

NANYANG TECHNOLOGICAL UNIVERSITY

School of Electrical and Electronic Engineering

Report on Overseas Industrial Attachment
 With

Hewlett-Packard Laboratories Bristol

 Prepared by : LEE KENG HOCK
 982657H03
 May 2000

Contents

i

Report on Overseas Industrial Attachment

Overview

Abstract ………………………………………………………………….. iv

Acknowledgements …………………………………………………….... v

List of Figures …………………………………………………… ……... vi

List of Tables …………………………………………………………….. vii

CHAPTER 1 – Introduction ……………………………………………. 1

CHAPTER 2 - The Company, Hewlett Packard ………………….…… 4

CHAPTER 3 – Object Oriented Programming Using Java ……..…… 8

CHAPTER 4 – Distributed Computing with Applets & Servlets ……. 25

CHAPTER 5 – E-Services...………………………………………….…... 41

CHAPTER 6 – Conclusion ……………………………………………… 63

References ………………………………………………………………. 65

Contents

ii

Report on Overseas Industrial Attachment

What’s Inside

Abstract ………………………………………………………………….. iv

Acknowledgements …………………………………………………….... v

List of Figures ………………………………………………………….… vi

List of Tables …………………………………………………………….. vii

CHAPTER 1 – Introduction ……………………………………………. 1
 1.1 Aim …………………………………………………………… 1
 1.2 Scope …………………………………………………………. 2

CHAPTER 2 - The Company, Hewlett Packard ……………………… 4
 2.1 Company’s Background ……………………………………… 4

2.2 HP Laboratories ………………………………………………. 5
2.3 Research Goals ……………………………………………….. 6
2.4 University Partnerships ……………………………………….. 6
2.5 HP Way ……………………………………………………….. 7

CHAPTER 3 – Object Oriented Programming Using Java…………… 8
 3.1 Object Oriented Programming (OOP) Overview ..…………… 8
 3.2 Objectives – Text Editing Application ……………………….. 11
 3.3 Specifications ……………………………………………….… 11
 3.4 Implementation ……………………………………………….. 13
 3.4.1 File-New ……………………………………………. 13
 3.4.2 File-Open ………………………………………….…13
 3.4.3 File-Save_As ………………………………………... 15
 3.4.4 File-Save ……………………………………………. 16
 3.4.5 File-Print ……………………………………………. 17
 3.4.6 File-Exit …………………………………………….. 18
 3.4.7 Help-About …………………………………………. 18
 3.5 Problems Encountered ………………………………………... 20
 3.5.1 Using OOP ………………………………………….. 20
 3.5.2 TextChange Listener ………………………………... 20
 3.5.3 Printing ……………………………………………… 21
 3.6 Tips …………………………………………………………… 21
 3.6.1 Organization of Files ……………………………….. 21
 3.6.2 AWT and Swing ……………………………………. 22
 3.7 Conclusion ……………………………………………………. 23

Contents

iii

Report on Overseas Industrial Attachment

CHAPTER 4 – Distributed Computing with Applets & Servlets ……. 25
 4.1 Applets Overview …………………………………………….. 25
 4.2 Capabilities of an Applets ……………………………………. 25
 4.2.1 Applet Capabilities …………………………………. 26
 4.3 Objectives – Text Editing Applets …...……………………….. 26
 4.4 Drawbacks of Applets …..…………………………………….. 27
 4.4.1 Security Restrictions ………………………………... 27
 4.5 Servlets Overview …………………………………………….. 28
 4.6 Specifications …………………………………………………. 29
 4.7 Implementation ……………………………………………….. 31
 4.8 Possible Enhancement ….…………………………………….. 33
 4.9 Problems Encountered ………………………………………... 35
 4.9.1 GET and POST Methods ………………………….... 35
 4.10 Tips ……………………………………………………….…. 36
 4.10.1 Refreshing in Browser …………………………….. 36

 4.10.2 JavaDoc ……………………………………………. 36
 4.10.3 Unified Modeling Language ………………………. 37

 4.11 Conclusion …...……………………………………………… 39

CHAPTER 5 – E-Services ….…………………………………………… 41
 5.1 E-speak Overview ……………………………………………. 41
 5.2 Baskerville Overview …………………………………………. 44
 5.3 Objectives – E-Printing ….……………………………………. 45
 5.4 Specifications …………………………………………………. 46
 5.5 Implementation ……………………………………………….. 46
 5.5.1 Property Class Definition …………………………… 46
 5.5.2 Starting a Print Service ……………………………... 50
 5.5.3 Starting a Print Client ………………………………. 51
 5.5.4 Adding Vocabulary to the Services ……………….... 51
 5.5.5 Creating Multiple Print Services ………………….… 52
 5.5.6 Invoking the Print Services from a Servlet …………. 53
 5.5.7 Integrating with Font-End …………………………... 54
 5.6 Problems Encountered ………………………………………... 55
 5.6.1 Service Not Found ………………………………….. 55
 5.6.2 No Matching Constructor found ……………………. 56
 5.7 Tips …………………………………………………………… 56
 5.7.1 JAR Files ………………………………………….… 56
 5.7.2 Danger in Too Much Pathing ………………………. 57
 5.8 Conclusion ……………………………………………………. 61

CHAPTER 6 – Conclusion …………………………………………….... 63

References ……………………………………………………………….. 65

Abstract

iv

Report on Overseas Industrial Attachment

Abstract

This report represents the experience gained by the writer throughout the

Overseas Industrial Attachment in Hewlett-Packard Laboratories Bristol, England.

It describes the steps taken to complete the projects assigned, which includes :

• Object Oriented Programming (OOP) Using Java

• Distributed Computing with Applets & Servlets

• E-Services

Skill in OOP was gained through implementation of a text editing application

using the java language. The capabilities includes saving and loading a document

to and from file respectively. It also includes printing the document.

As a step towards distributed computing, the text editing application was

converted into a client/server application. It involves using HTML and applets for

the front-end and servlets for the back-end.

The last phase involves the use of e-speak to develop a system that will serve as

an intelligent interaction of e-services. A step towards future e-commerce.

For further details, please refer to Steve Battle (HPLB).

Acknowledgements

v

Report on Overseas Industrial Attachment

Acknowledgements

The writer would like to thank Hewlett-Packard Laboratories Bristol for the

opportunity of working in the company. The writer would like to express his

sincere appreciation to Steve Battle, the HP Lab supervisor-in-charge, for his trust

and guidance in all the projects assigned and his willingness to impart his valuable

knowledge, experience and skill to the writer.

The writer would like to extend his gratitude to Anthony Wiley, the project

manager and the other members of the project group for their assistance and

support in various ways towards the successful completion of various

assignments.

Next, to the writer’s supervisor-in-charge in NTU, A.P. Lin ZhiPing from the

School of Electrical & Electronic Engineering for his time spent in coordinating

between the writer and the school.

Last but not least, special credits must be given to the writer’s family and

girlfriend Dian for their support throughout the entire period of Attachment.

