Corners, where are they? 
• Which constraints are really part of our problem? 
• Specifying the relationship of the corners to other lines in the 

figures. 

 

2. Venn Diagrams and Venn Triangles 
In 1975, Grünbaum [3] first posed the problem of drawing a simple Venn 
diagram of six triangles. This is six triangles such that: 

• No three lines are concurrent  

• The triangles divide the plane into 64 regions each of which is inside 
its own unique subset of the set of triangles. 

The clearest such diagram, produced by the work described in this paper, is 
shown in 
Figure 1. 
Ruskey [5] provides a very helpful survey of work in Venn diagrams; and we 
should note Grünbaum and Winkler’s 5-Venn Triangles [4]. 

From a graph theoretic point of view a simple n-Venn diagram is a labelled 
plane graph G with labels taken from { }n,,2,1 L  such that: 

• The edges with label i form a cycle Ci that we refer to as the i-th curve 
of the Venn diagram. 

• Every vertex of G lies on exactly two of these curves. 
• G has 2n faces and for each subset of { }nCCC ,,, 21 L  there is exactly one 

face inside the selected curves and outside the other curves. 

A somewhat more general type of graph is a FISC or family of intersecting 
simple closed curves, described by Bultena et al.[1]  
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Figure 1 A Venn Diagram of Six Triangles 

3. Straight-line drawing 
The algorithm presented in Carroll [2] draws graphs subject to co-linearity 
constraints. It requires a planar graph and specified “straight paths” as 
input. It outputs the polar coordinates of a line for each of the straight 
paths such that the lines together form a drawing of the graph. Additional 
input required is facial boundary information and a detailed description of 
the relationship between the end-points of each straight path and some 
other straight paths that are otherwise unrelated. Further, an aesthetic 
function measuring the beauty of a solution (in terms of its polar 
coordinates) is required. 
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The basic structure of the algorithm is to convert all the graph theoretic 
information into inequalities over polar coordinates of a solution and then 
to solve the inequalities using non-linear programming techniques. The 
inequalities are of two types linear angle inequalities, expressing basic 
Euclidean constraints on the angle ordinates, and the betweenness 
inequalities that relate to triangles formed by any three straight paths in 
the figure. 

4. Finding Venn Triangles 
The approach we take to the 6-Venn Triangle problem is to first conduct a 
brute force search to find all 6-Venn diagrams, and then to filter the results 
to give only those diagrams that plausibly can be drawn as triangles. Some 
of these filtering considerations were moved into the search algorithm itself 
in order to speed things up. The exhaustive search took approximately 
0.5e15 machine instructions (i.e. 2 months on the hardware used).1 

4.1 Graph Theoretic Venn Diagrams 
From a graph theoretic point of view an n-Venn diagram is a plane graph 
with edges labelled from { }nK,2,1 , such that for each label the 
corresponding set of edges forms a cycle known as a curve. The interiors of 
these curves correspond to the traditional “sets” of a Venn diagram. We note 
that a plane graph has faces, and each face has a cycle of edges going 
around it, called its facial cycle. For a Venn diagram there are 2n faces, each 
being the intersection of the interior of a unique subset of the set of curves. 

4.2 Facial Cycle Search 
The underlying idea behind the search is that a 6-Venn diagram has 64 
faces by definition; and that each of these faces has a facial cycle with 
between three and six edges with no one curve appearing more than once. 
This gives 394!5!4!3!2C 66564636 =+++ CCC different possible facial cycles per face; 

and bounds the total search space from above by 16664 10394 ≈ . Standard 
search techniques and considerations of symmetry allow pruning of the 
search space down to a tractable number.  

As the facial cycle for each face is chosen this constrains the possible facial 
cycles of adjacent faces. Whenever the search algorithm considers a partial 
solution in which one of the partial curves of the diagram is in two or more 
disconnected components, one of which is a cycle then that solution and all 
its children are rejected. This is because a 6-Venn diagram consists of 6 
curves, and a cycle cannot have a proper subcycle. 

                                        
1 Reflecting upon the results it was clear that further substantial performance improvements could have been achieved 
by a more thorough use of convexity constraints. 
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4.3 Graph-theoretic Triangles 
Given that we want to draw each curve as a triangle we have a number of 
simple graph theoretic observations: 

• Each pair of curves intersects at most 6 times. 

