

Report on Industrial Attachment with
Hewlett Packard Labs, Bristol, England

Ivan Low Swee Tieng
Publishing Systems Solutions Laboratory
HP laboratories Bristol
HPL-2000-68
7th June, 2000*

Baskerville
project,
E-services,
E-speak,
XML user
interface

The Hewlett-Packard Lab's goal of engaging in world-class
research in the interrelated technologies has resulted in a need
to invent new solutions to address the challenges of a web
economy - from secure e-commerce, high availability systems to
electronic content publishing. The Baskerville Project, a
commercial Printing e-Services project done by the Publishing
Systems and Solutions Unit in Hewlett-Packard Laboratory,
Bristol, sets to create and develop an infrastructure to enable
desktop access to commercial printing capabilities.

The students' project, which contributed to part of the
Baskerville Project, requires the students to produce
components of a workflow concerning outsourced printing. The
two main components will involve web front ends to a prototype
printing service under development at HP labs. The technical
competencies that will be learned by the students include
Object Oriented and Java skills, and Internet and e-service
technologies.

∗ Internal Accession Date Only
 Copyright Hewlett-Packard Company 2000

NANYANG TECHNOLOGICAL
UNIVERSITY

Report on
Industrial Attachment

with

Hewlett-Packard Laboratories
Bristol, England

Prepared By:
Low Swee Tieng, Ivan

983330G06
17 May 2000

SCHOOL OF APPLIED
COMPUTER ENGINEERING

 OVERVIEW

This report is organized in the following order:

Chapter One: Introduction

This chapter explains the Purpose, Scope and Limitation. It also gives an introduction to

the Company, Hewlett-Packard Lab, including its background, research goals and

university partnerships.

Chapter Two: Project Background

This chapter summarizes the background information of the ‘Baskerville Project’ as well

as the students’ responsibilities.

Chapter Three: Training, Research and Implementation

This chapter discusses the training and research done by the students, as well as the

results of the implementation.

Chapter Four: The Attachment Conclusion

This chapter gives the overall conclusion of the industrial attachment and further

recommendations for improvement.

Chapter Five: Bibliography and References

This includes the bibliography and references used by the student.

Overview

 TABLE OF CONTENTS

 ii

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

ii

Overview i

Table of Contents ii

Table of Figures v

Abstract vi

Acknowledgements vii

Chapter One : Introduction 1

1.1 Purpose, Scope and Limitation 2

1.2 Company Background 3

1.2.1 Attached Company - Hewlett-Packard 3

 1.2.2 Hewlett-Packard Laboratories in Europe 4

 1.2.3 Research Goals 5

 1.2.4 E-service and Internet Technologies 5

 1.2.5 University Partnerships 6

Chapter Two : Project Background 7

2.1 The Baskerville Project 8

2.2 The Students’ Responsibilities 9

2.3 The E-services Problem Set 10

Chapter Three : Training, Research and Implementation 13

3.1 The Text Editing Application 14

 3.1.1 The Java Programming Language 15

 3.1.2 Object Oriented Programming 15

 3.1.3 Graphical User Interface 16

 3.1.4 Implementation of the Menu Items 18

 3.1.5 Problems and Difficulties Encountered 24

Table Of Contents

 TABLE OF CONTENTS

 iii

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

iii

 3.1.6 Recommendations 25

 3.1.7 Conclusion 26

3.2 Text Editing Applet 27

 3.2.1 Overview of Applets 28

 3.2.2 Standalone and Downloadable Applet Program 28

 3.2.3 What Applets Can and Cannot Do 29

 3.2.3.1 Security Restrictions 29

 3.2.3.2 Applet Capabilities 30

 3.2.4 Client/Server Computing with Applets and Servlet 31

 3.2.4.1 Servlet Overview 31

 3.2.4.2 Sending User-defined Input to a Web Server 33

 3.2.4.3 Implementation of the Client Interface 34

 3.2.4.4 Implementation of the Web Servlet 35

 3.2.5 Java Documentation Comments 38

 3.2.6 Unified Modeling Language 40

 3.2.7 Problems and Difficulties Encountered 42

 3.2.8 Conclusion and Recommendation 43

3.3 Text Editing Service 44

 3.3.1 E-speak and E-services 45

 3.3.1.1 What is a service? 45

 3.3.1.2 E-Speak Overview 46

 3.3.2 The Design Overview 50

 3.3.3 The Flow of Events 52

 3.3.3.1 The Step-by-Step Explanation 52

 3.3.3.2 The Flow Charts 57

3.3.4 The Package Structure 59

 3.3.4.1 Implementation of the Class Attributes 60

And Abstract Methods

 3.3.4.2 The Subclasses 62

 TABLE OF CONTENTS

 iv

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

iv

 3.3.5 The New Package Structure 66

 3.3.6 Implementation of the Servlet Code 67

 3.3.7 Problems and Difficulties Encountered 69

 3.3.8 Conclusion and Recommendation 70

3.4 Introduction to the Extensible Markup Language (XML) 71

 3.4.1 What is XML? 71

 3.4.2 What’s Wrong with HTML? 72

 3.4.3 Replacing HTML with XML 73

 3.4.4 XSL: Converting XML to HTML 74

 3.4.5 The Implementation of XML 76

 3.4.6 Problems Encountered and Conclusion 76

Chapter Four : The Attachment Conclusion 77

4.1 Conclusion 78

4.2 Other Experiences Gained 80

Chapter Five : Bibliography and References 81

5.1 Java and Object Oriented Programming 81

5.2 HTML, XML and XSL 82

5.3 E-services and E-speak 82

5.4 Unified Modeling Language 82

 TABLE OF FIGURES

 5

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

v

Figure 1.1 Hewlett-Packard’s First Product 3

Figure 1.2 The Hewlett-Packard Lab in Bristol 4

Figure 3.1a The Text Editor Application 18

Figure 3.1b The File Menu 18

Figure 3.1c The Print Setup Option 20

Figure 3.1d Flow of Events (Print) 21

Figure 3.1e The About-about Menu Item 22

Figure 3.1f The Flow of Events for the Editor Application 23

Figure 3.2 Overview of Applets 28

Figure 3.3 Servlet Overview 31

Figure 3.4 Editor Interface 34

Figure 3.5 Implementation of Web Servlet 35

Figure 3.6 Java Document Comments 38

Figure 3.7 UML Representation of Class Structure 41

Figure 3.8 The e-speak Infrastructure 48

Figure 3.9 The Design Overview 50

Figure 3.10 Step-by-Step Explanation 52

Figure 3.11 The Flow of Events for User 57

Figure 3.12 The Flow of Events for Servlet 58

Figure 3.13 The Package Structure 59

Figure 3.14 Class Structure 60

Figure 3.15 The New Package Structure 66

Figure 3.16 The XSL Processor 74

Figure 3.17 A Sample of XML Document 75

Figure 3.18 A Sample of XSL Document 75

Table Of Figures

 ABSTRACT

 6

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

vi

The Hewlett-Packard Lab’s goal of engaging in world-class research in the interrelated

technologies has resulted in a need to invent new solutions to address the challenges of a

web economy – from secure e-commerce, high availability systems to electronic content

publishing. The Baskerville Project, a commercial Printing e-Services project done by the

Publishing Systems and Solutions Unit in Hewlett-Packard Laboratory, Bristol, sets to

create and develop an infrastructure to enable desktop access to commercial printing

capabilities.

The students’ project, which contributed to part of the Baskerville Project, allowed the

students to acquire the knowledge of Object Oriented Programming and Software

Engineering.

The Text Editor Application, the initial part of the E-service problem set, served as an

introduction to object oriented programming in Java. The Text Editor Applet faces an

applet security that severely restricts functionality, particularly in file access and printing.

The project introduced the use of servlet to handle these functions remotely instead.

The Text Editing Service then introduced a new electronic service, which goes beyond

the simple client/server model. The former employs many small service components and

make sure of the e-speak framework to define the text editor service and interface.

From the results of the successful project, it is recommended that the Extensible Markup

Language, XML, be used in place of the HTML, which has limited internal structure.

XSL, a transformation language for transforming a XML document into an HTML

document, can be used to convert the Text Editing applet to talk to the e-speak service.

Abstract

 ACKNOWLEDGEMENTS

 7

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

vii

This attachment was possible thanks to the cooperation and support of a number of

people, who have enabled the student to gain much more than what the scholastic or

industrial aspects of the program could have given. The student is grateful to them all,

and would like to express his appreciation to the following people:

• Mr. Tom Gardner, his IA supervisor in Hewlett-Packard Lab, for sharing

enthusiastically with him his experiences in programming. The student is sincerely

indebted to him for taking great pains to keep him on the right track. His support and

assistance contributed to the success of the project.