List of Figures

vi

Report on Overseas Industrial Attachment

List of Figures

Figure 2.1 Bill Hewlett and David Packard ………………….. ……... 4

Figure 2.2 HP Laboratories Bristol …………………………………... 5

Figure 3.1 Flowchart of Text Editing Application …………………… 11

Figure 3.2 GUI of Text Editing Application …………………………. 12

Figure 3.3 Flowchart of File-Open ………………………………….... 14

Figure 3.4 Flowchart of File-Save_As ……………………………….. 15

Figure 3.5 Flowchart of File-Save ……………………………………. 16

Figure 3.6 Flowchart of File-Print ……………………………………. 17

Figure 3.7 GUI of Help-About ……………………………………….. 19

Figure 4.1 Example of a servlet ………………………………………. 29

Figure 4.2 Flowchart of Text Editing Applet ………………………… 29

Figure 4.3 GUI Implementation Using HTML ………………………. 30

Figure 4.4 UML of Text Editing Applet ……………………………... 34

Figure 4.5 JavaDoc of Text Editing Application …………………….. 36

Figure 5.1 Basic idea of E-speak infrastructure ……………………… 43

Figure 5.2 Baskerville Overview ……………………………………... 44

Figure 5.3 UML of Property Class …………………………………… 47

Figure 5.4 UML of EProperty Class …………………………………. 49

Figure 5.5 Summary and ESummary Class …………………………... 49

Figure 5.6 Example of a set of print options …………………………. 50

Figure 5.7 Flowchart of the task of a Print Server …………………… 50

Figure 5.8 Flowchart of the task of a Print Client ……………………. 51

Figure 5.9 Batch File for Setting Environment ………………………. 58

List of Tables

vii

Report on Overseas Industrial Attachment

List of Tables

Figure 5.1 Example of attributes of a print service …………………... 52

Figure 5.2 Example of different service description …………………. 53

Chapter One – Introduction

1

Report on Overseas Industrial Attachment

Chapter One - Introduction

1.1 Aim

The purpose of this report is to present and discuss the works done on the

following projects by the writer during his NTU Overseas Industrial Attachment

period, from 15th February 2000 to 1st July 2000, at Hewlett-Packard Laboratories

Bristol : -

• Text Editing Application

• Text Editing Applet

• Baskerville - Print E-Services

The text editing application and applet exercises given by the writer’s supervisor

was meant for the writer to develop core competencies required to build new

electronic services.

However, the required date of submission inevitably limits the accuracy and

completeness of this report. Further work that is scheduled for execution after the

date of reporting cannot be described fully at this point. That work will be

completed before the end of the attachment.

Furthermore, the delayed commencement of the attachment had reduced the

amount of training gained and work done that are reportable.

Chapter One – Introduction

2

Report on Overseas Industrial Attachment

A difficulty faced when writing this report was the level of detail and assumptions

that need to be made on the reader’s level of familiarity with concepts. In general,

the report will not discuss at length the implementation details of application

development. As stated, the emphasis will be on the experience gained and a

summary of the work done. The reader is assumed to know some computing

concepts like object-oriented programming and electronic commerce because the

project required extensive use of these paradigms for implementation, and many

references will be made to these concepts. However, a simple overview of the

various concepts will be introduced at the beginning of each chapter.

1.2 Scope

In Chapter 2, the company, Hewlett-Packard’s background is presented. This is

followed by an introduction of Hewlett-Packard Laboratories, the research goals,

University partnerships and the definition of the HP WAY.

Chapter 3 begins with an introduction to Object Oriented Programming using

Java. Next, the Text Editing Application is discussed. The objective of the

exercise is then highlighted, followed by the implementation. The last section

covers the problems encountered, some tips on organising of files and the

difference between the Java AWT and Java Swing.

Chapter One – Introduction

3

Report on Overseas Industrial Attachment

Chapter 4 begins with an introduction to Applets and Servlets. Next, the Text

Editing Applet is discussed. The objective of the exercise is then highlighted,

followed by the implementation. The next section covers the problems

encountered and some tips on refreshing of re-compiled programs in the web

browser. The last section covers the use of JavaDoc and Unified Modelling

Language for documentation purposes.

Chapter 5 begins with an introduction to E-speak, an open software platform

designed specifically for the development, deployment and intelligent interaction

of e-services. Next, an overview of the Baskerville Project is discussed. The

objective of the project is then highlighted, followed by the implementation. The

last section covers the problems encountered, some tips on using JAR files and

setting of environments.

Chapter 6 covers the overall conclusion of the Overseas Industrial Attachment.

Chapter Two – The Company, Hewlett-Packard

4

Report on Overseas Industrial Attachment

Chapter Two - The Company, Hewlett-Packard

2.1 Company’s Background

HP was founded in 1939 by Bill Hewlett and Dave Packard. They were two

Stanford engineers who combined their product ideas and unique management

style to formed a working partnership. The company’s first product, built in a Palo

Alto garage, was an audio oscillator – an electronic test instrument used by sound

engineers. Today, the company is a leading global provider of computing and

imaging solutions and services for business and home.

One of HP’s major strategies focuses on capitalizing on the opportunities of the

Internet and the proliferation of electronic services (e-services). The company’s

more than 36,000 products are used by people for personal use and in industry,

business, engineering, science, medicine and education. In addition, the company

make networking products, handheld calculators and printers.

Figure 2.1 : Bill Hewlett and David
 Packard helped craft the
 first set of corporate
 objectives in 1957.

Chapter Two – The Company, Hewlett-Packard

5

Report on Overseas Industrial Attachment

HP employs more than 120,000 people, of whom some 67,500 work in the United

States. HP product development and manufacturing sites are located in 28 U.S.

cities and in Australia, Brazil, Canada, China, France, Germany, India, Ireland,

Italy, Japan, Korea, Malaysia Mexico, the Netherlands, Spain, Singapore and the

UK.

2.2 HP Laboratories

HP Laboratories (HPL), directed by Dick Lampman is the company’s central

research facility, ranks as one of the leading industrial-research centres in the

world. At its headquarters in Palo Alto, as well as in Laboratories in the UK,

Japan and Israel, researchers develop and apply leading-edge technologies that

support HP’s current businesses and create new opportunities for the company, In

1998, between HP Labs and some 70 product divisions, HP invested $3.4 billion

in R&D.

Figure 2.2 : HP Lab Bristol

Chapter Two – The Company, Hewlett-Packard

6

Report on Overseas Industrial Attachment

HP Lab Bristol (HPLB) is HP’s largest research centre outside its headquarters in

Palo Alto, California, and employs around 284 researchers – one third of HPL’s

total. HPLB is a multinational research community with a network of relationship

spanning HP, its customers and academia across the globe. It shares a site with

one of HP’s manufacturing division on the hi-tech edge of Bristol, with fast road,

rail and air links to the rest of the UK and the world beyond.

2.3 Research Goals

HPLB’s charter is to engage in world-class research in the interrelated

technologies that will enable people to create, manipulate and share electronic

information with others wherever they happen to be, for professional and social

purposes. The role of Bristol is mainly to think about how people want to live and

work in the next decade.

This assignments were carried out in the Digital Fulfilment Department, which is

part of the Publishing Systems and Solutions Lab, under Robin Gallimore.

2.4 University Partnerships

HPLB has an extensive network of relationships with selected departments in

leading academic institutions in over 20 countries worldwide, and invests

considerable resources to support them. They are important to HPLB because it

shares with the academic community a concern to foster innovative research, and

to develop the skill and experience of the people involved in its generation and

Chapter Two – The Company, Hewlett-Packard

7

Report on Overseas Industrial Attachment

transfer. Over the past 10 years HPLB has built up a portfolio of programmes to

encourage collaboration with universities across a broad spectrum of mutually

beneficial activities.

Every year HPLB hosts about 50 multinational students who work as members of

project teams in Bristol to gain industrial experience for their academic

qualifications. Some of them are jointly funded by their government and HP on

‘industrial PhDs’ designed to forge long-term links between academia and

industry. The student population makes a lively contribution to the quality of life

at HPLB, and to its international outlook.

For more information of Hewlett-Packard, please refer to Http://www.hp.com

2.5 HP WAY

"What is the HP Way?

I feel that in general terms it is the policies and actions that flow from the belief
that men and women want to do a good job, a creative job, and that if they are

provided the proper environment they will do so."

