

A Specialized Macro Language For
Specifying the Communication
Patterns Within an Agent

Troy A. Shahoumian
Software Technology Laboratory
HP Laboratories Palo Alto
HPL-2000-7
January, 2000

E-mail: troy_shahoumian@hp.com

application
management,
software agents,
CIM, macro-
languages

To meet the challenges of application management, our
research group in Hewlett Packard Laboratories is prototyping
software agents made up of "parts"---lightweight threads that
communicate using message-passing. Specifications for these
agents are described in CIM and stored in Microsoft's CIMOM
object repository. To facilitate the design of these agents, a
simple macro language called Agent Generation Tool (AGT) has
been developed. Rather than specifying agents directly in MOF,
agents can be specified using AGT. The AGT macro processor
can then generate the appropriate MOF. AGT allows super-
parts, combinations of parts that communicate in a given
pattern, to be defined and reused multiple times. The design
considerations behind AGT are discussed.

 Copyright Hewlett-Packard Company 2000

Internal Accession Date Only

1

A Specialized Macro Language For Specifying the
Communication Patterns Within an Agent

Troy A. Shahoumian*

Abstract: To meet the challenges of application management, our research group in Hewlett Packard
Laboratories is prototyping software agents made up of “parts”—lightweight threads that communicate
using message-passing. Specifications for these agents are described in CIM and stored in Microsoft’s
CIMOM object repository. To facilitate the design of these agents, a simple macro language called Agent
Generation Tool (AGT) has been developed. Rather than specifying agents directly in MOF, agents can be
specified using AGT. The AGT macro processor can then generate the appropriate MOF. AGT allows
super-parts, combinations of parts that communicate in a given pattern, to be defined and reused multiple
times. The design considerations behind AGT are discussed.

Keywords: Application Management, Software Agents, CIM, Macro-
Languages

1 Introduction

Work is currently being done at Hewlett Packard in the area of application
and service management. The goal is to have a management system that
discovers applications, instruments and monitors them. The ultimate goal is
to tie these functions in with Hewlett Packard’s OpenView products,
extending OpenView’s ability to control an application’s parameters to
achieve the best possible application performance.

The system currently being prototyped is based on agents made out of light-
weight components called “parts.” These parts communicate via a
publish/subscribe software bus. Each part runs in its own thread. Exactly
how these parts are combined to form an agent is represented in CIM
(Common Information Model) [DMTF99a] and stored in Microsoft’s
CIMOM (CIM Object Manager) [Micro99]. (CIM usually refers to the
schemas defined by the Distributed Management Taskforce. In this paper
we use the term somewhat loosely to include the extensions we have made
to CIM to define our agents, using the CIM core schema as a base.) To store
these objects in CIM one specifies them using the MOF language which is
compiled into CIM. CIM was not designed for the specification of these
agents; writing these specifications directly in MOF is a long and tedious
process for even small agents made from a handful of parts.

* Software Technology Lab, Hewlett Packard Laboratories. 1501 Page Mill Road, Palo Alto CA 94301.
troy_shahoumian@hp.com

2

To make it easier to create these agents, a macro language called Agent
Generation Tool (AGT) was created. AGT allows the specification of an
agent’s composition to be authored in a more logical fashion, enabling more
sophisticated agents to be built with less chance of errors.

The rest of the paper is organized as follows. Section 2 contains the
architecture of the new agents being created in our prototype application
management system. The need for a macro language for specifying agents is
discussed in Section 3. Section 4 describes the macro language. Section 5
discusses unexpected benefits that resulted from people using AGT. Finally,
Section 6 offers some conclusions and possible extensions to this work.

2 Background on Application Management and the Agents
Being Prototyped

As corporations rely more on their computer systems for their day-to-day
operations, making sure these systems are operating correctly—and quickly
triaging and resolving problems when things do go awry—becomes more
critical. Not surprisingly, at the same time, a corporation's information
technology infrastructure is getting more complex; the number of systems to
be managed grows, the complexity of each system increases, and the
interactions and interdependencies among computer systems becomes more
sophisticated and harder to manage.