• Dr. Steve Battle (his partner’s supervisor in HP Lab) for being extremely patient and

for providing advice to the student on his final year project.

• Dr Ian McLoughlin, the student's supervisor from NTU, who has helped in

coordinating with the administration stuffs and provide valuable assistance in his

logbook and report writing.

The student would also like to express his appreciation to all the staff and colleagues in

the PSP departments for their full support and assistance during the attachment,

particularly Dr. Anthony Wiley, the project manager.

He would also like to thank his partner Mr Lee Keng Hock for his help and

encouragement throughout the entire industrial attachment.

Acknowledgements

 INTRODUCTION

 1

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

1

Chapter One

Introduction

This chapter begins with explaining the purpose of the report; follow by its scope and

limitations. It then goes on to give a brief introduction on the history of Hewlett-Packard

and the attached company, Hewlett-Packard Laboratories, Bristol. This chapter also

covers the research goals of Hewlett Packard, as well as a brief explanation on the E-

services and Internet Technologies. This chapter ends by providing an overview of the

Hewlett-Packard’s partnership with the universities.

 INTRODUCTION

 2

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

2

Purpose

The Industrial Attachment program fulfils part of the requirement in pursuing the degree

of Bachelor of Applied Science (Computer Engineering) in Nanyang Technological

University. This report serves to summaries the activities and experiences gained with

Hewlett-Packard Laboratories, Bristol England.

Scope and Limitations

During the attachment, the student was involved in a commercial printing e-Services

group project, known as the ‘Baskerville Project’. This report will only cover parts of the

project, which were done by the student. The experience gained during the attachment

had helped the students fulfill the objectives of the attachment. However, due to

unforeseen circumstances, the commencement of the attachment was delayed. This

resulted in a shortage of time for the completion of the project. Therefore, this report will

be limited to the stages of implementation prior to the date of reporting. Further work and

research done after the date of reporting are not described fully in this report.

The emphasis of this report will be on the research done by the student, in addition to the

experience that he gained during the attachment. Certain assumptions need to be made on

the reader’s level of familiarity with computing concepts such as object-oriented

programming and software engineering etc. Frequent references will be made with

regards to these concepts.

1.1 Purpose, Scope and Limitation

 INTRODUCTION

 3

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

3

1.2.1 Attached Company - HP

HP was founded in 1939 by Bill Hewlett and Dave Packard. The company’s first product,

built in a Palo Alto garage, was an audio oscillator – an electronic test instrument used by

sound engineers. One of HP’s first customers was Walt Disney Studios, which purchased

eight oscillators to develop and test an innovative sound system for the classic movie

“Fantasia”.

Today, Hewlett-Packard Company is a leading global provider of computing and imaging

solutions and services for business and home. One of HP’s major strategies focuses on

capitalizing on the opportunities of the Internet and the proliferation of electronic services

(e-services).

Figure 1.1 HP’s First Product

1.2 Company Background

 INTRODUCTION

 4

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

4

1.2.2 Hewlett-Packard Laboratories in Europe

In September 1984, Hewlett-Packard took the innovative step of starting up a corporate

research laboratory in Europe. Hewlett-Packard Laboratories (HPL) is directed by Dick

Lampman, with HPL Bristol being HP’s largest research center outside its headquarters

in Palo Alto, California, and employs around 200 researchers – one third of HPL’s total.

Some of HPL’s research focuses on e-services, e-publishing and technologies needed for

next generation digital imaging. Researchers are coming up with new solutions to address

the challenges of a web economy – from secure e-commerce, high availability systems to

electronic content publishing; from new ways of browsing the web to devices such as

mobile phone, to the display, capture and communications technologies that will be used

to build future mobile devices.

Figure 1.2 The Hewlett-Packard Lab in Bristol

 INTRODUCTION

 5

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

5

1.2.3 Research Goals

HPLB’s charter is to engage in world-class research in the interrelated technologies that

will enable people to create, manipulate and share electronic information with others

wherever they happen to be, for professional and social purposes.

1.2.4 E-services and Internet Technologies

HPLB is working to deliver the technology requirements for the next chapter of the

Internet and creating the architecture and tools for the development and deployment of e-

services. The program of research in e-services and Internet technologies encompasses a

broad range of activities.

HP’s Internet strategy revolves around creating and delivering services over the Net. It is

built on the vision of e-services and pervasive computing. An e-service is defined as any

asset that is made available via the Internet to drive new revenue streams or create new

efficiencies. These can be applications, computing resources or services, processes or

information. It’s about the Internet working for you, rather than you working the Net. At

HPLabs, they are inventing the technologies to make this vision a reality.

 INTRODUCTION

 6

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

6

1.2.5 University Partnerships

HPLB has an extensive network of relationships with selected departments in leading

academic institutions in over 20 countries, and invests considerable resources to support

them. They are important to HPLB because it shares with the academic community a

concern to foster innovative research, and to develop the skills and experience of the

people involved in its generation and transfer. Over the past 10 years HPLB has built up a

portfolio of programmes to encourage collaboration with universities across a broad

spectrum of mutually beneficial activities.

Every year HPLB hosts about 50 multinational students who work as members of project

teams in Bristol to gain industrial experience for their academic qualifications. Some of

them are jointly funded by their government and HP on ‘industrial PhDs’ designed to

forge long-term links between academia and industry. The student population makes a

lively contribution to the quality of life at HPLB, and to its international outlook.

HPLB’s university relation’s portfolio is structured with independent but complementary

programmers to help universities get to know HPLB through the route most appropriate

to their needs. Peer-to-peer contacts can give rise naturally to opportunities for sustained

external research activities where there is a good match of technologies and skills.

 PROJECT BACKGROUND

 7

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

7

Chapter Two

Project BackGround

This chapter gives the reader a brief idea of the project which the student was involved

in. It explains the purpose and direction of the project, as well as the responsibilities of

the students in the project. Finally, this chapter gives a simple E-services problem set,

which aims to develop core competencies required to build new electronic services.

 PROJECT BACKGROUND

 8

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

8

BackGround Information

The 'Baskerville Project' is a commercial Printing e-Services project done by the

Publishing Systems and Solutions Laboratory in Hewlett-Packard Laboratory, Bristol.

The project group consisted of a project manager, 4 other project members, 2 students

from Nanyang Technological University and 1 student from Imperial College.

Purpose and Direction

The purpose of the project is to create and develop an infrastructure to enable desktop

access to commercial printing capabilities.

2.1 The Baskerville Project

 PROJECT BACKGROUND

 9

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

9

The two students would produce components of a workflow concerning outsourced

printing. The two main components would involve web front ends to a prototype printing

service under development at HP labs. The technical competencies required of the

students included object-oriented & Java skills, and the understanding of Internet & e-

Service technologies.

Individual Responsibilities

Mr Ivan Low Swee Tieng (Student from Computer Engineering)

To develop a user interface to a print service that allows the user to choose the contents

they wish to print, to select from a number of print options, and to accept a printing

proposal.

Mr Lee Keng Hock (Student from Electrical and Electronics Engineering)

To develop an interface that allows the user to monitor and manage the progress of a print

job. This includes interrogation of the job history and configuration of an email

notification system.

2.2 The Students’ Responsibilities

 PROJECT BACKGROUND

 10

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

10

The aim of these problem sets is to develop core competencies required to build new

electronic services. The students were required to try the problem set so as to gain

sufficient experience for implementing the 'Baskerville Project'.

Part One: Text Editing Application

This exercise provided an introduction to object oriented programming using Java. The

objective was to build a simple text editing application. The editor was to be able to save

and load a document to/from file and print the document. This exercise would require the

student to

• install Java Development Kit (JDK)

• develop Project Organization Skill

• use of the AWT and IO packages

2.3 The E-services Problem Sets

 PROJECT BACKGROUND

 11

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

11

Part Two: Text Editing Applet

This exercise provided an introduction to distributed computing. The objective was to

convert the text editing application to run as a downloadable applet. This raised issues

regarding the applet security, which severely restricts functionality, particularly in file

access and printing. These functions might be remotely handled by a servlet. The students

were required to

• set up a Web Server (install Linux/Apache)

• learn Client/Server computing with Applets and Servlets (install JDSK)

Part Three: Text Editing Service

New electronic services go beyond the simple client/server model, employing many small

service components. The e-speak framework would be used to define a text editor service

and its interface. The objective was to convert the existing text editing applet & servlet to

work in the e-speak framework. This would require

• installing e-speak

• thinking about Services, Interfaces and Vocabularies

 PROJECT BACKGROUND

 12

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

12

Part Four: Text Editing

The e-speak client cannot be downloaded by a browser for access via the Internet. But a

Java applet can speak to an e-speak service using the eXtensible Markup Language,

XML. The objective was to convert the text-editing applet to talk to the existing e-speak

service. This would require

• installing e-speak Web-Access

• using XML

 TRAINING, RESEARCH AND IMPLEMENTATION

 13

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

13

Chapter Three

Training, Research and Implementation

This chapter covers all the training and experiences that the student has gained during the

attachment. The student and his partner have done the implementation of the project,

however only that carried out by the student himself will be discussed in detail. The

research and implementation done by the student are described in different phrases,

according to the E-services problem set. The reader should note that most of the time

spent during the attachment was for training and research, followed by the

implementation. Therefore, this chapter will cover the training and exploratory research

carried out by the student first, followed by the results of the implementation.

