

Uniform W eb Pre sence Arch ite cture
for Pe ople , Place s, and Th ings

Ph ilippe Debaty, Debb ie Casw e ll
Inte rn e t and Mobile Syste m s Laboratory
H P Laboratorie s Palo Alto
H PL-2000-67
June , 2000

Cooltow n,
W e b pre se n ce ,
location,
use r conte xt,
pe rvasive
com puting

Th e Cooltow n vision is th at pe ople , place s, and th ings h ave a
w e b re pre se n tation and th at m any use ful se rvice s can b e
offe red by cre ating a tigh te r link b etw e e n th e re al w orld e n tity
and its virtual re pre se n tation .

 W e d efined a h oriz ontal and uniform softw are arch ite cture for
building a W e b pre se n ce for pe ople , place s and th ings. Th is
arch ite cture e n able s th e dynam ic ge n e ration of W e b conte n ts
based on th e us er conte xt (location, ide n tity, de vice
capabilitie s), on h is se curity pe rm ission, and on th e
re lationsh ips w ith oth e r W e b pre se n ce s.

 Our im ple m e n tation of th is arch ite cture is portable e n ough to
b e e m bedded in th e e n tity th at th e W e b pre se n ce d e scrib e but
also scalable e n ough to support m ultiple W e b pre se n ce s
h osting. W e focused on m ak ing th e cre ation of a W e b pre se n ce
e asy for non -program m e rs.

 Copyrigh t H e w le tt-Pack ard Com pany 2000

Internal Accession Date Only

Uniform Web Presence Architecture for People,
Places, and Things
Philippe Debaty and Debbie Caswell

Internet & Mobile Systems Lab

Abstract

The Cooltown vision is that people, places, and things have a web representation and that many useful
services can be offered by creating a tighter link between the real world entity and its virtual
representation.
We defined a horizontal and uniform software architecture for building a Web presence for people,
places and things. This architecture enables the dynamic generation of Web contents based on the user
context (location, identity, device capabilities), on his security permissions, and on the relationships with
other Web presences.
Our implementation of this architecture is portable enough to be embedded in the entity that the Web
presence describe but also scalable enough to support multiple Web presences hosting. We focused on
making the creation of a Web presence easy for non-programmers.

1 Introduction
In Cooltown [1], we believe that the future consists of nomadic people carrying personal
communication and web browsing devices interacting with services that are location specific and
customized to the user. We believe that unlike other attempts to make computing ubiquitous and
pervasive, the web-based approach to communication will be adopted more readily.

The Cooltown vision is that people, places, and things have a web representation and that many
useful services can be offered by creating a tighter link between the real world entity and its
virtual representation. One of the challenges to making this vision real is how to enable non-
programmers to build a web presence for real world entities without requiring programming
expertise. Many of the systems that have come before us have been handcrafted by expert
programmers. These systems would not easily be created by real people. We are attempting to
meet this challenge by creating a general Web presence architecture together with web authoring
tools to enable the easy creation of web-present entities.

This paper describes the kinds of useful services that can be provided by bridging the physical
and virtual worlds. Armed with this motivation, we identify requirements for the general
infrastructure. Next we present the architecture and implementation for the infrastructure under
development. We conclude with a discussion of related work, our future goals, and conclusions.

2 Definitions
Here is a short definition of the terms used in this paper:

• Entity: an entity is a person a place or a thing in the physical world. For instance, a book
is a thing and therefore an entity. A conference room is a place and therefore an entity.

• Web presence: a Web presence is a Web representation of one entity. It mainly consists
of a set of Web pages describing the entity and accessible through a URL. This URL can
be obtained when in the physical presence of the entity. A more detailed architecture of a
Web presence is presented in section 4. One entity can have several web presences. An
entity that has at least one web presence is said to be ‘Web present’.

 1

3 Motivation and requirements
In this section, we describe the goals we want to achieve with our Web presence architecture and
our motivations.

As we said in the introduction, we believe in providing web presence for people, places and
things. We imagine the following scenario to motivate the need for these web presences:

A patron enters into an art museum carrying a handheld personal communication device with
embedded web browser. The museum has web pages corresponding to each room of the
museum which becomes available automatically upon entering the room. Individual paintings
also have a web presence. By approaching a painting, the web page for that painting becomes
available automatically. The patron visits her favorite painting, and selects the poster-making
service available through the web page. A life-sized poster is created for her in the gift-shop
while she continues to browse the collection, available for her to pick up upon leaving.

There are many scenarios we can construct of the convenient new world we envision, but there
are aspects to this scenario that should be noticed:

3.1 User context consideration
Services such as printing, shopping, and choosing one’s next activity can be made more relevant
by connecting the services to the user’s location context. Shopping can be made more
convenient by having an automatic representation of the user’s identity, and yet other services
such as learning the length of the line at the post office could be offered to an anonymous user.

Today, the majority of web pages that represent real or physical entities simply describe the
entity. For example, many retail stores have a web page that describes the merchandise they
offer, directions to the store, and store hours. Others might also provide easy email access for
asking questions, and still others might offer on-line ordering.