Hewlett Packard’s OpenView [OV99] line of products is designed to help
make computer systems easier to manage. There is an ongoing need to
make the agents deployed by the management system more intelligent. As
management systems become more complex, more reasoning needs to take
place at the agent level rather than having a large amount of data sent back
to the management system for processing.

At the same time, there is a need to simplify the implementation of the
agents. The agents must be able to handle input from a variety of sources.
For example, they must accept data input from numerous outside events
such as those generated by monitored processes. They are also responsible
for monitoring the lengths of queues in software systems and for
determining whether the necessary processes are running. Writing a single-
threaded agent to handle all of the different event types would be
challenging. The single thread would be responsible for handling the events

3

coming from all the different sources. As the number of event types grow,
implementing the agent as a single thread would becomes more complex.

To meet these challenges, a new architecture for software agents was
created. (Some of the details of this new design are described here. More
details can be found in [MD+99].) It was decided to create agents out of
multiple light-weight threads called parts. Parts are meant to be general-
purpose building blocks out of which the management agents can be built.
By composing parts in different ways, one will be able to quickly build any
of the management agents which would be required. These parts are coded
in a programming language such as C++ or Java and because they are given
a specific job within the agent, they are easier to implement and maintain.
In an agent made up of these parts, each part receives messages, does some
processing and then publishes messages when appropriate. These messages
can be directed to other parts within the same agent, to parts making up other
agents, or to central management systems.

This design for agents should be compared to writing a single-threaded piece
of code capable of receiving a number of different message types at any
time. The agents made out of multiple threads are better suited to
responding to asynchronous events.

It should be mentioned that there will generally be multiple instantiations of
a given part within a managed system, perhaps even within a single agent.
These parts are coded with the notion that they will be reused multiple times.
The key goal in AGT was to allow parts to be logically packaged into larger
“groups” of parts which can be deployed multiple times throughout a
management solution.

One implementation of our agent architecture is based on COM technology
from Microsoft. The rest of this technical report discusses this
implementation. Other work in our department is working on an
implementation which runs on a variety of platforms and can access data
from the CIMOM using XML as an intermediate representation [GGH99].

Parts communicate via several publish-subscribe software buses. (Purtillo
[Pur94] gives a thorough introduction to software buses.) This was chosen
over a system based on direct notification such as Microsoft's connection
points. The publish/subscribe paradigm allows an agent to dynamically
subscribe to specific topics of interest and receive messages published onto

that topic. A lightweight local bus facilitates
communication between the parts within a single
machine, as shown in Figure 1. A more complex
global bus is responsible for communication
between agents whether or not they are deployed
on the same machine. Which of these two buses an
agent is using should be transparent to the agent
creator.

The specification of parts within an agent is stored
in Microsoft’s CIMOM, which is an object
repository. An object stored in the CIMOM is
similar to a C structure in that it has a name and a
number of strongly-typed data fields. In the case

Agent #2Agent #1

Local Bus

Part 1

Part 2 Part 4

Part 3
Figure 1 Parts are logically grouped
together to form agents. The parts
communicate via the software bus.
Only the lightweight local bus—which
is used for communication between
parts residing on the same machine—is
shown.
4

Figure 2 The events, or
messages, which are sent
between parts are made up
of fields. Each field can be
accessed independently.

of an object specifying a part in an agent, the type
of the part is specified, along with the topics which
it should monitor for messages on (“subscribe”
topics) and the topics which it sends out messages
on (“publish” topics.)

A field is a typed placeholder within a message,
similar to a member variable in a C structure.
Fields allow additional information to be carried in
the messages. For example, consider a message
which is generated when a database transaction is
started. A message similar to the one shown in
Figure 2 would be sent. The user and machine that
initiated the transaction can be stored in two fields
of the message. This information will be carried in
the message throughout its path through many
parts even though not all parts will need to access
or change this information. Parts do not read and
write an entire message at once, but read from and
write to specific fields within the message.