 TRAINING, RESEARCH AND IMPLEMENTATION

 14

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

14

The Objective

The objective of this problem is to build a simple text editing application, which aims to

provide an introduction to object oriented programming using Java. The editor should be

able to save and load a document to/from file and print the document.

Overview

The first part of the project, which required the student to create a Text Editor

Application, introduced the concept of object oriented programming in Java. The student

made use of the Abstract Windowing Toolkit (AWT) to design the graphical user

interface (GUI) for the editor. The editor comprised a frame, menu bar and menu items,

and also command buttons, if required. The student also decided on the possible menu

items to be included in the program, as well as their individual implementation.

Basic Requirements

• Java Development Kit (JDK)

• Basic Programming Skill

• Text Editing software

3.1 The Text Editing Application

 TRAINING, RESEARCH AND IMPLEMENTATION

 15

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

15

3.1.1 The Java Programming Language

The Java programming language is a state-of-the-art, object-oriented language that has a

syntax similar to that of C. The language designers strove to make the Java language

powerful, but at the same time, they tried to avoid the excessively complex features that

have bogged down other object-oriented languages, such as C++. By keeping the

language simple, the designers also made it easier for programmers to write robust, bug-

free code.

3.1.2 Object Oriented Programming

Based on the knowledge of function-oriented C Programming, it is not difficult to write

the Editing Application. The challenge, however, is to use a totally new language, Java,

and to program using Object Oriented Programming.

The main difficulty is how to think in an Object Oriented way. In Function Oriented

Programming, all the user has to do is to write a function to solve a problem. However, in

Object Oriented Programming, it is a totally different approach. In Object Oriented

Programming, the user will have to think of the problem as a set of objects. Then, the

user will have to define the class and the methods, which the object may require, as well

as the different attributes and their values.

To have a better understanding of object oriented programming in Java, visit the web site

at http://web2.java.sun.com, which gives an introduction of Java programming.

 TRAINING, RESEARCH AND IMPLEMENTATION

 16

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

16

3.1.3 Graphical User Interfaces

The first step to any interface program is to create the interface of the program. The

interface of the text-editor requires only a frame, a menu bar with some menu items and

command buttons. This in turn, requires the Abstract Windowing Toolkit (AWT),

which defines all the GUI components in Java. Note that these components comprise the

java.awt package.

There are basically four steps to creating a GUI. The steps are listed below with an

example given for each of the individual step.

Step 1: Create the component

A GUI component can be easily created just like any other object in Java, simply call the

constructor.

Note that the components are typically created in the init () method of an applet or in the

constructor of a standalone application (or in a private method invoked by one of those

methods).

E.g. Button open = new Button (“Open”);

 TRAINING, RESEARCH AND IMPLEMENTATION

 17

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

17

Step 2: Add the component to a Container

All components must be placed within a container. Containers in Java are all subclasses

of java.awt.Container.

Step 3: Layout the components within their containers

A LayoutManager object can be use to automatically lay out the components of a

container according to certain layout rules defined by the particular LayoutManager

chosen.

Step 4: Handle the events generated by the components

When working with GUI, it is more common to handle the higher-level semantic events

that are generated by the components themselves. Java 1.1 provides different event-

handling models, which can be used.

E.g. this.add (open);

E.g. this.setLayout (new BorderLayout (10, 10));

E.g. public void mouseDragged (MouseEvent e) {

 TRAINING, RESEARCH AND IMPLEMENTATION

 18

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

18

3.1.4 Implementation of the Menu Items

The menu bar and its menu items formed the major part of the program. It is the menu

items that tell the program what the user wants to do. It is also the main graphical

interface for the user. Figure 3.1a below shows the Text Editor interface implemented by

the student.

Figure 3.1a The Text Editor Application

The following sections explain the individual menu items and their functions. Refer to

Figure 3.1b below for the graphical representation of the menu items.

Figure 3.1b The File Menu

 TRAINING, RESEARCH AND IMPLEMENTATION

 19

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

19

File-New

This will clear the contents in the editor text area. A new file with no initial filename will

be created.

File-Open

This menu item allows the user to open a file from anywhere within the system. The File-

Open menu item displays an Open Dialog Box for the user to choose the file they want.

The user may choose an existing filename or create a new file.

File-Save

This menu item allows the user to save the file without having to specific the filename.

This means that the contents of the editor will be saved into the same file, or rather, the

default filename.

File-SaveAs

This will be different from Save as this will requires the user to enter a filename. There

will be no default filename available. The user normally uses this function instead of the

Save function when they want to specify a filename.

 TRAINING, RESEARCH AND IMPLEMENTATION

 20

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

20

File-Close

This will close the existing file. It will clear all the contents in the text area.

File-PrintSetup

This will allow the user to define how they want their printer layout to be like. The editor

allows the user to specify the type of paper size most suitable for the document, the

printing orientation, the number of pages etc. Refer to Figure 3.1c for the diagram.

Figure 3.1c The Print Setup Option

 TRAINING, RESEARCH AND IMPLEMENTATION

 21

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

21

File-Print

This allows the user to print a hardcopy of the contents of the editor. The student has to

ensure that the program is able to print according to the user specification. For example,

the user may want a margin of 2 inches, a landscape orientation, start printing from page

3 to page 6, and print 4 copies each etc. A flowchart of how the program takes care of all

these is shown in Figure 3.1d below.

Figure 3.1d Flow of Events (Print)

 TRAINING, RESEARCH AND IMPLEMENTATION

 22

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

22

File-Quit

This will exit from the editor.

About-about

This will display a new window that shows the date and author of the editor. Dialog

boxes in Java are implemented using the Dialog class. An information dialog is a dialog

box that lets the writer specify the message to be displayed. This dialog box makes use of

a MultiLineLabel class that displays multiple static lines of text, which is something that

the AWT Label class is incapable of doing.

Much of the code is taken up with the mechanics of breaking the label into separate lines

and measuring the size of each of those lines. It made use of the paint () method,

getPreferredSize () and getMinimumSize () method. Refer to Figure 3.1e for the

graphical representation of the frame.

Figure 3.1e The About-about Menu item

 TRAINING, RESEARCH AND IMPLEMENTATION

 23

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

23

Flow of Events

Figure 3.1f below shows all the possible flow of events that may occur. The user is

allowed to select any of the following commands from the menu. Note that this program

only serves as an introduction to the actual project, and at the same time illustrating the

concepts of object oriented programming in Java, which is an essential element for the

progress of the actual project.

Figure 3.1f The Flow of Events for the Editor Application

 TRAINING, RESEARCH AND IMPLEMENTATION

 24

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

24

3.1.5 Problems and Difficulties Encountered

The main difficulty that the student encountered was the implementation of the program

using the concept of Object Oriented. The student, with 4 years of programming

experiences in C using Function Oriented concept, found it hard to adapt to using a

totally different concept. Although the student was using objects and classes to write a

program, there still existed a mixture of both programming concepts. It took the student

quite some time to really understand how to make full use of the concept of Object

Oriented Programming, such as the superclasses, object and the class hierarchy.

Not being able to understand fully the concept of Object Oriented Programming, and also

the syntax of Java language, the student also found it hard to organize the program

structure in the initial stage. As the student progress further, he started to realize that the

code became very long and disorganized. Many parts of the codes would be redundant if

the concept of Object Oriented Programming was used in the first place.

Another difficulty encountered by the student was to print the document according to the

specification of the user. The student has to ensure that the program is able to print

according to the different margins set by the user, the different paper sizes, the different

orientation, such as landscape and portrait, and also according to the specified start and

end pages. This required the student to have very good knowledge on the superclass

Printable in the Java API, as well as the page format, e.g. the DPI, the font size, font

height and font ascent etc.