Bill Hewlett
HP Co-Founder

http://www.hp.com/

Chapter Three – Object Oriented Programming Using Java

8

Report on Overseas Industrial Attachment

Chapter Three – Object Oriented Programming Using
 Java

3.1 Object Oriented Programming (OOP) Overview

Since its introduction in late 1995, the Java language and platform have taken the

programming world by storm. The Java programming language is a state-of-the-

art, object-oriented language that has a syntax similar to that of C. The language

designers strove to make the Java language powerful, but, at the same time, they

tried to avoid the overly complex features that have bogged down other object-

oriented languages, such as C++. By keeping the language simple, the designers

also make it easier for programmers to write robust, bug-free code.

Below is a summary of the five basic characteristics of Smalltalk, the first

successful object-oriented language and one of the languages upon which Java is

based.

a. Everything is an object.

b. A program is a bunch of objects telling each other what to do by

sending messages.

c. Each object has its own memory made up of other objects.

d. Every object has a type.

e. All objects of a particular type can receive the same messages.

Chapter Three – Object Oriented Programming Using Java

9

Report on Overseas Industrial Attachment

A simple example might be a representation of a light bulb :

 Light lt = new Light();

 lt.on();

Here, the name of the type/class is Light, the name of this particular object is

lt, and the requests that you can make of a Light object are to turn it on, turn it

off, make it brighter or make it dimmer. You create a Light object by defining a

“handle” (lt) for that object and calling new to request a new object of that type.

To send a message to the object, you state the name of the object and connect it to

the message request with a period (dot). From the standpoint of the user of a pre-

defined class, that’s pretty much all there is to programming with objects.

4 basic steps needed to create a GUI application

a. Create the components. A GUI component is created just like any

other objects in Java – simply call the constructor. For example, to

create a Button component that displays the label “Quit”, you simply

say :

 Button quit = new Button(“Quit”);

Light

On()
Off()
Brighten()
Dim()

Type Name

Interface

Chapter Three – Object Oriented Programming Using Java

10

Report on Overseas Industrial Attachment

b. Add the components to a container. All components must be placed

within a container. To add a component to a container, you simply pass

the component to the add() method of the container. For example,

you might add a quit button to an applet with code like the following

 this.add(quit);

c. Arrange, or layout the components with their containers. In other

words, you need to set the position and size of every component so that

the GUI has a leasing appearance. While it is possible to hardcode the

position and size of each component, it is more common to use a

LayoutManager object to automatically layout the components of a

container according to certain layout rules defined by the particular

LayoutManager you have chosen.

d. Handle the events generated by the components. There are low-

level user input events, such as keyboard and mouse events generated

by the operating system and the higher-level semantic events that are

generated by the components themselves, in response to the lower-

level input events.

For further reading on Java and OOP, please refer to http://bruceecke.com.

http://bruceecke.com/

Chapter Three – Object Oriented Programming Using Java

11

Report on Overseas Industrial Attachment

3.2 Objectives – Text Editing Application

This exercise provides an introduction to OOP using Java. The objective is to

build a simple text editing application. This editor will be able to save and load a

document to and from file respectively. In addition, it should be able to print the

document.

Requirements

a. Java Development Kit (JDK)

b. Project Organisation

c. Use of AWT and IO packages

3.3 Specifications

The top-level flow diagram of the text editing application is as shown figure 3.1

below. It specifies the minimal required functions needed. With OOP and modular

programming, it enables easy addition of new functions. Explanations of the

various functional blocks will be done in the next section.

Hock's Editor

File Help

New Open Save AboutExitSave_As Print

Figure 3.1 : Flowchart of Text Editing Application

Chapter Three – Object Oriented Programming Using Java

12

Report on Overseas Industrial Attachment

The basic GUI is shown in figure 3.2 below. It consists of a menu bar object, a

text area object and a label object used as a status bar. All the components of the

GUI were built using the Abstract Windowing Toolkit (AWT), which defines all

of the GUI components in Java.

Figure 3.2 : GUI of Text Editing Application

Chapter Three – Object Oriented Programming Using Java

13

Report on Overseas Industrial Attachment

3.4 Implementation

The Java 1.1 event-handling model is based on the concept of delegation. An

object interested in receiving events is an event ‘listener’. An object that

generates events (an event source) maintains a list of listeners that are

interested in being notified when events occur, and provides methods that

allow listeners to add themselves and remove themselves from this list of

interested objects. When the event source object generates an event (or when a

user input event occurs on the event source object), the event source notifies

all of the listener objects that the event has occurred.

3.4.1 File-New

Upon selecting File-New, the text area will be cleared.

3.4.2 File-Open

Upon selecting File-Open, a file dialog will appear requesting the user for a

file to open. If the file is readable, the text area is cleared, the file is then read

and display.

The flow chart is shown in figure 3.3 below.

Chapter Three – Object Oriented Programming Using Java

14

Report on Overseas Industrial Attachment

Open Listener

file dialog to get filename

clear edit area

file check okay ?

read file & display (setText) to edit area

file open error

done

No

Yes

Figure 3.3 : Flowchart of File-Open

Chapter Three – Object Oriented Programming Using Java

15

Report on Overseas Industrial Attachment

3.4.3 File-Save_As

File-Save_As is programmed before File-Save. Reason being that File-Save

can be a subset (or a method) of File-Save_As.

Similarly, a file dialog will appear requesting the user for a file name. If the

directory is writable, content of the text area is written to the specified file.

The flow chart is shown in figure 3.4 below.

Save_As Listener

file dialog to get filename

write text to file

directory check okay ?

file write error

done

No

Yes

 Figure 3.4 : Flowchart of File-Save_As

Chapter Three – Object Oriented Programming Using Java

16

Report on Overseas Industrial Attachment

3.4.4 File-Save

A check will be done to detect any text change and whether there is a file

loaded. If there is any text changed in a loaded file, the file will be saved to

the loaded filename by calling a save method in File-Save_As module. If it is

a newly edited file without a filename, the entire File-Save_As module will be

invoked.

This is shown in figure 3.5 below.

Save Listener

invoke Save method in
File-Save_As module

Any file loaded ?

invoke entire File-Save_As
module

done

No

Yes

any text change ?

No

Yes

Figure 3.5 : Flowchart of File-Save

Chapter Three – Object Oriented Programming Using Java

17

Report on Overseas Industrial Attachment

3.4.5 File-Print

Method used was to get the page format and the print format, calculate the

total number of pages required and print by character. The reason for not

printing by string or line format is to have more freedom of manipulating the

print. The main drawback will be the prolonged printing time.

The flow chart is shown in figure 3.6 below.

Print Listener

print character is character a line separator ?

done

end of text reached ?

Yes

No

display page dialog to get
page format

display print dialog to get
print format

calculate no. pages required

increase line no.

line no. > lines per page ?

Yes

increase page no.

Yes

No

No

Figure 3.6 : Flowchart of File-Print

Chapter Three – Object Oriented Programming Using Java

18

Report on Overseas Industrial Attachment

Additional features added to the print option include printing multiple copies

and proper termination when printing near the right margin. The algorithm

uses a buffer to store the characters and print only when a space is

encountered. The algorithm used and the code written for proper termination

when printing near the right margin was not very efficient and modular as

there wasn’t enough brainstorming and planning done before writing this

module.

3.4.6 File-Exit

This option terminates the Program.

3.4.7 Help-About

This option was created to allow the writer to experiment with the

functionality of a pop-up dialog. Upon selecting this command, an info dialog

that contains a multi-line label will be shown. The multi-line label was created

using an array of label objects because Java doesn’t support multi-line labels.

The MultiLineLabel class will calculate and create the necessary number of

lines & label objects required.

The GUI is as shown in figure 3.7 below.