When specifying a part in CIM, besides specifying topics and fields, one can
specify parameters for the part. (For an example of this, see the sample
MOF file in Figure 4.) This customizes the behavior of the part. In the case
of a part which generates a message when a database transaction is started,

u

TotalCPUTime=27

Message

machine=camino

user=bob

Database=customer.dat

Operation=Read

5

parameters may specify which database or type of transactions are of
interest. The parameters to a part are specified in a parameter instance
object, a separate object from the object representing the part itself. The
justification was that parts would be able to easily share parameters by
pointing to the same parameter instance object.

Figure 3 This diagram shows how parts are modeled in CIM. An agent is made out of a number of
parts. The specification of the exact part to be used—i.e., where to find the binary representation of the
part—is done using a PartTemplate. Each part has an associated ParameterInstance in which all the
parameters are stored.

Figure 3 is the UML diagram showing how parts are associated with an
AGT_Agent and how each part requires a parameter instance object. When
specifying agents by writing MOF files, there was considerable overhead in
specifying each part, and keeping things consistent across parts was very
hard to do.

To illustrate the complexity of specifying agents directly in MOF, Figure 4
gives the MOF for a sample agent with two parts. This agent is for
illustrative purposes only. Looking at the first object described in the MOF,

-Name
-Description
-Version

Module_Base

-ParameterTemplate
-ClsID

PartTemplate
-Names
-Descriptions
-Types
-DefaultValues

ParameterTemplate

-ParameterInstance
-PartTemplate
-InFields
-InTopics
-OutTopic
-OutFields

PartInstance

-LocalNames
-Values
-ParentParameterBlock
-ParameterTemplate

ParameterInstance

-Parts

AGT_Agent

6

the first part ($Part1) is an instance of a ‘filter’ part. It reads all messages
broadcast on the input (subscribe) topic `alltransactions’, and presumably
filters database transactions in some way. It sends out its messages on a
private (publish) topic, `topic0_0.’ The second object describes the one
parameter for this part. When agents are specified directly in MOF, the
parameters to a part are stored in a separate object; the advantage is that
multiple parts can share the same parameters. (AGT does not take
advantage of this feature. For machine-generated MOF it was easier to
generate a separate parameter block for each part.)

The next two objects ($Part2 and $pi10002) describe the second part. It
subscribes to the same private topic, topic0_0 and publishes to topic
`filteredtransactions’. The fifth object specifies that the agent is made up of
these two parts.

3 The Need for an Easier Way of Creating Agents

As one can see, specifying even simple agents composed of a handful of
parts directly in MOF is very tedious. Examining examples of agents our
project team created, it was quickly realized that parts needed to be
combined into larger, more complex super-parts which were repeated
multiple times within a management system. For example, one super-part
might analyze the transaction times for one type of database transaction, and
this super-part was repeated several times in a single agent for the different
types of database transactions. When writing MOF directly, specifying
such a super-part multiple times led to several problems. First, each part
required about 10 lines of MOF, and because part definitions look very
similar it was easy to get things wrong. Second, because MOF was not
designed for defining these parts, there were no embedded clues to help the
agent designer keep track of what was going on. When agents are coded in
MOF, there was no easy way to tell which parts were communicating
together, which group of parts were acting together to achieve as specific
goal, and which parts were combined into a "super-part" which was
deployed multiple times. (We also explored the use of a visual tool to make
it easier to see the grouping and relationships among parts.) Third, as the
super-parts were improved, the changes needed to be made multiple times; if
a super-part was instantiated five times, one had to change each of the five
instances if one was creating agents by directly writing the MOF.