 TRAINING, RESEARCH AND IMPLEMENTATION

 25

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

25

3.1.6 Recommendations

The first recommendation that the student wished to make is for the writer to have

sufficient knowledge of the concept that he is going to use, in this case Object Oriented,

before he really start on the actual program. It is advised that the Unified Modeling

Language (UMI) be used at the design stage to get a clearer picture of how the classes

and methods are to be defined or constructed. This will help in ensuring that the writer

will be able to make full use of each individual class, its properties and methods, and also

the advantages of class inheritance, method overridden etc.

Another recommendation for the Text Editor application is to use the Java Document

Comment. The student did not realize the usefulness of Java Doc, until the later part of

the attachment when the supervisor told him. Although the student still managed to use

the Java Doc for certain parts of the program codes, implementing it at an earlier stage

would have helped the student in debugging, and at the same time, ensured that the

supervisor and everyone else had a good understanding of the program.

Finally, the student would like to suggest that the program have a help file (if time

allowed). A new menu item, called Help, should be included in the menu bar to assist

those users who may not have enough computer knowledge. This Editor program should

cater to anybody, thus a help file would be helpful.

 TRAINING, RESEARCH AND IMPLEMENTATION

 26

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

26

3.1.7 Conclusion

The implementation of the first part of the project enabled the student to get used to

writing a program using the Object Oriented concept and to know more about the new

programming language, Java. It was a very useful experience for the student, as Java

programming generally improves the programmer's efficiency. Java is a simple and

elegant language with a well-designed, intuitive set of APIs. Programmers are able to

write better code with fewer bugs than with other platforms, thus reducing development

time.

Being able to use the Object Oriented concept to design and implement a problem, the

student now found himself more confident in implementing the next stage of the project,

which required the student to make use of applet and client/server communication.

 TRAINING, RESEARCH AND IMPLEMENTATION

 27

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

27

The Objective

The objective of this problem was to convert the text editing application to run as a

downloadable applet. This part of the project provided an introduction to distributed

computing. The student was also able to experience the applet security that severely

restricts functionality, particularly file access and printing. A servlet was then introduced

to handle this problem.

Overview

In the second part of the project, the student created a downloadable applet, using the

existing Text Editor Application. The current Text Editor Application was only able to

run as a standalone program. It was not able to run in any web browser. To convert it to

run as a downloadable applet meant enabling it to run in any web browser. In the later

part, the student discovered that the applet had certain security rules, which restricted the

functionality of the Editor program. Thus, the student decided to use the servlet to handle

that problem.

Basic Requirements

• Java Servlet Development Kit (JSDK)

• Web Server

3.2 Text Editing Applet

 TRAINING, RESEARCH AND IMPLEMENTATION

 28

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

28

3.2.1 Overview of Applets

Every applet is implemented by creating a subclass of the Applet class. The following

figure shows the inheritance hierarchy of the Applet class. This hierarchy determines

much of what an applet can do and how.

Figure 3.2 Overview of Applets

3.2.2 Standalone and Downloadable Applet Program

In the previous editor program, the program was only allowed to run as a standalone

program. In this part of the project, the text editor was improved so that it could be

displayed using any web browser, such as the Internet Explorer. To do this, the program

had to be written using Applet. However, there were some security restrictions, which

limited the use of applet in certain applications. The next section gives an overview of

what an applets can and cannot do.

 TRAINING, RESEARCH AND IMPLEMENTATION

 29

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

29

3.2.3 What Applets Can and Cannot Do

This section gives an overview of both the restrictions applets face and the special

capabilities they have.

3.2.3.1 Security Restrictions

Every browser implements security policies to keep applets from compromising system

security. This section describes the security policies that current browser adhere to.

However, the implementation of the security policies differs from browser to browser.

Also, security policies are subject to change. Current browsers impose the following

restrictions on any applet that is loaded over the network:

• An applet cannot load libraries or define native methods.

• It cannot ordinarily read or write files on the host that’s executing it.

• It cannot make network connections except to the host that it came from.

• It cannot start any program on the host that’s executing it.

• It cannot read certain system properties.

• Windows that an applet brings up look different from windows that an application

brings up.

Each browser has a SecurityManager object that implements its security policies. When a

SecurityManager detects a violation, it throws a SecurityException. The applet can catch

this SecurityException and react appropriately.

 TRAINING, RESEARCH AND IMPLEMENTATION

 30

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

30

3.2.3.2 Applet Capabilities

The java.applet package provides an API that gives applets some capabilities that

applications don’t have. For example, applets can play sounds, which other programs

cannot do yet.

Here are some other things that current browsers and other applet viewers let applets do:

• Applets can usually make network connections to the host they came from.

• Applets running within a Web browser can easily cause HTML documents to be

displayed.

• Applets can invoke public methods of other applets on the same page.

• Applets that are loaded from the local file system have none of the restrictions

that applets loaded over the network do.

• Although most applets stop running once you leave their page, they do not have

to.

To have a better understanding of the applets, please refer to the website at the following

URL: http://web2.java.sun.com/docs/books/tutorial/applet/index.html

Directly or indirectly, this website covers everything one needs to know to write a Java

applet.

 TRAINING, RESEARCH AND IMPLEMENTATION

 31

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

31

3.2.4 Client/Server Computing With Applets and Servlet

Due to the applet security, which severely restricts functionality, the downloadable applet

editor program will not be able to access any file, which means that the user will not be

able to open, save or print any file. These functions, however, can be remotely handled

by a servlet.

3.2.4.1 Servlet Overview

Servlets are modules that extend request/response-oriented servers, such as Java-enabled

web servers. For example, a servlet might be responsible for taking data in an HTML

order-entry form and applying the business logic used to update a company's order

database.

Figure 3.3 Servlet Overview

 TRAINING, RESEARCH AND IMPLEMENTATION

 32

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

32

Servlets are to servers what applets are to browsers. Unlike applets, however, servlets

have no graphical user interface. Servlets can be embedded in many different servers

because the servlet API, which is used to write servlets, assumes nothing about the

server's environment or protocol. Servlets have become most widely used within HTTP

servers; many web servers also support the Servlet API.

Other Uses for Servlets

Here are a few more applications for servlets:

• Allowing collaboration between people. A servlet can handle multiple requests

concurrently, and can synchronize requests. This allows servlets to support

systems such as on-line conferencing.

• Forwarding requests. Servlets can forward requests to other servers and servlets.

Thus servlets can be used to balance load among several servers that mirror the

same content, and to partition a single logical service over several servers,

according to task type or organizational boundaries.

For a more detailed explanation on servlets, the user is advised to refer to the

web site at: http://web2.java.sun.com/docs/books/tutorial/servlets/index.html

The Servlets trail teaches one about servlets, the bodies of code that run inside

servers and extend their functionality.

 TRAINING, RESEARCH AND IMPLEMENTATION

 33

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

33

3.2.4.2 Sending User-Defined Input to a Web Server

The first thing to do is to get a user input from a web browser to a web server.

Fortunately the HTTP protocol provides two main ways to send information to a web

server above and beyond the URL of a requested file, that is, the POST and GET

methods.

The GET Methods

The foundation of HTTP/0.9 (the first implementation of the HTTP protocol) was the

definition of the GET method that was used by a web browser to request a specific

document. The web browser formulates the actual GET request, sends it to the web

server, receives the HTML document back, and then displays the HTML document

according to the HTML instructions.

Problems With The GET Methods

Though the GET method was very useful, a couple of serious problems remained. First,

the GET method only allowed a limited amount of data (1024 characters) to be sent as

URL encoded data. If there were too many name/value pairs, some of them would be

clipped and data would get lost. Further, since the information was sent as part of the

URL, the user could see all of that data. On the one hand, that made URL's look really

ugly and scary. On the other hand, it meant that the user got to see all of the inner

workings of the CGI input. These all changed with the development of HTTP/1.0.

 TRAINING, RESEARCH AND IMPLEMENTATION

 34

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

34

The POST Methods

The HTTP/1.0 protocol was developed from 1992 to 1996 in order to satisfy the need to

exchange more than simple text information. The POST method of input was one of the

important changes brought about by the introduction of HTTP/1.0. The POST method

allowed web browsers to send an unlimited amount of data to a web server by allowing

them to tag it on to an HTTP request after the request headers as the message body.

Typically, the message body would be the old familiar encoded URL string after the

question mark (?).

3.2.4.3 Implementation of the Client Interface

An editor interface was created as the client, using HTML. Microsoft FrontPage was use

as a straightforward HTML editor. The editor will only require a Text Input for the

filename, a Text Area for the user to edit the text, and a couple of Buttons for the

different functions. A menu will no longer be needed. A sample of the editor interface is

shown in Figure 3.4.