Chapter Three – Object Oriented Programming Using Java

19

Report on Overseas Industrial Attachment

Figure 3.7 : GUI of Help-About

Chapter Three – Object Oriented Programming Using Java

20

Report on Overseas Industrial Attachment

3.5 Problems Encountered

3.5.1 Using OOP

In the past, the writer was mainly involved in function oriented programming

using C and Visual Basic. He has not been involved in OOP, and Java is the

very first OOP language being learned. Conceptually, Java is very different

from C or Visual Basic that the writer had learned. The writer started out with

a lot of doubts and uncertainties. A lot of time was spent in practically

experimenting with the language and in writing small programs to aid

understandings. More time will be needed to appreciate the concept of OOP

and to use it effectively.

However, the supervisor had provided the writer with references, examples

and tips along the way.

3.5.2 TextChange Listener

A textChange flag was used in the textChange event to store the status of a

text change occurring in the text area. However, the TextChange event seems

to be triggered even after a file is loaded.

The problem was solved by using the setText method instead of the append

method to output the file to the text area. This is because, these two methods

trigger the TextChange event differently.

Chapter Three – Object Oriented Programming Using Java

21

Report on Overseas Industrial Attachment

3.5.3 Printing

Calculating of the page format was not correct because the dpi read from the

system was not correct. Calculation of the printable space was not accurate

when double was used to store the values. The values will only be reasonable

by using integer casting which rounds off the values.

Another problem with the getCopies method of the printerJob class is that it

always gives the value of ‘1’ when the value was printed on the screen.

However, it works fine when the value was used in a for loop.

3.6 Tips

3.6.1 Organization of Files

Proper file organization will lead to effective programming. For example the

use of package namespace to group files.

For instance, in directory c:\pset, you have a few files under the package,

pset. Compilation and execution of the program will be done in the root

directory, one directory below the package directory.

Compilation : javac pset\Ps1.java

Execution : java pset.Ps1

Chapter Three – Object Oriented Programming Using Java

22

Report on Overseas Industrial Attachment

3.6.2 AWT and Swing

The original design goal of the Graphical User Interface (GUI) library in Java

1.0 was to allow the programmer to build a GUI that looks good on all

platforms. That goal was not achieved. Instead, the Java 1.0 Abstract Window

Toolkit (AWT) produces a GUI that looks equally mediocre on all systems.

However, it does have some restrictions. You can use only four fonts and you

cannot access any of the more sophisticated GUI elements that exist in your

operating system. The Java 1.0 AWT programming model is also awkward

and non-object-oriented.

Much of the situation was improved with the Java 1.1 AWT event model,

which takes a much clearer, object-oriented approach, along with the addition

of Java Beans, a component programming model that is oriented toward the

easy creation of visual programming environments. Java 2 finishes the

transformation away from the old Java 1.0 AWT by adding the Java

Foundation Classes (JFC), the GUI portion of which is called “Swing.” These

are a rich set of easy-to-use, easy-to-understand Java Beans that can be

dragged and dropped (as well as hand programmed) to create a GUI that you

can (finally) be satisfied with.

Chapter Three – Object Oriented Programming Using Java

23

Report on Overseas Industrial Attachment

3.7 Conclusion

Through the Text Editing Application, the writer was able to understand the

concepts of Object Oriented Programming through the use of the Java language.

As such, it has equipped the writer with a certain level of confidence in creating

object-oriented programs using the Java language. The skill acquired in writing

object-oriented programs will definitely be very useful as this is the current trend

of the programming world along with the increase popularity of the java language.

Of course, more functionalities (e.g. copy, paste, find, undo, etc.) can be added to

the Editing Application. However, it is not the main objective of this exercise to

build a fool proof commercial editor.

The use of the Java 1.1 event model enables any event type XEvent to be

dispatched directly to a corresponding processXEvent() method. This is

more efficient than the Java 1.0 event model where the program needs to

determine which component triggers the event from the event handle.

The knowledge gained in proper organisation of files will be a key pointer to

building large systems in future. Not only does it help in the development of the

system, more importantly, it will help anyone who took over the implementation

or maintenance of the system.

Chapter Three – Object Oriented Programming Using Java

24

Report on Overseas Industrial Attachment

However, due to shortage of planning and brainstorming, some of the algorithms

used were not very effective & efficient. Hence, proper planning will be the key to

good programming.

Chapter Four – Distributed Computing with Applets & Servlets

25

Report on Overseas Industrial Attachment

Chapter Four – Distributed Computing with Applets &
 Servlets

4.1 Applets Overview.

An applet, as the name implies, is a kind of mini-application, designed to be run

by a Web browser, or in the context of some other “applet viewer.” Applets differ

from regular applications in a number of ways. One of the important differences is

that there are a number of security restrictions on what applets are allowed to do.

An applet often consists of untrusted code, so it cannot be allowed access to the

local file system, for example.

4.2 Capabilities of Applets

Below is an overview of the capabilities an applet has.

4.2.1 Applet Capabilities

The java.applet package provides an API that gives applets some

capabilities that applications don’t have. For example, applets can play

sounds, which other java applications can’t do yet.

Here are some other things that current browsers and other applet viewers

let applets do :

• Applets can usually make network connections to the host they

came from.

• Applets running within a Web browser can easily cause HTML

documents to be displayed.

Chapter Four – Distributed Computing with Applets & Servlets

26

Report on Overseas Industrial Attachment

• Applets can invoke public methods of other applets on the same

page.

• Applets that are loaded from the local file system (from a

directory in the user’s CLASSPATH) have none of the

restrictions that applets loaded over the network do.

• Although most applets stop running once you leave their page,

they don’t have to.

For further reading on applets, please refer to http://bruceecke.com.

4.3 Objectives – Text Editing Applets

This exercise provides an introduction to distributed computing. The objective is

to convert the text editing application to run as a downloadable applet. This raises

issues about applet security that severely restricts functionality, particularly file

access and printing. However, these functions may be remotely handled by a

servlet.

Requirements

d. Setting up web server

e. Client/server computing with applets and servlets (Using JSDK)

The next section covers some drawbacks of applets.

http://bruceecke.com/

Chapter Four – Distributed Computing with Applets & Servlets

27

Report on Overseas Industrial Attachment

4.4 Drawbacks of Applets

Below is an overview of the drawback of an applet.

4.4.1 Security Restrictions

Every browser implements security policies to keep applets from

compromising system security. This section describes the security policies

that current browsers adhere to. However, the implementation of the

security policies differs from browser to browser. Also, security policies

are subject to change. For example, if a browser is developed for use only

in trusted environments, then its security policies will likely be much more

lax than those described here.

Current browsers impose the following restrictions on any applet that is

loaded over the network.

• An applet cannot load libraries or define native methods.

• It cannot ordinarily read or write files on the host that’s

executing it.

• It cannot make network connections except to the host that it

came from.

• It cannot start any program on the host that’s executing it.

• It cannot read certain system properties.

• Windows that an applet brings up look different than windows

that an application brings up

Chapter Four – Distributed Computing with Applets & Servlets

28

Report on Overseas Industrial Attachment

Each browser has a SecurityManager object that implements its

security policies. When a SecurityManager detects a violation, it

throws a SecurityException. Your applet can catch this

SecurityException and react appropriately.

However, as stated earlier, some of the functions particularly file access

and printing can be remotely handled by a servlet.

4.5 Servlets Overview

Servlets provide a Java-based solution used to address the problems currently

associated with doing server-side programming, including inextensible scripting

solutions, platform-specific APIs and incomplete interfaces. Servlets are objects

that conform to a specific interface that can be plugged into a Java-based server.

Servlets are modules that extend request/response-oriented servers, such as Java-

enabled web servers.

For example, as shown in figure 4.1 below, a servlet might be responsible for

taking data in an HTML order-entry form and applying the business logic used to

update a company's order database.