7

instance of PartInstance $Part1 {
Name = "fm0_temp";
PartTemplate = "filter";
InTopics = {"alltransactions"};
InFields = {"value"};
OutTopics = {"topic0_0"};
OutField = {"value"};
ParameterInstance = $pi10001;

};

instance of ParameterInstance as $pi10001 {
ParameterTemplate = "filter";
LocalNames = {"user"};
Values = {"bob"};

};

instance of PartInstance as $Part2 {
Name = "fm0_dbfilter";
PartTemplate = "transactionrecord";

 InTopics = {"topic0_0"};
InFields = {"value"};
OutTopics = {"filteredtransactions"};
OutField = {"value"};
ParameterInstance = $pi10002;

};

instance of ParameterInstance as $pi10002 {
ParameterTemplate = "transactionrecord";
LocalNames = null;
Values = null;

};

instance of AGT_Agent as $sample {
Name = "sample";
Parts = {"fm0_temp", "fm0_dbfilter"};

};

Figure 4 This is the MOF code needed to specify a simple agent made out of two parts. MOF
allows you to give objects names—such as $Part1—so that objects within the MOF file can refer to each
other. Even in this simple example, the complexities of encoding agents this way is apparent.

4 The Macro Language

A macro language was designed which made it easier to specify the type of
agents discussed above. As mentioned before, the key feature was to be able
to logically group parts into a super-part which could be deployed multiple
times as if it were a single part. The AGT macro processor was implemented
in Java using Sun Microsystem's JavaCC parser generator [Su98]. This

8

section introduces the features of the language and explains the philosophy
behind the design.

4.1 Basics of the Language

Figure 5 shows an example of a simple super-part being defined and
subsequently instantiated once.

part DatabaseTransactionMonitor (intopics: i)
part_1 = DatabaseTransactionDetect(intopics: i);
part_2 = DatabaseTransactionAnalyze(intopics: i, part_1);
DatabaseTransactionMonitor = DatabaseTransactionRecord(intopics: part_2)

end part;

agent DBAgent1 = DatabaseTransactionMonitor (intopics: inputs; outtopic: results);

Figure 5 An example module and instantiation of that module. In the definition of the module the
keyword intopics is used in the parentheses to distinguish this construct from other constructs which can
also appear within the parentheses. The equal signs in the module definition are not specifying an
assignment; they are used to separate a local identifier for the part (i.e., part_1) from the type of part (i.e.,
DatabaseTransactionDetect.

The super-part DatabaseTransactionMonitor subscribes to one topic and, like
all parts and super-parts, publishes to one topic. The intopic name i is not
the actual topic name; it is merely a formal parameter. The actual topic
name is determined when the super-part is instantiated. The first part,
DatabaseTransactionDetect, subscribes to in-topic i and published on its own
topic named part_1. This topic name is a local placeholder. In different
instantiations of this super-part, the topic name will be replaced with a
unique topic name only used in that super-part. The second part,
DatabaseTransactionAnalyze, subscribes to the messages published on topic
i and to the messages published by the first part, part_1. The third part,
DatabaseTransactionRecord, subscribes to the messages published by
part_2. The fact that the DatabaseTransactionRecord shares the name of the
super-part indicates that it should publish to the super-part’s publish topic.
This third part generates the output for the entire super-part. The flow of
messages in this super-part is illustrated on the following figure.

For this instantiation, the super-part subscribes to topic `inputs’ and
publishes to topic `results.’ The actual topic names are determined when the
super-part is instantiated; this is done by the last AGT statement in this
example. In the last statement, the identifier DBAgent1 is the name of the

9

agent being created. It is used by the management system to address the
agent.

Figure 6 A visual representation of the super-part
DatabaseTransactionMonitor and how messages flow through the
super-part. A super-part is made up of regular parts—lightweight
processes implemented in a language such as Java—and/or other
super-parts. The person writing the AGT code specifies how parts
are grouped together to form super-parts.

The implementation of parts allows zero or
more in-topics and zero or more out-topics. In
designing AGT, we imposed the restriction that
each part or super-part have only one out-topic
and one or more in-topics. Having one out-
topic simplified the AGT syntax because there
was only one outflow from a part; i.e., by
having one out-topic per part, the identifier

uniquely determines the out stream of messages from the part. These
assumptions are not a serious limitation to the generality of super-parts. For
those super-parts that do not need to receive messages, they can subscribe to
a “dummy-topic” on which no messages are ever published. An example of
such a part is one that determines whether a given process is running.
Similarly, one can either have super-parts publish to multiple topics (the
push model) or have the receiving super-parts subscribe to all of the required
topics. In designing AGT the latter approach was adopted.