Figure 3.4 Editor Interface (Client)

 TRAINING, RESEARCH AND IMPLEMENTATION

 35

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

35

3.2.4.4 Implementation of the Web Servlet

The web servlet is supposed to handle the information sent over by the client. The client

program used the Post method of input to send an unlimited amount of data to the web

server, and the servlet used the doPost method to handle the data received. The servlet

then determine whether the user wants to open, close, save or print a file at the web

browser. The servlet will then create a new HTML form with all the required information

and display it on the web browser.

The diagrams and explanation below describe how the client activates the servlet to

perform the expected task.

In Figure 3.5a below, the Editor Program will only activate the servlet when the user

select any of the command buttons below.

Figure 3.5a Implementation of the Web Servlet: Step 1

 TRAINING, RESEARCH AND IMPLEMENTATION

 36

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

36

However, the user can also choose to edit the text in the text area or use the browse

button to select or view the filename. Both options will not activate the servlet as they do

not require any access to file. The servlet will only be activated when the user select a

function that required access to any file.

When either of the command buttons is selected, the Editor Program (Client) will then

send the information to the servlet. The servlet will now determine which button is

selected and react accordingly to what the user wanted. This is shown in Figure 3.5b

below.

Figure 3.5b Implementation of the Web Servlet: Step 2

 TRAINING, RESEARCH AND IMPLEMENTATION

 37

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

37

When the servlet finished executing the task expected by the user, the servlet will then

reprint a new copy of the Editor Interface on the browser and wait for the next command

button to be selected. This is again shown in Figure 3.5c below.

Figure 3.5c Implementation of the Web Servlet: Step 3

This basically complete the second part of the problem set, which is to use the servlet and

applet application to create a downloadable Editor Program. The next section will cover

two other aspects learned during the implementation of the project: the Java

Documentation Comments and the Unified Modeling Language (UML).

 TRAINING, RESEARCH AND IMPLEMENTATION

 38

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

38

 3.2.5 Java Documentation Comments

Most ordinary comments within Java code explain the implementation details of that

code. In contrast, the Java language specification defines a special type of comment

known as a doc comment that serves to document the API of the code. A doc comment is

an ordinary multiple line comment that begins with /** (instead of the usual /*) and ends

with */. The following figures show the implementation of the java doc, as well as the

output of the java doc in a web browser.

Figure 3.6a Java Document Comments

 TRAINING, RESEARCH AND IMPLEMENTATION

 39

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

39

Figure 3.6b The Package Structure

Figure 3.6c Java Method Summary

 TRAINING, RESEARCH AND IMPLEMENTATION

 40

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

40

 3.2.6 Unified Modeling Language

The UML is the standard language for visualizing, specifying, constructing, and

documenting the artifacts of a software-intensive system. It can be used with all

processes, throughout the development life cycle, and across different implementation

technologies.

The UML combines the best of the best from

• Data Modeling concepts (Entity Relationship Diagrams)

• Business Modeling (work flow)

• Object Modeling

• Component Modeling

In this project, the student made use of the UML modeling elements in class diagrams,

that define the classes and their structure and behavior, association, aggregation,

dependency and inheritance relationships, multiplicity and navigation indicators and role

names.

 TRAINING, RESEARCH AND IMPLEMENTATION

 41

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

41

A simple UML model is shown in Figure 3.7 below.

Figure 3.7 UML Representation of Class Structure

In the above example, class Editor is a subclass of Applet. It has two attributes; number

and name, and a method call textChange (). It can consist of 0 to infinity number of

objects, which is an instance of class InfoDialog. InfoDialog, on the other hand, is a

subclass of Dialog. It has two attributes; label and alignment, and a method called

setLabel().

This simple example illustrates part of the program code done by the student on the Text

Editor Applet. To have a better understanding in UML, please refer to the web site at

http://www.rational.com/uml/index.jtmpl

 TRAINING, RESEARCH AND IMPLEMENTATION

 42

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

42

3.2.7 Problems and Difficulties Encountered

The first problem that the student encountered was the limitation of the GET method. The

client, which is also the web browser, made use of the GET method to communicate with

the servlet. The web browser formulates the actual GET request, sends it to a web server,

receives the HTML document back, and then displays the HTML document according to

the HTML instructions. However, the student did not noticed that the GET request only

allowed a limited amount of data (1024 characters) to be send as URL encoded data.

Therefore when the user selected a huge file to be saved or print, the servlet was unable

to process the request. This problem was solved when the student discovered the new

POST method, which was introduced by the HTTP/1.0. The POST method allowed web

browsers to send an unlimited amount of data to a web server by allowing them to tag it

on to an HTTP request after the request headers as the message body. For a more detailed

explanation on servlets, the reader is advised to refer to the web site at:

http://web2.java.sun.com/docs/books/tutorial/servlets/index.html

Another problem that the student encountered is changing the output in the HTML

interface, after the users made their selection. In HTML, the whole interface has to be

reprint by the servlet, even it only consists of a small change in the output. This in fact

lengthens the program code, and at the same time, limited the flexibility of the editor

interface at run time.

 TRAINING, RESEARCH AND IMPLEMENTATION

 43

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

43

3.2.8 Conclusion and Recommendation

In this part of the attachment, the student has managed to understand how the client and

server can communicate to each other, overcoming the security restrictions imposed by

the applet. However, using the HTML form to represent the client application was not a

really good way. This is because the HTML form requires the servlet to reprint the whole

interface whenever a change needed to be imposed (reflected) on the client interface. This

lengthens the servlet program, and is not a good way of organizing the program structure.

The alternative method of using Java code to write the applet application may be a better

option. The only problem is that it will be more tedious to draw the graphical user

interface using Java API, compared to using HTML. However, the Java allowed changes

to be made on the interface without reprinting the whole interface. Due to the time

constraint, this suggestion is not implemented.

Thus, this section can be concluded with the understanding of the application of applets,

client/server communication, and the use of servlet to overcome the limitation, or security

restrictions of the applets. The next section will cover the next part of the project, which

required the student to acquire the knowledge of E-services, E-speak, and XML.

 TRAINING, RESEARCH AND IMPLEMENTATION

 44

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

44

The Objective

This part of the project covers both the third and last part of the E-services problem set.

These parts of the problem set have been done concurrently by the student and his

partner. The objective is to use the e-speak framework to define a text editor service and

its interface. The existing text editing applet will be converted to talk to the e-speak

service.

Overview

This is the final part of the problem sets, and it requires the student to acquire the

knowledge of e-speak and the XML. New electronic services go beyond the simple

client/server model, employing many small service components. This project will use the

e-speak framework to define a text editor service and its interfaces. However, the e-speak

client cannot be downloaded by a browser for access via the Internet. A Java applet can

speak to an e-speak service using the extensible Markup Language, XML. Thus, the text-

editing applet will be converted to talk to the existing e-speak service.

The Requirements

• E-speak

• E-speak web-access

• Understanding of e-services, interfaces and vocabularies

• XML / XSL

3.3 Text Editing Service

 TRAINING, RESEARCH AND IMPLEMENTATION

 45

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

45

3.3.1 E-speak and E-services

Please note that only the research and training done on the e-speak and services will be

covered in this report. The actual implementation of e-speak and services, done by the

student’s partner, will not be covered here.

3.3.1.1 What is a service?

A service is traditionally considered to be a stand-alone application with a well-defined

interface. For example, an instance of an ERP system, such as a SAP instance, may be

considered a service. Similarly, a file system is considered a service.

In the e-speak world, a service is not necessarily restricted to a unit such as an

application. Instead, the granularity of a service is much smaller. Think differently about

what constitutes an e-speak service. Anything that can be described with a unique set of

attributes is a service. Functions are invoked directly on this service.

Reference for E-service: http://www.hp.com/e-services

 TRAINING, RESEARCH AND IMPLEMENTATION

 46

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

46

3.3.1.2 E-Speak Overview

E-speak is an open software platform designed specifically for the development,

deployment and intelligent interaction of e-services.

With e-speak, users and e-services can interact regardless of their hardware or operation

systems, system management strategies, development environments, or device

capabilities.

Any service can become manageable by using the e-speak service management

framework. Services do not need to explicitly add mechanisms to become manageable.

The e-speak event infrastructure enables publish, distribute and subscribe operations

across a geographically distributed environment and across multiple protection domains.

This event infrastructure coupled with the security and management framework

supported in e-speak, provide a comprehensive platform for managing service

deployments that require dynamic business collaborations.

 TRAINING, RESEARCH AND IMPLEMENTATION

 47

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

47

The e-speak engine is a software that performs the primary e-speak functions of:

• Discovery

Once an e-service is e-speak-enabled, the provider registers it with a host system

connected to and accessible by the Internet. During registration, the provider

creates a description of the e-service that consists of its specific attributes. Users

looking for e-services then describe the type of service they want and e-speak will

automatically discover registered services that have the desired attributes.