Chapter Four – Distributed Computing with Applets & Servlets

29

Report on Overseas Industrial Attachment

Figure 4.1 : Example of a servlet

In summary, servlets are to servers what applets are to browsers. Unlike applets,

however, servlets have no graphical user interface.

For further reading on servlets, please refer to

http://www.oreilly.com/catalog/jservlet/chapter/ch03.html

4.6 Specifications

The top level flow diagram of the text editing applet is as shown figure 4.2 below.

It specifies the minimal required functions needed. Explanations of the

implementation will be done in the next section.

Hock's Editor

File

New Open Save Print

Figure 4.2 : Top level flowchart of Text Editing Applet

http://www.oreilly.com/catalog/jservlet/chapter/ch03.html

Chapter Four – Distributed Computing with Applets & Servlets

30

Report on Overseas Industrial Attachment

Although the GUI can be implemented using applets, HTML proofs to be a faster

method of implementation. As such, the GUI was written using HTML instead of

applets. The use of HTML is another method of creating a client/server

application.

The basic GUI is shown in figure 4.3 below. It consists of a textarea component, a

file upload component and a few command buttons. In addition, there is a hidden

field for storing the name of the opened file.

Although using HTML is a faster solution for producing the GUI, it has a number

of shortcomings as compared to using applets. The advantages of using applets

will be discussed in more details later in the chapter.

Figure 4.3 : GUI Implemented Using HTML

Chapter Four – Distributed Computing with Applets & Servlets

31

Report on Overseas Industrial Attachment

4.7 Implementation

The basic GUI was done using FrontPage. Upon clicking a command button (i.e.

submitting an HTML form), the HTML file will invoke the servlet to process the

request (e.g. Open, Save, Print, etc) through either the GET or the POST method.

Over here, the POST method was the one chosen due to some limitations in the

GET method which will be discuss later in the chapter. After processing each

request, the servlet will then repaint the page in HTML format with the necessary

update.

For example, if the user clicked the New command, the servlet will repaint the

HTML page with an empty text area. However, if the user clicked the Open

command with a valid filename specified, the servlet will read the file and repaint

the HTML page with the text area containing the file.

Implementations of the various functional blocks were similar to that of the text

editing application in Chapter 3 with a few slight modifications as listed below.

a. Save_As Command

A Save_As command button is not needed in the current applet program.

Instead, the File-Save_As module will be invoke when there is a valid file

specified in the file upload text field when the Save button is depressed.

Chapter Four – Distributed Computing with Applets & Servlets

32

Report on Overseas Industrial Attachment

b. Exit Command

An Exit command button is also not needed in the web browser

environment as it already contains one. Furthermore, it is conceptually not

needed in a web browser environment.

c. Event Capturing

Capturing of an event is not done using an event listener but by reading the

attributes of the URL to determine which button is depressed. As such it

may be slower and less efficient as compared to the text editing

application because it involves checking which button did the user select.

d. TextChange

In the text editing application, checking for text change before saving file

was done by a textchange event provided by Java previously. Over here,

upon loading a file, the initial text will be stored in a variable. When the

save command is invoke, the initial text will be compared with the text in

the text area. However, this method of implementation may waste

resources when the size of the file is large.

Chapter Four – Distributed Computing with Applets & Servlets

33

Report on Overseas Industrial Attachment

4.8 Possible Enhancement

Although the use of HTML as a tool for creating the GUI may be a solution, it

does have some shortcomings. For a distributed system, the time spent in

repainting each page after each user command may slow down the operations of

the entire system. Furthermore, for a tiny modification on the GUI, the entire page

has to be repainted.

One solution to this problem will be to return to creating the GUI using applets,

which allows the programmer to have more control of each component. You can

do as much work as possible on the client before and after making requests of the

server. For example, you won’t need to send a request form across the internet to

discover that you’ve gotten a date or some other parameter wrong, and your client

computer can quickly do the work of plotting data instead of waiting for the server

to make a plot and ship a graphic image back to you. Not only do you get the

immediate win of speed and responsiveness, but also the general network traffic

and load upon servers can be reduced, preventing the entire internet from slowing

down.

A simplified example of one for the text editing applet is shown in figure 4.4

below.

Chapter Four – Distributed Computing with Applets & Servlets

34

Report on Overseas Industrial Attachment

Ps1
textChange

checkFile()

SimplePrint

buffer

print()

Applet

Frame

mainFram

InfoDialog

MultiLineLabel

Dialog

Figure 4.4 : UML of a Text Editing Applet

Chapter Four – Distributed Computing with Applets & Servlets

35

Report on Overseas Industrial Attachment

4.9 Problems Encountered

4.9.1 GET and POST Methods

The foundation of HTTP/0.9 (the first implementation of the HTTP

protocol) was the definition of the GET method that was used by a web

browser to request a specific document. Though the GET method was very

useful, a couple of serious problems remained.

First, the GET method only allowed a limited amount of data (1024

characters) to be sent as URL encoded data. If there were too many

name/value pairs, some of them would be clipped and data would get lost.

Further, since the information was sent as part of the URL, the user could

see all of that data. On the one hand, that made URL’s look really ugly and

scary. On the other hand, it meant that the user got to see all of the inner

workings of your CGI input.

The POST method of input was one of the important changes brought

about by the introduction of HTTP/1.0. The POST method allowed web

browsers to send an unlimited amount of data to a web server by allowing

them to tag it on to an HTTP request after the request headers as the

message body. Typically, the message body would be the familiar

encoded URL string after the question mark (?) as shown below.

http://localhost:8080/servlet/Editor/POST?button=Print

Chapter Four – Distributed Computing with Applets & Servlets

36

Report on Overseas Industrial Attachment

4.10 Tips

4.10.1 Refreshing in Browser

When an explorer is used to view applet programs, use control-refresh to

update the display after recompilation instead of refresh. This is because

explorer caches applets, therefore refresh will only reload the old version.

4.10.2 JavaDoc

Using JavaDoc to create a documentation of programs proofs easy and

efficient. It uses some of the technology from the Java compiler to look for

special comment tags that are put in the programs. It not only extracts the

Figure 4.5 : JavaDoc of Text Editing Application

Chapter Four – Distributed Computing with Applets & Servlets

37

Report on Overseas Industrial Attachment

information marked by these tags, but it also pulls out the class name or

method name that adjoins the comment. This way one can get away with

the minimal amount of work to generate decent program documentation.

The output of JavaDoc is an HTML file that can be viewed with the web

browser. This tool allows one to create and maintain a single source file

and automatically generate useful documentation. Also, with JavaDoc,

there is a standard for creating documentation, and it’s easy enough that

one can expect or even demand documentation with all Java libraries. The

beautiful part is that it will create and format the various fields and

methods in an easily readable format.

An example of one for the text editing application is as shown in figure 4.5

above, which has the same format as that of the Sun’s Java API.

4.10.3 Unified Modeling Language (UML)

As the saying goes, “A picture is worth a thousand words”. Using UML

for developing and documenting programs will present a quick

“Helicopter View” of the program.

The Unified Modeling Language (UML) is a graphical language for

visualizing, specifying, constructing and documenting the artefacts of

software systems. It is the proper successor to the object modeling

Chapter Four – Distributed Computing with Applets & Servlets

38

Report on Overseas Industrial Attachment

languages of three leading object-oriented methods: Booch, Object

Modeling Technique (OMT) and Object-Oriented Software Engineering

(OOSE). UML was originally added to the list of OMG adopted

technologies in 1997, and has become the industry standard for modeling

objects and components.

Chapter Four – Distributed Computing with Applets & Servlets

39

Report on Overseas Industrial Attachment

4.11 Conclusion

Through this exercise, the writer was able to gain some understandings on

implementing a client/server application. It can be done using HTML & servlet or

applet & servlet. In short, servlets are to servers what applets are to browsers.