Messages published by a part can be read by any other part defined in the
same super-part. Other parts defined outside the super-part have no access
to these internal messages and can only subscribe to the messages published
by the super-part itself. In Figure 5, only messages published by the part
DatabaseTransactionMonitor can be read by parts outside this super-part.
This was intentional to provide encapsulation. Just as users of a function in
a side-effect-free language need only worry about the function's result rather
than its implementation, we wanted super-part designers to be free to change
their design. So long as the interface stays the same, the design of a super-
part can change without breaking anything else. This design allows one to
limit at run-time how far message need to be broadcast because internal
messages will never be read outside the super-part.

part_1

part_2

DatabaseTransactionMonitor

topic: inputs

topic:results

10

From the above macros, one can not tell whether the three parts instantiated
are ordinary parts implemented in C or Java, or if they are super-parts. In
other words, the three parts instantiated above could themselves be super-
parts composed out of multiple simpler parts. This is intentional. The
motivation is to allow agent implementers to create super-parts made up of
pre-defined parts and to have be used as if they were ordinary parts
implemented in C or Java.

4.2 Customizing Super-Parts using Parameters
The above super-part has no parameters, but parts and super-parts can be
modified at instantiation via parameters. This is illustrated in the following
example.

part DatabaseTransactionMonitor (intopics: i; params: dbname)
part_1 = DatabaseTransactionDetect(intopics: i; params: TransType = "read");
part_2 = DatabaseTransactionAnalyze(intopics: i; params: part_1: database = dbname);
DatabaseTransactionMonitor = DatabaseTransactionRecord(intopics: part_2)

end part;
agent DBAgent1 = DatabaseTransactionMonitor (intopics: topic1; outtopic: topic2; params:

dbname = "CustDatabase");

Figure 7 This is a demonstration of parameters being passed to a part. The part ‘part_1’ is being
passed a parameter whose name is TransType and whose value is “read”. In the case of `part_2,’ the value
of the parameter dbname is determined when the part is instantiated.

The super-part has one parameter—dbname—whose value is specified when
the super-part is instantiated. This parameter is passed to part_2, the
DatabaseTransactionAnalyze, which could either be an ordinary part or
another super-part which was specified using AGT. We also pass a constant
parameter to part_1, the DatabaseTransactionDetect. Using this simple
parameter-passing mechanism allows one to customize each instantiation of
a given part.

4.3 Use of Fields
As mentioned before, the use of fields is an important feature of the parts
infrastructure. Fields are storage locations in messages. One assumption in
the parts infrastructure was that although a part may write to multiple fields
within a part, the parts main result would be stored in a single field denoted
ReturnValue. This does not limit a part to having a single result. Parts

11

generating multiple values can store them in an object and return a pointer to
that object in the message’s ReturnValue field.

Figure 8 Having a part write its main result to a single field allows for multiple results. The field
can have a pointer to an object holding several results.

module CheckForProcesses (intopic: i)
p1 = CheckProcess(intopic: i)
p2 = CheckProcess(intopic: p1)
CheckForProcesses = CheckProcess(intopic: p2(f1); outfield: f2)

end module

Figure 9 In this example, the part CheckForProcesses is reading from a specific field, `f1’ in all
incoming messages and writing to field `f2’. When no fields are specified, the field `Value’ is used.

By default, all parts read from and write to the field named Value. In the
above example, the main result from p1 is written to the field Value and p2
looks for its main input in this field. The third part, p3, reads from the field
f1 and writes its main output to field f2.

Parts are allowed to read from and write to other fields besides the ones
named. Our guiding philosophy was that almost all parts have a single field
they read from and a single field they write to. The mechanisms just
described allow these fields to be determined in an AGT specification of an
agent.

Note that the fields read from and written to are specified when a super-part
is instantiated rather than when it is defined. This choice was adopted to
allow more flexibility in how super-parts are used.