• Negotiation

After discovering e-service providers, e-speak negotiates between the requester

and the provider to weed out any that offer services outside the criteria of the

request.

• Mediation

Once a user and an e-service have been brought together, e-speak is able to

continuously monitor service delivery and make adjustments, or “mediate”, in real

time. No other Internet technology or standard available today performs this

function.

• Composition

In the near future, e-speak-enabled e-services will be able to combine themselves

into more complex, cascading e-services, even-on-the-fly.

 TRAINING, RESEARCH AND IMPLEMENTATION

 48

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

48

A Simple Example

A

The following section provides a simple example of an e-speak Service written that

illustrates some of the basic ideas in the e-speak infrastructure.

Client Service DiscoveryA

A Client first creates a new connection to an e-speak Core. After connecting to the Core,

the Client can look up or register Services. The Client locates a Service that satisfies a

constraint expressed with attributes in the default Vocabulary. The result of the find

Service is a stub (or proxy) to the Service provider’s Service. Clients can use this stub as

a network object reference and directly invoke methods on the Service (see Figure 3.8).

Figure 3.8 The e-speak Infrastructure

 TRAINING, RESEARCH AND IMPLEMENTATION

 49

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

49

Client Service Usage

A

Clients interact with the Service with the set of interfaces for which stubs are available in

the Client address space. Clients can preinstall the Service stubs that are generated using

the e-speak IDL stub generator, or they may acquire the stub class from the Service

provider by other means. When a Client invokes an operation, a well-defined e-speak

custom serialization is used to ship the invocation to the target Service through the

mediating e-speak infrastructure. In so doing, all method invocations are effectively

mediated.

Reference for E-speak: http://www.e-speak.net

 TRAINING, RESEARCH AND IMPLEMENTATION

 50

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

50

3.3.2 The Design Overview

The Text Editor program was rebuilt using e-speak and HTML. It looked like the old

Text Editor, but was much better. The student looked at the front-end which has to work

out what goes into the dialog box using information from the print service. His partner,

on the other hand, built the back-end services and worked out how to talk to them.

Figure 3.9 The Design Overview

User: This is a web browser, such as the Internet Explorer, which allows

the user to view the software. This is also considered as the client.

Print Server: This is the servlet where the program codes of both the student and

his partner will speak to each other.

Print Gateway: This is where all the print services are located.

 TRAINING, RESEARCH AND IMPLEMENTATION

 51

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

51

The whole idea can be better explained by looking at the Figure 3.9 provided above.

First, the student and his partner decided on the (java) interface between the two work

packages. A package structure has to be worked out in which each work-package is a

java sub-package. The student had to work out the minimal requirements and

dependencies between the two packages. The servlet is the point of interaction between

the two packages, as both the student and his partner will be coding part of the servlet.

Next, the student’s partner implemented a print server based on the existing printing

code. The print server can also be asked to list its print options that will go into the dialog

box. He also implemented a file service for storing and saving text files. The file service

can be asked to list the files it already contained so that the student can browse them

remotely. He also wrote the part of the servlet code that finds the services and mediates

between them and the student’s code.

As for the student himself, he reused his existing editor’s interface to allow the user to

browse and open existing files, and create, edit, save files. When the user prints a file, the

servlet requests the printing options, and builds the corresponding dialog box. The

options chosen by the user are passed to the servlet when the user starts the print. The

main idea is that the dialog is not hard-coded but is extensible at run-time. The aim is to

look at several different ways of doing this, from HTML forms generated dynamically in

the servlet, to an XML representation of the dialog box transformed in to HTML using

XSL either in the servlet or the client, if time permits.

 TRAINING, RESEARCH AND IMPLEMENTATION

 52

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

52

3.3.3 The Flow Of Events

Note that for the implementation of the design, the Text Editor Applet was used to

simulate the web browser application, which is also the client, in this case.

3.3.3.1 The Step-by-Step Explanation

Section 3.3.3.2 contains the flowcharts for both the client and the servlet. Please refer to

the flowcharts in the next section, along with the step-by-step explanation.

Step 1: The User Initiation

The user selects a file or creates a new text by editing in the text area of the Text Editor.

The user then presses the Printer Setup button. Please refer to Figure 3.10a.

Figure 3.10a The User Initiation

 TRAINING, RESEARCH AND IMPLEMENTATION

 53

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

53

Step 2: Client-Servlet Communication

This will activate the servlet, which will immediately get a list of print options from the

print server through the use of an object, which is an instance of a package structure.

The structure of this package will be explained in the next section.

Also take note that as shown in Figure 3.9, there are actually three ways, which the

Editor applet (client) can communicate to the servlet. The first method uses the HTML

form to display the interface onto the browser and to pass information. The second

method uses the Java operating system code to create the interface, and the last method

creates a XML document and uses the XSL transformation language to transform it into a

HTML document, which can be display in the web browser.

Step 3: Servlet Execution

Based on the set of print options obtained from the print service, the servlet will now

decide what format will be used to display the print option, for example using a select

button, a text area, or an option button. The servlet will then display the print options on

the browser to allow the user to make their choice.

 TRAINING, RESEARCH AND IMPLEMENTATION

 54

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

54

Step 4: The User Selection

Based on the available print options provided by the program, the user will then proceed

to make their choice. When the user selects the Submit button, all the information will be

send to the servlet. This is shown in Figure 3.10b.

Figure 3.10b The User Selection

Take note that the above presentation of the print options is decided by the package

structure, which will be discussed in the later part of the report. However, the

representation of the interface is not an important part at this point in time. This is

because the focus is on the implementation of the program and its functionality.

 TRAINING, RESEARCH AND IMPLEMENTATION

 55

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

55

Step 5: The Servlet Validation of the Information

The servlet will now check if all the values entered by the user are valid. If any of the

data is invalid, the servlet will print the error message accordingly. This is shown in

Figure 3.10c below.

Figure 3.10c The Servlet Validation of the Information

The user, after being prompted by the program, is expected to make the changes. Possible

errors that can be detected by the program include:

• Keying in of non-number input into a numeric text box; that is, a text box that

only allows numbers.

• No input in the text box, or rather, an empty field.

• Using of space in the beginning of the text field. E.g. Name: <space><space>

 TRAINING, RESEARCH AND IMPLEMENTATION

 56

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

56

Step 6: Finalization of the Information

If there is no error, the servlet will now display a copy of the finalize choices made by the

user (refer to Figure 3.10d), and at the same time, create an object that contains all the

printing information, and send it back to the Print Service Provider (PSP).

Figure 3.10d Finalization of the Information

When the user selects the Finish button, the user will go back to the Text Editor, and the

user has just completed his request for the print service. The following section shows the

flow charts for the flow of events for both the user (client) and the servlet.

 TRAINING, RESEARCH AND IMPLEMENTATION

 57

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

57

3.3.3.2 The Flow Charts

Figure 3.11 shows a flow chart on how the user (client) activates the servlet. Figure 3.12

shows how the servlet reacts to the client and performs the necessary execution as well as

it creates the user interface and communicates between the client (web browser) and the

print service.

Figure 3.11 The Flow of Events for User

 TRAINING, RESEARCH AND IMPLEMENTATION

 58

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

58

Figure 3.12 The Flow of Events for Servlet

 TRAINING, RESEARCH AND IMPLEMENTATION

 59

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

59

3.3.4 The Package Structure

First, a package structure, shared between the student and his partner, was formed. This

package structure was used in the servlet to contain the information regarding the print

options. Each of the work-package is a java sub-package. The package structure made

use of an abstract class Property, and follow by four other subclasses, which inherit the

methods and attributes of the super class. A model of the package structure shown in

Figure 3.13 was drawn using the Unified Modeling Language (UML).

Figure 3.13 The Package Structure

 TRAINING, RESEARCH AND IMPLEMENTATION

 60

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

60

First, an object by the name of properties can be created as an instance of the Property.

This is done using the command below:

The student can create as many instances of Property as he like. However, an array of

Property was created in this case.

3.3.4.1 Implementation of the Class Attributes and Abstract Methods

This Property class will have two main attributes, which will be used by the rest of the

subclasses. The first attribute is the Caption, which contains the text displayed in the

dialog box. The second attribute is the ErrorMessage, which ensures that the error

message displayed when the user is entering wrong information. Other than these two

attributes, there are four methods required by the subclasses (Refer to Figure 3.14a) as

follows:

Figure 3.14a Class Property

Property [] properties = new Property ();

 TRAINING, RESEARCH AND IMPLEMENTATION

 61

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

61

• String tohtml ()

This method determines the type of presentation the object belongs to and creates

the HTML form for that object. It returns a string containing the HTML form. For

Example:

The above sentence will create a string with the html form of the object, and

return to the servlet program.