• Each triangle is a convex figure hence the theorem of Bultena et al. 
[1] applies and the Venn diagram is monotone (i.e. its directed dual 
graph has exactly one source and one sink). 

Filtering using these criteria is unproblematic. 
More complex is that we need to identify three edges on each curve such 
that we can add an additional subdividing vertex on each of these edges. We 
then form three paths along each curve between the subdividing vertices. 
We now have 18 paths. If any pair of these paths intersect two or more 
times, then it is not possible to draw the graph with each path as a single 
straight line. 

Hence we use the following cornering algorithm to count the minimal 
number of corners on each curve. If any curve requires four or more corners 
the Venn diagram is rejected. 

4.4 Cornering Algorithm 
The key observation behind the cornering algorithm is that if we have two 
piecewise linear intersecting convex curves, and one curve passes from 
inside the other to outside, and then back inside, then it must pass 
through a corner. 

 

outside 

inside 

Thick lines show corners. 

      

 

outside 

inside 

 
For a convex Venn diagram we can identify the central face that lies inside 
all the curves. Moreover, this face has an edge from each of the curves. 
(Both these follow from Bultena et al.’s convexity theorem [1]). 
For each curve C, we start with its edge on the central face, and proceed 
around the curve in one direction.  

We keep track of two sets: 
• a set Out of curves outside of which we lie.  
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• a set Passed of curves which we have recently crossed from the inside 
to the outside.  

Both sets are initialised to empty. On our walk around C, as we pass the 
vertex v we look at the other curve C' passing through that vertex. 
If C' is in Out then: 

• We remove  C' from Out. 
• If C' is in Passed then we set Passed as the empty set and add v to 

the result set. The idea is that there must be a corner between any 
two vertices in the result set. 

Otherwise, C' is not in Out and: 
• We add C' to Out. 

• We add C' to Passed. 
At the end of the walk we look at the cardinality of the result set. This tells 
us the minimum number of corners required on this curve. 
By conducting a similar walk in the opposite direction around the curve we 
get a corresponding result set. We can align these two result sets, and find 
sub-paths along which a corner must lie. For each sub-path one end lies in 
one result set and the other end in the other. 

We arbitrarily choose one edge in each of these subpaths and subdivide it 
with an additional vertex. 
If any curve has fewer than three corners found with this algorithm then 
additional corners are added arbitrarily. 

5. Flexibility in Cornering 
During the cornering analysis there is an arbitrary choice of which of the 
edges in the corner is subdivided. There are further choices about how to 
place a third corner when the cornering analysis only finds two corners. 
These choices can be thought of as uncertainty about the betweenness 
properties in the straight line drawing. i.e. in what order does one of the 
lines cross the other lines, noting in particular that line with which it 
forms a corner. The geometric concept of betweenness is expressed in the 
graph-drawing algorithm by the betweenness inequalities involving 
triangles in the figure (see Carroll [2]). We can express this uncertainty 
about the drawing by removing some of the betweenness inequalities from 
the set to be solved in the algorithm. In particular, for the Venn triangles 
we remove any betweenness inequality involving two sides of one of the 
triangles and a third line that crosses one but not both of the first two 
lines. 
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6. Corner information 
We need to give the graph-drawing algorithm a clear idea of the relationship 
between the corners of the triangles (i.e. the end-points of the straight 
paths) and other straight paths in the figure.  
To do this, for each pair of paths P and Q that form two sides of a triangle, 
and for each R that does not intersect either P or Q, we may specify an 
unrelated vertex v for which there are two v-R straight paths. v lies on the 
same side of R as P∩Q. In this way we have specified which side of R the 
corner should lie. 
For Venn Triangles the following suffices: 

For each Venn triangle2 t;  
for each pair of sides P and Q of t;  

for each Venn triangle t' containing P∩Q; 
for each side R of t' that does not intersect P or Q; 

then P∩Q lies on the same side of R as the corner of t' opposite to R. 
This statement is necessary. Sufficiency is less clear. It has proved sufficient 
in practice; in that each of the drawings of the 126 6-Venn triangles do 
have the Venn property. 

7. The radius and inner radius 
Before invoking the graph-drawing algorithm we need to specify an 
aesthetic objective. 
This can be any function of the polar coordinates of the lines that is locally 
differentiable and convex in the vicinity of a solution. We can also combine 
many such objectives with max or min. 