5 Additional Benefits of AGT and Related Work
AGT insulates the agent developer from changes in the CIM model used to
specify agent composition. As our agent infrastructure is a prototype, the
format of the MOF used to specify an agent is very dynamic. It changes as

Message

machine=camino

user=bob

ReturnValue=

EndTime=8:01:36

Returned
Object

StartTime=8:01:34

12

the needs of our project change. Rather than having people change all of
their agent specifications whenever the format of the MOF changes, it is
much easier to have them specify agents in AGT. Changing the AGT
processor to accommodate a new format for the MOF has proved to be quite
easy.

As we noted earlier, the initial version of our prototype used Microsoft’s
CIMOM to store the specification of agents. Because the use of Microsoft's
CIMOM limits us to their supported platforms, we have been exploring the
use of XML as additional output style to MOF. As a result, a command-line
switch was added to the AGT processor which causes it to output the
equivalent XML. This again eliminated rewriting the agents in a new
format.

Because one of our goals is to make the agents in this prototype run on
multiple platforms, we have explored continuing to use Microsoft’s CIMOM
to store agent definitions and having non-Microsoft platforms access the
CIMOM remotely. The DMTF has published a standard defining how CIM
data can be represented in XML [DMTF99c] and accessed remotely using a
HTTP stream [DMTF99b]. In our prototype application management
system, we are looking into using this standard so that non-Microsoft
platforms can remotely access the necessary model data from a Microsoft
CIMOM installation. This work is described in Garg [GGH99].

The notion of making agents out of smaller pieces has been explored before
in, for example, Denin-Keplicz and Treur [DT94]. This is related to the
current work because AGT allows the parts used to construct agents to be
built up and used in a hierarchical fashion. An extensive bibliography on
agent languages can be found in Wooldridge, Muller and Tambe [WMT95].
Wooldridge and Jennings have a section of their book [WJ95] devoted to
agent languages. Bently [Ben88] discusses building small, specialized
languages. Batory et. Al. [BSTDGS94] discusses the automated generation
of software components. Our agents are examples of these types of
components. Cleaveland [Cle88] discusses the automatic generation of
languages.

6 Conclusion
The software agents in our prototype management system are constructed
out of ‘parts’—light-weight threads which communicate via a
publish/subscribe software bus. To facilitate the construction of complex

13

agents using this infrastructure, a macro language was needed to package a
number of parts with a specific communication pattern. The package could
then be easily instantiated multiple times. Having done this, a collection of
light-weight processes becomes a sort of `subroutine’ whose implementation
is not a concern to the caller. The AGT macro language made it easier to
specify these collections of light-weight processes which form the software
agents of our prototype management system.

Early experiments with AGT have shown that using AGT is more straight-
forward than specifying the agents directly in MOF. For the simple agents
currently being specified, about half a page of AGT replaced writing three
pages of MOF. We expect that as more complex agents are written, the
differences will become even more striking. AGT is used throughout our
research group and was used to create the agents in a prototype management
system.

Issues to be addressed in future research include the following:

• The system for handling parameters to super-modules is not very
advanced: The only option is to pass to a sub-module a fixed parameter
or to pass a parameter which was received from the parent sub-module.
Will this scheme suffice, or will it be necessary to add parameter-
manipulating capabilities to AGT?

• The format of the MOF and XML is hard-coded into AGT. An
alternative would be to have a format file which can be used to control
the format of the output of AGT. If AGT is used on many distinct
projects, this could be a worthwhile feature to have.

Acknowledgements
We are grateful to Martin Griss and Jim Pruyne for seeing the value of this
work early on. Martin Griss, Jim Pruyne and Pankaj Garg helped with the
design of AGT. Special thanks to Vijay Machiraju for assistance with some
of the figures.

References
[BSTDGS94] Batory, D., Singhal, V., Thomas, J., Dasar, S., Geraci, B.

and Sirkin, M. The GenVoca Model of Software System
Generators, IEEE Software 11(9), pp. 82-94, September 1994.