Apart from that, some basic understandings of HTML were acquired through the

process of creating the GUI using the FrontPage program.

In fact, a better markup language to use will be the Extensible Markup Language

(XML), a subset of the Standard Generalized Markup Language (SGML) intended

to make it more usable for distributing materials on the World Wide Web. For

example, with a very “clean” HTML, apart from the colours the HTML of a

document says nothing about how it should be displayed.

XML differs from HTML primarily in allowing the user to specify new tags,

marking types of elements not foreseen in the HTML specification and making it

possible for common off-the-shelf browsers and other software to handle such

user-defined element types usefully. The main point of XML is that, by defining

your own markup language, you can encode the information of your documents

much more precisely than is possible with HTML. This means that programs

processing these documents can “understand” them much better and therefore

process the information in ways that are impossible with HTML.

Chapter Four – Distributed Computing with Applets & Servlets

40

Report on Overseas Industrial Attachment

However, XML elements or tags do not have any intrinsic meaning. In order to

define these aspects of documents and the way they are used, a transformation

process is needed. This can be achieved using the Extensible Stylesheet Language

(XSL) that controls the presentation, style and content through the use of style

sheet. XSL is often described as ‘transforming XML for display’. The basic

principle of XSL is to act as a ‘processing engine’ to transform any XML

document into a different document of any format. An example of this format is

the HTML or an equivalent language that does have accepted display

characteristics.

Another important lesson learnt was the technique of documenting a program

using JavaDoc. In the past, for procedural programming, comments and

explanations are written and viewed in the source code itself. As such references

to the variables and methods may be tedious and not object-oriented. However,

with JavaDoc, documentation will be more centralised and easily readable.

With reference to the above, documentation of a program can be greatly enhanced

with the introduction of Unified Modeling Language.

Chapter Five – E-Services

41

Report on Overseas Industrial Attachment

Chapter Five – E-Services

5.1 E-speak Overview

E-speak is an open software platform designed specifically for the development,

deployment and intelligent interaction of e-services.

An e-service is a service available via the internet that complete tasks, solves

problems, or conducts transactions. Virtually any asset – from hardware and

software to businesses processes, data and expertise – can be made available as an

e-service to drive new revenue streams or create new efficiencies in the internet

economy.

But what does it mean by an “open” software platform?

With e-speak, users and e-services can interact regardless of their hardware or

operating systems, system management strategies, development environments, or

device capabilities. This is because e-speak has the unique ability to extract the

information needed to offer, use, or combine e-services without having to know

their detailed specifications or how they were built. So any e-speak-enabled e-

service can work with any other.

Chapter Five – E-Services

42

Report on Overseas Industrial Attachment

The e-speak engine is a software that performs the primary e-speak functions of :

a. Discovery

Once an e-service is e-speak-enabled, the provider registers it with a

host system connected to and accessible by the internet. During

registration, the provider creates a description of the e-service that

consists of its specific attributes. Users looking for e-services then

describe the type of service they want and e-speak will automatically

discover registered services that have the desired attributes.

b. Negotiation

After discovering e-service providers, e-speak negotiates between the

requester and the provider to weed out any that offers services outside

the criteria of the request.

c. Mediation

Once a user and an e-service have been brought together, e-speak is

able to continuously monitor service delivery and make adjustments,

or “mediate,” in real time. No other internet technology or standard

available today performs this function.

d. Composition

In the near future, e-speak-enabled e-services will be able to combine

themselves into more complex, cascading e-services, even-on-the-fly.

It also provides a unique dynamic firewall traversal.

Chapter Five – E-Services

43

Report on Overseas Industrial Attachment

Below provides a simple example of an e-speak service that illustrates some of the

basic ideas in the e-speak infrastructure.

A client first creates a new connection to an e-speak core. After connecting to the

core, the client can look up or register services. The client locates a service that

satisfies a constraint expressed with attributes in the default vocabulary. The result

of the find service is a stub (or proxy) to the service provider’s service. Clients

can use this stub as a network object reference and directly invoke methods on the

service. Clients interact with the service with the set of interfaces for which stubs

are available in the client address space. When a client invokes an operation, a

well-defined e-speak custom serialization is used to ship the invocation to the

target service through the mediating e-speak infrastructure. In so doing, all

method invocations are effectively mediated.

For further reading on e-speak, please refer to http://e-speak.net

Service
Finder

Client

E-speak service

E-speak

Service
provider

Service
provider

Service
provider

Figure 5.1 : Basic idea of E-speak infrastructure

http://e-speak.net/

Chapter Five – E-Services

Report on Overseas Industrial Attachment

5.2 Baskerville Overview

Figure 5.2

Server/Gate

•

•

•

In summary

search for th

S

e

Print
Service
Provider

(PSP)

Print Server / Gateway Client

Web
Browser
XML,XSL,CS
ab

w

Th

pr

pr

Th

th

m

Th

pr

,

e

HTML form
Java OS cod
ove illustrates the overa

ay and the Print Service Pr

e user is essentially a bro

inted and the PSP that f

inting, which submits the

e Print Server/Gateway w

e PSP. The writer and h

odule.

e PSP will be simulated

int option and accept print

when the Client selects a p

 PSP that best matches the

Figure 5.2 : B
Servlet
(Java)
44

ll functional blocks namely, Client, Print

ovider (PSP).

wser interface that can select the file to be

ulfil its requirements. It can also initial

print job to the PSP.

ill execute request between the Client and

is colleague, will implement part of this

with a Print Server that provides a set of

 job submission.

rint option, the Print Server/Gateway will

 requirements of the user. Upon displaying

askerville Overview

Chapter Five – E-Services

45

Report on Overseas Industrial Attachment

to the Client the found services, negotiation between them may occur and finally

the request is processed.

5.3 Objectives – E-Printing

The writer and his colleague will produce components of a workflow concerning

out-sourced printing. They will each code part of the Print Server/Gateway

whereby the writer’s colleague will look at the front-end which has to work out

what goes to the user using information from the writer. On the other hand, the

writer will build the back-end services and work out how to communication with

them.

The writer’s colleague will reuse his existing editor’s interface to allow the user to

browse & open existing files, and create, edit, save files. When the user prints a

file, the servlet requests the printing options from the writer and builds the

corresponding dialog box. The options chosen by the user will then be sent back

to the writer.

The writer will implement a print service based on existing printing code. The

Print Server/Gateway will be able to find the print services upon request from the

user. The print service can also be asked to list its print options that will go into

the dialog box implemented by his colleague. After which, the print options

selected by the users will be returned and used to invoke the print service.

Chapter Five – E-Services

46

Report on Overseas Industrial Attachment

Requirements

a. E-Speak and E-Speak web-access

b. Using services, interfaces and vocabularies

c. XML

5.4 Specifications

A java interface between the two work packages will be decided upon. This

interface will outline the minimal requirements and dependencies between the

two packages. The servlet will be the point of interaction between the two work

packages. Thus, the writer and his colleague will both code part of the servlet.

5.5 Implementation

5.5.1 Property Class Definition

The very first step was to define an object for storing the print options to

be used as an interface between the writer and his colleague as shown in

the figure 5.3 below.

Chapter Five – E-Services

47

Report on Overseas Industrial Attachment

The base object, Property will have a field caption and the 4 objects below

will inherit this field. Caption is the name of the option and Boolean,

Enumeration, TextField or Range etc will define the type of the option.

There are also various abstract methods in each object used by the writer’s

colleague. Below is a brief description of the various classes.

Property

Caption

getCaption()
toHTML()
validate()

Range

range

toHTML()
validate()

TextField

text
maxLength
numeric

toHTML()
validate()

Enumeration

selection
multiSelection

toHTML()
validate()

Boolean

choice

toHTML()
validate()

Figure 5.3 : UML of Property Class

Chapter Five – E-Services

48

Report on Overseas Industrial Attachment

a. Boolean

For options having a Boolean value (i.e. True or False)

E.g. Lamination : True/False

E.g. Colour :True/False

b. Enumeration

For options with an array of choices

E.g. Paper Size : A1, A2, A3, A4, etc.