For the Venn triangle problem we choose two different aesthetic functions. 
Both are linked to the distance of the corners of the triangles from the 
origin in the central face. If l1 and l2 are two sides of a triangle with polar 
coordinates ( )11,θd  and ( )22 ,θd ; then the distance between the origin and 
the corner l1 n l2 is given by3:   

( ) ( )
( ) ( ) 














−
−

− −
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21121
1

1

sinsin
coscos

tancos
θθ
θθ

θ
dd
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d   

                                        
2 The term Venn triangle indicates one of the curves of the Venn diagram that is to be drawn as three straight paths. 
This is to distinguish it from some other triangle in the figure consisting of three vertices linked by three straight paths 
(which may be subpaths of the sides of the Venn triangles). 

3 I am not wholly convinced that there isn’t a simpler formula! 
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The first objective function is to minimise the maximum value of this 
distance over all the corners in the Venn diagram4. This produces diagrams 
where, for a given clarity of diagram, the piece of paper needed to draw the 
diagram is as small as possible. Figure 1 and Figure 2 use this objective. 
Following Grünbaum and Winkler [4], it is often preferable to omit the 
outer corners of Venn triangles, leaving them to the readers’ imagination. 
We hence use a second aesthetic function that minimizes the inner radius, 
i.e. where we omit the corners on the outer face from consideration. (We 
then need to specify some minimum angle for these corners, e.g. 0.1°. Such 
minimums can be added to the non-linear program used by the graph-
drawing algorithm.)  Figure 3 uses this objective, but is the same diagram 
as Figure 2. 

We have now found all the required inputs to the graph drawing algorithm 
and so we invoke it. The polar origin used for these diagrams lies in the 
central face. 

 

                                        
4 In practice the non-linear programming system used found it easier to maximise the minimum value of:  
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Figure 2 Tighter 6-Venn Triangles 
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Figure 3 The distorted centre of Figure 2 

8. Notes on the Results 
126 sets of 6-Venn triangles have been found. There are no others. 
Two measures of size or difficulty are found, the radius (i.e. the maximum 
distance of a corner from the origin) and the inner radius (i.e. excluding 
corners on the outer face). The smallest solution Figure 1 has radius 49 and 
inner radius 38. The unit for all these figures arises as the minimal value of 

abc

24∆ , which is very approximately the height of the smallest triangle in the 

figure (a b and c are the sides of any triangle formed in the figure, ∆ the 
area). 

For diagrams formed by minimising the inner radius, the inner radius 
ranged from 20 to 532, with the (outer) radius ranging from 183 and up. 
For diagrams formed by minimising the radius it ranged from 49 to 3065, 
with inner radius ranging from 38 up to 826.  
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These figures suggest that to draw Venn triangles when millimetre 
precision is available then Figure 1 can be drawn in a 5 centimetre square 
piece of paper whereas the worst-case figure would require 3 meters. 

9. Future Directions 
The same techniques could be used for finding higher order Venn diagrams 
formed by convex polygons with more sides. More care would be needed to 
take advantage of the convexity of the curves to prune the search space, or 
we could limit ourselves to a non-exhaustive search. 
Further work on angles is needed to answer questions like can any of these 
6-Venn triangles be drawn with equilateral triangles, or can we form a Venn 
diagram from 7 rectangles. 
An alternative approach to limiting the search space size at higher orders 
would be to restrict the search to symmetric Venn diagrams. 

10. References 
[1] B. Bultena, B. Grünbaum, and F. Ruskey, Convex Drawings of 

Intersecting Families of Simple Closed Curves, 1998. Presented at the 
11th Canadian Conference on Computational Geometry, (1999), 18-
21.  

[2] J.J. Carroll, Drawing Straight Lines. Hewlett-Packard Laboratories 
Report, No. HPL-2000-72, Bristol, U.K., 2000.  

[3] B. Grünbaum, Venn diagrams and independent families of sets. 
Mathematics Magazine 48, 1975. pp12-22. 

[4] B. Grünbaum and P. Winkler, A Venn diagram of 5 triangles. 
Mathematics Magazine 55, 1982. p311. 

[5] Frank Ruskey, A Survey of Venn Diagrams, The Electronic Journal of 
Combinatorics 4, DS#5, 1997, 
http://www.combinatorics.org/Surveys/ds5/VennEJC.html.  