• boolean validation (String)

This method accepts a string from the program, checks the value of the string and

returns a TRUE if the value of the string is valid. Otherwise, it returns FALSE .

• void setInitialValue (String)

This method accepts a string from the program and sets the string as the initial

value. Different classes will set the initial value for the different attributes. For

example, the class TextField will set the initial value for the text in the text area.

• String [] getObjectName ()

This method returns an array of the name of the object to the servlet.

Properties[0].tohtml()

 TRAINING, RESEARCH AND IMPLEMENTATION

 62

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

62

3.3.4.2 The Subclasses

The package structure consists of four subclasses that extend the super class. The four

subclasses inherit the properties of the super class, and at the same time, define their own

attributes. However, because they extend from an abstract super class, they are not

allowed to define their own methods. Refer to Figure 3.14b to Figure 3.14e for the

individual graphical class representation.

• Public class Boolean extends Property

Attribute: choice (Boolean)

Figure 3.14b Class Boolean

This class has a single attribute, choice, which define the initial state of the

Boolean object. An object under the Boolean class can only have an initial value

of either true or false. An example of a print option under Boolean is whether the

print document is to be laminated. The choice is only true or false.

 TRAINING, RESEARCH AND IMPLEMENTATION

 63

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

63

• Public class Enumeration extends Property

Attributes: selection [] (String)

MultiSelection (Boolean)

Figure 3.14c Class Enumeration

Attribute selection [] contains all the possible choices the user can have. The

other attribute, multiSelection, defines whether a user can choose more than one

item. An example of a print option under Enumeration is shown below:

Note that in certain cases, the user may be allowed more than one option, and in

other cases, the user is only allowed to choose one.

Paper Size: 1) A3
 2) A4
 3) Letters

 4) B3Envelope

 TRAINING, RESEARCH AND IMPLEMENTATION

 64

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

64

• Public class Range extends Property

Attribute: range [][] (Double)

Figure 3.14d Class Range

This is a double array whereby the first level array defines the number of range

the object can have, and the second level array consists of the minimum and

maximum values of each range.

For example:

The attribute in this example consists of two ranges;

The first one is from 10 to 20, while the second one is from 20 to 30. An example

of when a range should be used for print option is shown below:

Range [0][0] = 10; Range [0][1] = 20;

Range [1][0] = 20; Range [1][1] = 30;

Cost Budget: 1) $100 to $500
 2) $501 to $800

 3) $801 to $1000
 4) $1001 to $5000

 TRAINING, RESEARCH AND IMPLEMENTATION

 65

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

65

• Public class TextField extends Property

Attributes: maxLength (integer)

 text (String)

 numeric (Boolean)

Figure 3.14e Class TextField

This class consists of three different attributes. The first attribute, maxLength,

defines the maximum number of characters that can enter into the text field. The

second attribute, text, is the initial text that will appear in the text field. The last

attribute, numeric, tells the program whether the text field should allow only

numbers, or both numbers and characters.

 TRAINING, RESEARCH AND IMPLEMENTATION

 66

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

66

3.3.5 The New Package Structure

This new package structure was required because the servlet had to send the finalized

version of the choices made by the user to the Print Service Provide (PSP). This was a

much simpler structure, and does not require the use of an abstract class. Figure 3.15

below shows the simple layout for the new package structure.

Figure 3.15 The New Package Structure

The public class, Summary, consists of only two attributes and two methods. It does not

have any subclass that extends it. The first attribute, caption, contains the name of the

object that appears on the interface, while the other attribute, value, contains the value of

the object.

 TRAINING, RESEARCH AND IMPLEMENTATION

 67

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

67

The two methods, getSummaryCaption () and getSummaryValue (), enable the servlet

to get the caption and value of the object respectively.

With this simple package structure, the servlet can easily pass the information to the

Print Service Provider (PSP) involved.

3.3.6 Implementation of The Servlet Code

After the two packages structure have been created, the servlet can easily use the class

attributes and abstract methods defined in the package structure to perform the required

functions. As mentioned before, the student and his partner wrote the servlet code. His

partner created an object, and then used the constructor for the abstract class Property

(refer to the section on the Package Structure) to initialize the initial values for all the

print options. The object can either be a TextField, Boolean, Range or Enumeration. An

example of a program, which created 4 different objects, is shown below.

Property [] properties = new Property ();

Properties [0] = new TextField ("Name", 30, "Ivan Low ", false);
Properties [1] = new Enumeration ("Color", string0, false);
Properties [2] = new Range ("Price Range", newRange1);
Properties [3] = new Boolean ("Lamination", false);

 TRAINING, RESEARCH AND IMPLEMENTATION

 68

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

68

After the student’s partner initialized the object properties with all the available print

options from the Print Service Provider (PSP), the student then proceed on to determine

the type of structure to use for displaying the print options. This is being done in the

package structure itself. All the servlet has to do is to call the method tohtml(), which is

an abstract method defined in the abstract class Property. This returns a string, which

contains all the HTML form of the interface of the print option, and the servlet can just

send this string to the browser, which will then display the interface.

The servlet will then wait for the user to activate itself again by clicking the Submit

button. Based on the data given by the user, the servlet then call the method validation()

to validate the data. When all the data are validated, the program then use the method

setInitialValue() to set the initial value of each object, and display the final data

provided by the user on the browser. The servlet, at the same time, creates an object of

the class Summary (refer to the new package structure) and sends it to the Print Service

Provider (PSP).

 TRAINING, RESEARCH AND IMPLEMENTATION

 69

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

69

3.3.7 Problems and Difficulties Encountered

The main difficulty the student encountered was the designing stage of the project. The

student and his partner had to design a package structure, which would be used by both of

them on different machines. The package consisted of an abstract super class with four

subclasses that implemented the abstract methods defined in the superclass. The main

problem was that the servlet had to convert the object defined as either one of the

subclasses, into an Html format. However, the four subclasses accepted different format

of arguments, it can be a string, string array or even Boolean, float and double. The

problem was how to implement the abstract method if all the subclasses used different

argument formats. This problem was resolved by implementing a new abstract method

toHtml() within the package structure, to convert the object to Html format within the

package structure, and not in the servlet code. The servlet just have to call the abstract

method to get the Html format. This was a good advice given by the student’s supervisor,

Mr. Tom Gardner, who again introduced the concept of Object Oriented Programming to

the student.

Other problems encountered by the student included the validation of data, creating a new

object in the new Package Structure described earlier on, and the presentation of the

interface. However, all these problems are resolved under the efforts of the student and

with the help of the supervisor.

 TRAINING, RESEARCH AND IMPLEMENTATION

 70

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

70

3.3.8 Conclusion and Recommendation

At this point of time, the student had already completed the main part of the project, with

knowledge of the following:

• Java

• HTML

• Client/Server Computing (servlet)

The design and implementation of the two package structures allowed the student to once

again, understand and experience the advantages of using Object Oriented Programming.

The student began by writing the package structure using object, classes and other

Object-Oriented concepts. But the implementation of the program still consists of both

the knowledge of Function Oriented and Object Oriented. The student later discovered

the difficulties of not implementing the whole structure using the Object-Oriented

concept learnt earlier on, and thus went on to rebuild the package structure. This was in

effect, learning from mistakes, without which the student would never improve.

The project however, may be further improved with the use of the Extensible Markup

Language (XML) and the transformational language XSL to transform it into a HTML

document. This will be discussed in the later part of the chapter.

 TRAINING, RESEARCH AND IMPLEMENTATION

 71

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

71

3.4.1 What is XML?

XML is a subset of the Standard Generalized Markup Language (SGML) defined in

ISO standard 8879:1986 that was designed to make it convenient to interchange

structured documents over the Internet. XML files always clearly mark the start and end

of each of the logical parts (called elements) of an interchanged document occurring.

XML restricts the use of SGML constructs to ensure that fallback options are available

when access to certain components of the document is not currently possible over the

Internet. It also defines how Internet Uniform Resource Locators can be used to identify

component parts of XML data Streams.

Reference on XML: http://www.oasis-open.org/cover/xml.html

3.4 Introduction to the Extensible Markup Language (XML)

 TRAINING, RESEARCH AND IMPLEMENTATION

 72

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

72

3.4.2 What’s Wrong with HTML

Originally, the intention of using HTML was that the elements should be used to mark up

information according to their meaning, without regards as to how this would actually be

rendered in a browser. In other words, the title, main header, emphasized text and the

contact information of the author should be placed inside the elements TITLE, H1, EM

(or possibly STRONG) and ADDRESS. To use FONT or I and similar elements to get a

nice layout makes it a lot more difficult to present the information to the best possible

effect regardless of the user's environment. Processing the information consequently

becomes difficult (or even impossible).