[Ben88] Bently, J. Little Languages, Communications of the ACM 29(8),
pp. 711-21, August 1988.

14

[Cle88] Cleaveland, J. C. Building Application Generators, IEEE
Software 4(9) pp. 25-33, July 1988.

[DMTF99a] Desktop Management Task Force (DMTF),Common
Information Model (CIM), http://www.dmtf.org/spec/cims.htm , February,
1999.

[DMTF99b] Desktop Management Task Force (DMTF), XML Working
Group, "Specifications for CIM Operations over HTTP,
Version 1.0," July 20, 1999.

[DMTF99c] Desktop Management Task Force (DMTF), XML Working
Group, "Specification for the Representation of CIM in XML,
Version 2.0," July 20, 1999.

[DT94] B. Dunin-Kaplicz, J. Treur, Compositional Formal
Specification of Multi-Agent Systems, in Intelligent Agents,
ECAI-94, Workshop on Agent Theories, Architectures and
Languges, Springer-Verlag, pp. 102-17, 1994.

[GGH99] Garg, P. K., Griss, M., and Holland, J. "On Using XML for
End-to-End Service Management," Technical Whitepaper,
Application Management Department, Software Technology
Laboratory, Hewlett Packard Laboratories. August 1999.

 [Micro99] Microsoft Developer Network, CIM Object Manager (CIMOM)
guide, 1999.

[MD+99] V. Machiraju, M. Dekhil, K. Wurster, P. Garg, M. Griss, J.
Holland, Towards Generic Application Auto-discovery,
Hewlett-Packard Technical Report HPL-1999-80, July, 1999

[OV99] Hewlett Packard’s OpenView line of products.
http://www.openview.hp.com

[Pur94] JM Purtillo, The POLYLITH Software Bus, ACM TOPLAS,
16(1), Jan 1994, pp. 151-174.

 [SU99] Sun Microsystems JavaCC (Java Compiler Compiler)
http://suntest.com/JavaCC

[WJ95] M. Wooldridge and N.R. Jennings, editors. Intelligent Agents—
Theories, Architectures and Languages, volume 890 of Lecture
Notes in Artificial Intelligence. Springer-Verlag, 1995

[WMT95] M. Wooldridge, J.P. Muller, M. Tambe, Agent Theories,
Architectures and Languages—a bibliography. In proc. Of
Intelligent Agents II: Agent Theories, Architectures and
Languages, pp. 408-31, Springer Verlag, 1995.

http://www.dmtf.org/spec/cims.htm
http://www.openview.hp.com/
http://suntest.com/JavaCC

	Introduction
	Work is currently being done at Hewlett Packard in the area of application and service management. The goal is to have a management system that discovers applications, instruments and monitors them. The ultimate goal is to tie these functions in with H
	The system currently being prototyped is based on agents made out of light-weight components called “parts.” These parts communicate via a publish/subscribe software bus. Each part runs in its own thread. Exactly how these parts are combined to form a
	To make it easier to create these agents, a macro language called Agent Generation Tool (AGT) was created. AGT allows the specification of an agent’s composition to be authored in a more logical fashion, enabling more sophisticated agents to be built w
	2	Background on Application Management and the Agents Being Prototyped

	As corporations rely more on their computer systems for their day-to-day operations, making sure these systems are operating correctly—and quickly triaging and resolving problems when things do go awry—becomes more critical. Not surprisingly, at the sam

	3	The Need for an Easier Way of Creating Agents
	As mentioned before, the use of fields is an important feature of the parts infrastructure. Fields are storage locations in messages. One assumption in the parts infrastructure was that although a part may write to multiple fields within a part, the pa

	5		Additional Benefits of AGT and Related Work
	6		Conclusion
	Acknowledgements�We are grateful to Martin Griss and Jim Pruyne for seeing the value of this work early on. Martin Griss, Jim Pruyne and Pankaj Garg helped with the design of AGT. Special thanks to Vijay Machiraju for assistance with some of the figure
	References