E.g. Orientation : portrait, landscape

c. TextField

For options that requires a text input

E.g. Left Margin : 2 inches

E.g. Right Margin : 1.5 inches

d. Range

For options having an array of ranges

E.g. Page No : 1-3, 4-6, etc.

However, it was not possible to use the same object to retrieve the print

options from the PSP to the Print Server/Gateway. This is because the IDL

interface used in E-Speak does not recognise classes with methods. IDL

compiler does not recognise constructors too. As such, a similar object

was created which contains no method as shown in figure 5.4 below.

Chapter Five – E-Services

49

Report on Overseas Industrial Attachment

Results of the selection of the options is passed back to the writer as a

Summary object as shown in figure 5.5a below. This class will simply

have a caption and a value (e.g. Lamination : True), with 2 separate

methods for getting the caption and the value used by the writer’s

colleague.

Again, a similar object was created which contains no methods to be

passed back to the print service provider through the e-speak platform.

This is shown in figure 5.5b below.

EProperty

Caption

ERange

range

ETextField

text
maxLength
numeric

EEnumeration

selection
multiSelection

EBoolean

choice

Summary

caption
value

getCaption()
getValue()

ESummar

caption
value

Figure 5.4 : UML of EProperty Class

Figure 5.5a : Summary Class Figure 5.5b : ESummary Class

Chapter Five – E-Services

50

Report on Overseas Industrial Attachment

5.5.2 Starting a Print Service

Objective here is to start a print service that provides a set of print

options. A sample example of the print options is shown in figure 5.6

below.

Below are the various file of the print service.

a. PrintIntf.esidl : Declares the interface of the print service

b. PrintImpl.java : Implements the interface PrintIntf.esidl

c. PrintServer : Task of the PSP is summarise in figure 5.7 below.

connect to E-speak core

register & advertise service

start service

create a service element

implement service

Range

PageNo : 1-3, 4-6

TextField

LeftMargin
RightMargin
TestToPrint

Enumeration

size : A1, A2, A3, A4
printerName : printer1, printer2
orientation : portrait, landscape

Boolean

laminated
colour

Figure 5.6 : Example of a set of print options

Figure 5.7 : Flowchart of the task of a Print Server

Chapter Five – E-Services

51

Report on Overseas Industrial Attachment

5.5.3 Starting a Print Client

Task of the print client is summarise in figure 5.8 below.

connect to E-speak core

construct a search query

find service

get interface name

create a finder

invoke the service methods

5.5.4 Adding Vocabulary to the Services

The service deployer describes the service in a chosen vocabulary by

setting the attribute values appropriately using the

ESServiceDescription class. The vocabulary describes the

attributes that are used to uniquely describe a service. It also determines

the names and types of the attributes used in the description of the service.

This vocabulary is also registered and advertised so that other service

providers or clients may find and use it.

Figure 5.8 : Flowchart of the task of a Print Client

Chapter Five – E-Services

52

Report on Overseas Industrial Attachment

An example of the attributes added is as shown in table 5.1 below :

Name String value

Manufacturer String value

Location String value

DPI Integer value

Clients on the other hand will need to find this vocabulary first and then

use it to find the required service.

5.5.5 Creating Multiple Print Services

Objective here is to start more than one print service. However, each print

service will have different service description for users to choose from.

Service descriptions are sets of attribute-value pairs expressed in a certain

vocabulary describing the service.

Service descriptions of the print services may be set as shown in table 5.2

below. The only differentiating factor between the two services created is

the location.

Table 5.1 : Example of attributes of a Print Service

Chapter Five – E-Services

53

Report on Overseas Industrial Attachment

 Service 1 Service 2

Name Print1 Print2

Manufacturer HP HP

Location UK US

DPI 72 72

Note : Description of the print vocabulary is only done in Service 1

whereas Service 2 will only requires to find the vocabulary and add

attributes to it. As such, Service 1 must be started before Service 2.

5.5.6 Invoking the Print Services from a Servlet

This section will form part of the integration to be made with the writer’s

colleague. The objective will be to connect to the e-speak core and find the

services from a servlet.

This was done simply by calling the methods of the clients from the

servlet. The methods being called consisted of :

a. Connecting to the e-speak core and finding the services using

certain constraints.

b. Retrieving the print options from the PSP.

c. Sending the user selected options back to the PSP.

Table 5.2 : Example of different service description

Chapter Five – E-Services

54

Report on Overseas Industrial Attachment

5.5.7 Integrating with Front-End

The objective here is to integrate the writer’s code (back-end) with his

colleague’s code (front-end).

The implementation done was to have two processes, one process for the

program execution after the user initiate a print job. Another process for

program execution after the user selected and finalised the print options.

• Process 1

a. Connect to e-speak, find the vocabulary and the PSP.

b. Get the print options from the PSP.

c. Convert the print options (EProperty) to a Property object

used by the front-end.

• Process 2

a. Convert the Summary object returned by the front-end to

ESSummary object used by the service interface.

b. Process the print job

Chapter Five – E-Services

55

Report on Overseas Industrial Attachment

5.6 Problems Encountered

Although invoking the print services from a servlet was just an addition of a few

lines of code, a number of details were overlooked.

5.6.1 Service Not Found

First of all, the servlet was not able to find the various services. However,

after much de-bugging, it was because some classes were used without

specifying the package name in front.

For example, the class PrintIntf was written in a package called “espeak”

and the servlet program was written in another package called “testing”.

The servlet program should use the class name as espeak.PrintIntf instead

of PrintIntf.

However, using the findAll method of e-speak to find the service when the

package name was not specified gave an interesting result. It actually finds

zero services without throwing an exception.

Note : Problem still under investigation.

Chapter Five – E-Services

56

Report on Overseas Industrial Attachment

5.6.2 No Matching Constructor Found

Another error occurs during compilation when the compiler shows an error

message that it was not able to find any matching constructions in some of

the Property object (e.g. Boolean, Enumeration, TextField and Range)

defined in another package.

This error occurs because these constructors written in package “espeak”

was not declared as public, as such the servlet program written in package

“testing” was not able to access it.

5.7 Tips

5.7.1 JAR Files

In the past, to run the servlet, all the class files required by the program

must be copied to the running directory of server, which can be rather

tedious at times.

E.g. c:\jsdk2.1\webpages\web-inf\servlet

In order to solve this problem, the writer had combined all the class files

into a single JAR (Java Archive) file and placed it on the CLASSPATH.

This will enable the server to reference the files.

This single, compressed file (it is a ZIP file essentially) can also be

transferred (loaded) from the web server to the browser more efficiently.

Chapter Five – E-Services

57

Report on Overseas Industrial Attachment

5.7.2 Danger in Too Much Pathing

One danger for placing too many jar files explicitly on the CLASSPATH is

that the system may reference the wrong file if there are more than one

files which contains classes with the same name.

This problem was encountered during the writer’s initial testing done to

integrate the back-end and the front-end in section 5.5.6 earlier. During the

testing phrase, a class, named PrintClient was use, which contains a

method connectToEspeak(String serviceName). The

compiled class files, I:\e-speak\test.jar was placed in the

CLASSPATH.

In the actual integration shown in section 5.5.7, the same class was used,

but a method with no argument (i.e. connectToEspeak()). Again,

another jar file, I:\e-speak\eprint.jar was placed in the

CLASSPATH.

As the program was executed, an exception was thrown showing that,

method connectToEspeak() was not found. After much de-bugging,

it was because the program was referencing to the wrong file (i.e.

connectToEspeak(String serviceName)). This example shows

the problem with CLASSPATH.