In addition, this is not the only problem. If one wants to mark up his information very

precisely according to its meaning, one will need a lot of elements that are not available

in HTML. Catering to the needs of people from all trades will obviously mean requiring

an enormous amount of elements, which is a horror for both developers and users.

Another problem is that HTML has limited internal structure, which means that one can

easily write valid HTML that does not make sense at all when he considers the semantics

of the elements. This is because (among other things) the contents of BODY have been

defined so that one can place the elements allowed there in any order as he pleased. This

suggests that one does not need a H1 with the H2s inside it and H3s inside the H2s.

(Think of H1 as a book title, H2 as part title and H3 as chapter title.) HTML should

ideally be written this way, but the HTML standard does not require it.

 TRAINING, RESEARCH AND IMPLEMENTATION

 73

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

73

3.4.3 Replacing HTML with XML

The plan now is to use the eXtensible Markup Language, XML to represent the

information instead of using HTML. In the package structure defined earlier on, there is

an abstract method toHTML (), which is implemented by all the subclasses. The idea

now is to define a new abstract method, toXML (), which will change the object into its

respective XML form (instead of HTML form). XSL, a transformational language, will

then be used to transform the XML document into an HTML document, either in the

servlet or in the client.

One might probably ask: Why is there a need to use XML since HTML can do the job

too? The HTML format only allowed the document to be displayed on the browser. It has

limited elements that can be used for other purposes. The XML, on the other hand,

allowed more structure to be introduced onto the document. It can be used as a document

to pass information to other programs. HTML is good when the server needs to send

information to be displayed on the web browser. However, when the receiver is not a web

browser but some other programs, e.g. service or machine, it may not recognize HTML.

Thus, XML is used as a common language that can be sent to anybody who is at the

receiving end. If the data needs to be displayed on the web browser, the XML document

can be conveniently converted into a HTML document. The Internet Explorer 5, for

example, acts as a XSL converter processor.

 TRAINING, RESEARCH AND IMPLEMENTATION

 74

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

74

3.4.4 XSL: Converting XML to HTML

XSL is a transformational language that transforms a document written in one language

(XML) into a document of another language (e.g. HTML). The transformation requires a

XML document and a XSL document, which consists of a template that defines the

behavior of the elements in the XML document. To create a HTML document, all the

program has to do is to send the XML document to a browser, for example the Internet

Explorer 5, and indicate where the XSL document is. A HTML document will then be

created based on the XML document, and the predefined XSL document. Figure 3.16

illustrates this process.

Figure 3.16 The XSL processor

 TRAINING, RESEARCH AND IMPLEMENTATION

 75

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

75

Figure 3.17 and 3.18 below show a sample of the document written in XML and XSL

respectively.

Figure 3.17 A Sample of XML Document

Figure 3.18 A Sample of XSL Document

 TRAINING, RESEARCH AND IMPLEMENTATION

 76

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

76

3.4.5 The Implementation of XML

The student, unfortunately, is still at the design stage of this part of the project. The idea

of using XML to replace the HTML has not been implemented at the time of submission

of this report. It should, however, be implemented before the end of the attachment. This

would then fulfill the objective of the project, meeting the requirements of the

attachment.

3.4.6 Problems Encountered and Conclusion

The most serious problem that the student faced was time constraint. The student was

expected to complete the whole project before the end of the attachment. However, due to

the early submission of the report, the implementation of the XML and the results

observed thereafter by the student would not be recorded in this report. Nevertheless, the

student had indeed successfully implemented the last part of the project and benefited

from this enriching attachment.

 THE ATTACHMENT CONCLUSION

 77

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

77

Chapter Four

The Attachment Conclusion

The overseas industrial attachment, which lasted for nearly five months, had come to an

end. The program had greatly enhanced the student’s knowledge in programming and

improved his computing skills.

The following sections discuss the conclusion of the attachment, as well as the

experiences and benefits gained by the student.

 THE ATTACHMENT CONCLUSION

 78

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

78

The E-service problem set, a step-by-step approach used by the student, has ensured that

the student acquired enough knowledge required in various aspects for all the stages,

before proceeding on. During the 5 months attachment in Hewlett-Packard Lab, the

student had done the following:

• Designed a business model (represented in XML) that enabled information in the

form of XML documents to be shared between businesses.

• Implemented a GUI that allowed a user to view and modify the information in an

XML document. XSL was used to transform XML into HTML for display in a

browser.

• Wrote a Java Servlet code to handle the file access application required by the

web client. These are application that cannot be handled by a Java Applet.

• Implemented the Text Editor Interface (client) using HTML, a straightforward

language used to display certain interface program onto a web browser.

• Designed a class diagram using the Unified Modeling Language (UML) that

defines the classes and their behavior.

• Created a Text Editor Interface Application using the Java Applet. This allows

greater flexibility than HTML in terms of the layout and functionality.

Conclusion

 THE ATTACHMENT CONCLUSION

 79

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

79

Having said that, it was nevertheless difficult to master the Object Oriented paradigm

within a time frame of 5 months and use the new language to implement an application

that was very different from the usual single-user program. However, due to the

determination of the student, and under the guidance of the supervisor, what seemed

initially daunting soon became manageable. The student had not only picked up the skill

of writing program using the object oriented concept, but also the knowledge to write a

servlet program to handle the events initiated by the client applet application. The

student is now capable of using the Unified Modeling Language (UML) to represent the

class diagrams that define the classes and their structure and behavior, dependency,

association, and inheritance relationships.

The student is also able to understand the concept of e-service, and how the e-services

can interact to the users using e-speak. By the end of the attachment, the student will be

able to use the eXtensive Markup Language (XML) to replace HTML, in representing the

information that needed to be sent to any user, programs, or company. The eXtensible

Stylesheet Language (XSL) will then be used to determine the display and layout of the

XML documents, which will be displayed on the web-browser.

Throughout the ‘Baskerville Project’ development, the student had learned valuable

lessons regarding Windows application programming. Having the knowledge of Java,

HTML, XML, XSL, and UML proved to be immensely useful. This had also built up the

student’s confidence in dealing with feature-rich, user-friendly Windows applications.

 THE ATTACHMENT CONCLUSION

 80

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

80

The student would like to thank his school for the chance to work with the renowned

Hewlett-Packard Lab in Bristol. The student's involvement in the project and department

meetings has indeed allowed him to gain valuable insight. The student was introduced to

the latest technologies used in the Laboratory especially. The development of the

‘Baskerville Project’ was a totally new concept, making use of different scenarios, actors,

use-cases and domain models that the student had never been exposed to before.

In many more ways than can be listed here, the IA program has enabled the student to

understand the wonders/usefulness of computer engineering, its nature as an academic

endeavour and various applications in reality.

Other Experiences Gained

 BIBLIOGRAPHY AND REFERENCES

 81

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

81

Chapter Five

Bibliography and References

5.1 Java and Object Oriented Programming

• Java in a Nutshell, a Desktop Quick Reference by David Flanagan

• Java Examples in a Nutshell, a Tutorial Companion to Java in a Nutshell, by

David Flanagan

• Thinking in Java

http://bruceeckel.com

• Sun’s Java Tutorial

http://java.sun.com

http://java.sun.com/docs/books/tutorial

• Sun’s Java API Index

http://java.sun.com/products/jdk/1.2/docs/api/index.html

• Sun’s Java Web Server API Index

http://jserv.java.sun.com/products/java-

server/documentation/webserver1.1/servlets/servlet_tutorial.html

• O’REILLY’s Java Servlet Programming

http://www.oreilly.com/catalog/jservlet/chapter/ch03.html

 BIBLIOGRAPHY AND REFERENCES

 82

NANYANG TECHNOLOGICAL UNIVERSITY
OVERSEAS INDUSTRIAL ATTACHMENT REPORT

82

5.2 HTML, XML and XSL

• The XML Cover Page

http://www.oasis-open.org/cover/xml.html

• A Technical Introduced to XML

http://nwalsh.com/docs/articles/xml/

• XML Tutorial

http://msdn.microsoft.com/xml/tutorial/default.asp

• Using the XSL Processor

http://msdn.microsoft.com/xml/xslguide/transform-overview.asp

• Introduction to Web Design

http://wdvl.internet.com/Authoring/HTML/Tutorial/toc.html

5.3 E-service and E-speak

• E-speak

http://www.e-speak.net

• E-speak Programmers guide and API Index

http://www.e-speak.net/library/pdfs/Jesi-PgmGuide.pdf

5.4 Unified Modeling Language

• Unified Modeling Language Resources Center

http://www.rational.com/uml/index.jtmpl