Chapter Five – E-Services

Report on Overseas Industrial Attachment

One solution is to delete the jar file (I:\e-speak\test.jar) from the

CLASSPATH. However, this may not be a very good solution.

What the writer had done was to create a batch file for setting the

environment for each program or working environment. First, the variable

Path and CLASSPATH, ESPEAK_HOME, JAVAC and JRE were

deleted from the environment. Next a batch file was created for setting the

environment of the current program as shown in figure 5.9 below. This

batch file will set up the environment for e-speak and also path the file,

eprint.jar.

@echo OFF

set MYDIR=C:\e-speak\lib

set MYPATH=%MYDIR%\esi.jar;%MYDIR%\escore.jar;%MYDIR%\esservices.jar
set MYPATH=%MYPATH%;c:\jdk1.2.2\jre\lib\rt.jar;c:\jsdk2.1\servlet.jar
set MYPATH=%MYPATH%;i:\e-speak\eprint.jar

set CLASSPATH=.;%MYPATH%

set Path=C:\WINNT;C:\WINNT\System32;C:\Perl\bin;C:\jdk1.2.2\bin;c:\jsdk2.1

set ESPEAK_HOME=c:\e-speak
set JAVAC=c:\jsk1.2.2\bin\javac
set JRE=c:\jdk1.2.2\bin\java

@echo Done!!!
58

Figure 5.9 : Batch File for Setting Environment

Chapter Five – E-Services

59

Report on Overseas Industrial Attachment

As such, the environment created will be temporary and it will exist (be

created) as and when required.

That is,

• to run program 1, invoke the batch file to set up the

environment of program 1 in a command prompt window.

• to run program 2, invoke the batch file to set up the

environment of program 2 in another command prompt

window.

Effectively, this creates two temporary environments with different

CLASSPATH. Hence 2 programs with different environment can be run

simultaneously in the same machine.

Although this method may seem troublesome, it will be useful when

developing large and complicated systems.

Another point noted by the writer was that, the original path variable in

the environment includes the directories, C:\WINNT and

C:\WINNT\System32. These two directories contain a lot of files,

which may cause referencing problems.

Chapter Five – E-Services

60

Report on Overseas Industrial Attachment

For example, the Java1.2.2 compilation and execution file (javac & java)

were invoked from the directory C:\WINNT\System32 instead of

C:\jdk1.2.2\bin. This is because upon installation, a copy of the file

java.exe and some other java dll files were also placed in directory

C:\WINNT\System32.

In Summary, when there is any unresolved bug in a program, it is

worthwhile to check this directory.

Chapter Five – E-Services

61

Report on Overseas Industrial Attachment

5.8 Conclusion

The involvement of the writer with e-speak had exposed him to e-commerce.

With e-speak, e-services that are capable of intelligent interaction can

dynamically discover and negotiate with each other, mediate on behalf of their

users, and compose themselves into more complex services. Only e-speak offers

all of these aspects of intelligent interaction in a single platform.

In addition, the e-speak engine software has been released to the open source

community and is freely downloadable from the e-speak website (www.hp.com/e-

speak/developers), along with the HP e-speak Services Framework Specification.

So far, APIs have been used to create and manage descriptions in Java. In addition

to these APIs, J-ESI supports XML description of vocabularies and services using

constructors. XML is the preferred mode for describing vocabularies and services.

Typically, XML is used for data descriptions passed as parameters to the

description constructors.

The use of JAR files for clustering class files had helped in the development stage

of the project by reducing the time spent on unnecessary file manipulation.

http://www.hp.com/e-speak/developers
http://www.hp.com/e-speak/developers

Chapter Five – E-Services

62

Report on Overseas Industrial Attachment

In relation to the above, the in-depth understanding of setting environments and

the usage of batch files for doing this was an important finding which will be very

useful in any System.

Finally, the successful integration of the writer’s code (back-end) with his

colleague’s code (front-end) was indeed an achievement.

The next phrase will be to understand the mediation process and participate in

coding it.

Chapter Six – Conclusion

63

Report on Overseas Industrial Attachment

Chapter Six – Conclusion

First of all, being able to work overseas enabled the writer to be exposed to the

working environment in other parts of the world. This includes learning and

understanding the cultures of the country. In other words, it is beneficial to

understand the view of someone from a different culture, which can best be

acquired by living and working in the country itself. It helps especially when

interacting with people from different walks of life in his future working life. This

is increasing in importance in the world of business and is a skill that is highly

prized by employers.

The writer also took the opportunity to get to know how people (e.g. Senior

engineers) go about analysing and solving problems, including their attitude

towards them. Undoubtedly, this will dramatically influence the way he thinks

and works in future. Having learned the experiences of others enabled him to

analyse and produce a better way to solve his own problems and at the same time

exercised his innovation and creativity. The writer believes this will help him to

adjust himself more effectively and efficiently to future employment, and adapt to

foreign work environments during overseas assignments.

Chapter Six – Conclusion

64

Report on Overseas Industrial Attachment

This trip has also provided him with hands-on training that were far more

beneficial than theory from books and further expands his technical knowledge

base. This training will put him in good stead for prospective job opportunities.

Apart from seeing the highly advanced technology used in the company, he also

had the opportunity to meet senior management staff who had offered their

invaluable advice. From them, he gets to understand their management style.

Furthermore, it is not just about learning another culture and another society, it is

about learning about the writer’s own as well.

Finally, the writer feels that this trip was very memorable and worthwhile.

References

65

Report on Overseas Industrial Attachment

References

1. Java in a Nutshell, a Desktop Quick Reference by David Flanagan

2. Java Examples in a Nutshell, a Tutorial Companion to Java in a Nutshell,

by David Flanagan

3. Thinking in Java

http://www.bruceeckel.com

4. Sun’s Java Tutorial

http://www.java.sun.com

http://www.java.sun.com/docs/books/tutorial

5. Sun’s Java API Index

http://www.java.sun.com/products/jdk1.2/docs/api/index.html

6. Sun’s Java Web Server Tutorial

http://www.jserv.java.sun.com/products/java-

server/documentation/webserver1.1/servlets/servlet_tutorial.html

7. Sun’s JSDK API Index

8. O’REILLY’s Java Servlet Programming

http://www.oreilly.com/catalog/jservlet/chapter/ch03.html

9. E-speak

http://www.e-speak.net

10. E-speak Programmer’s Guide

http://www.e-speak.net/library/pdfs/Jesi-PgmGuide.pdf

11. E-speak API Index

http://www.bruceeckel.com/
http://www.java.sun.com/
http://www.java.sun.com/docs/books/tutorial
http://www.java.sun.com/products/jdk1.2/docs/api/index.html
http://www.jserv.java.sun.com/products/java-server/documentation/webserver1.1/servlets/servlet_tutorial.html
http://www.jserv.java.sun.com/products/java-server/documentation/webserver1.1/servlets/servlet_tutorial.html
http://www.oreilly.com/catalog/jservlet/chapter/ch03.html
http://www.e-speak.net/
http://www.e-speak.net/library/pdfs/Jesi-PgmGuide.pdf

	NANYANG TECHNOLOGICAL UNIVERSITY
	School of Electrical and Electronic Engineering
	
	Prepared by : 	LEE KENG HOCK
			May 2000

	O
	Overview
	What’s Inside
	References ………………………………………………………………..	65

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Chapter One - Introduction
	Chapter Two - The Company, Hewlett-Packard
	Chapter Three – Object Oriented Programming Using
	Java
	Button quit = new Button(“Quit”);
	Chapter Four – Distributed Computing with Applets &
	Servlets
	Chapter Five – E-Services
	UK

	Chapter Six – Conclusion
	References