But the user context is rarely taken into account. For instance, currently, there is no system
support to benefit from being physically present in a place and on-line at the same time. There is
no content adaptation for a user carrying a device with poor browsing capabilities. We believe
that there is great value in providing a dynamic, interactive, and custom web representation for a
physical entity. It is the bridging of the virtual and physical worlds that makes this vision
compelling.

A requirement for our architecture is therefore to support the generation of dynamic contents
based on the user context including location, identity and device capability.

3.2 Security
Let’s come back to our scenario:

While the patron is visiting the gallery, the manager of the museum wants to know how many
customers are currently in the place. Using a Web browser on his PC, he accesses the Web
presence of the museum. The service he wants to access is restricted and only accessible to him.
After authorizing his identity, he can see a map of the museum with the repartition of customers
in each room updated in real time as the customers move around. Next, he wants to know how
many paintings from Van Gogh are in the museum and where they are.

The patron’s husband is at home and he wants to reach his wife. Using the Web browser on his
Web TV, he accesses the Web presence of his wife. She has granted him special access on her
Web presence and he can therefore see that she is currently in the museum. He can also see that
she is carrying her cell phone but she switched it off. He can now choose between leaving a

 2

message on her cell phone or follow the link to the museum and call there to reach her if it is an
emergency.

In this part of the scenario, we can see that some of the contents of a web presence are only
accessible to authorized users. For instance, only the husband of the patron can see where she
currently is and only the manager of the museum can access the repartition map of the museum.
These contents and services are hidden for other users.

A web presence must enable the definition and the enforcement of security policies and must be
able to dynamically generate contents based on the user permissions.

3.3 Dynamic relationships between Web presence
Another element of the previous scenario that should be noticed is that there is a great value in
enabling relationships between web presences. These relationships can be:

• If the entity is a Place, its related entities are the ones located inside the place. For
instance, the devices and persons currently staying inside the physical place. Places can
contain places.

• If the entity is a Person, its related entities are the things carried by the person or close to
the person, the place where the person is currently located and possibly the directly
surrounding persons.

• If the entity is a Thing, its related entities are the person who carries it and the place
where it is located.

A Web presence needs to record a link to its related Web presences to provide information about
them when needed.

For instance, when a patron enters into the museum, the Web presence of the museum is
automatically updated and linked to the Web presence of the patron. This supports the ability to
get the count of the number of patrons. In the same way, the Web presence of the patron is
updated and shows where the patron currently is. This supports the patron’s husband finding out
where she is. The patron Web presence could as well be automatically linked to the Web
presence of the devices (cell phone, Handheld device…) she is currently carrying. And
analogously, the museum Web presence could be linked to the web present devices or things
(printers, computers, paintings…) located inside the museum.

Once those links are created, the Web presence can use them to present real time information on
the related entities like the map displaying the customers in the museum. Moreover, it is very
useful to enable arbitrary queries to the database of related entities. For instance, the manager of
the museum wanted to learn about the Van Gogh painting of the collection.

Our architecture must enable the automatic recording and updating of these relationships. It
must also support arbitrary queries on these relationships and enable the generation of dynamic
contents based on these relationships.

3.4 Additional requirements

• A web presence must be accessible by any kind of HTTP client including but not limited
to a Web browser.

• A web presence infrastructure must support the easy creation of a web presence for non-
programmers. Graphic designers or web masters should be able to create a web presence
using off-the-shelf web authoring tools.

 3

• A web presence infrastructure must support interactions between heterogeneous web
presences. A lot of Web pages already existing on the Web describe an entity.
Interactions between the dynamic Web presence that we describe in section 4 and these
already existing Web pages must be supported.

4 Architecture
In this section, we present a proposed architecture and mechanisms for a web presence for a
person, a place or a thing.

4.1 Diagram
Figure 1 shows the architectural diagram that we will describe in this section.

4.2 Overview
As presented in section 3, we want to generate dynamic contents based on the user context,
security policy, and the relationships with other web presences. We also want the creation of the
dynamic contents as easy as possible. These requirements lead us to the use of dynamic
generation technologies based on the Microsoft Active Server Page(ASP) or Java Server Page
(JSP) model. These technologies consist in combining static HTML code with script commands
that are processed on the server side and that can generate dynamic HTML. The scripting
language used in these technologies is designed to be simple and therefore the dynamic content
generation is accessible to Web designers and non-programmers.

Dynamic parser

HTML
templates

XML
templates

Client web
browser

Client
application

Dynamic
HTML

Dynamic
XML

HTTP GET

HTTP GET

Static
information

Directory

Client context
and identity

Figure 1: Component architecture for a Web presence.

 4

To simplify even more the task of the Web presence creator, we chose to create our own
dynamic generation system, called the Dynamic Parser, based on the ASP or JSP model.

The Dynamic Parser is specialized for our needs (generation based on the user context, access
control, and relationships with other web presences). It is even simpler than ASP and JSP
because we don’t need to provide all the functionalities that those technologies provide. The set
of script commands that we provide is simpler and smaller but sufficient for our needs.

Moreover, it can also be used for dynamic XML generation by combing static XML code with
the same script commands used for HTML generation. The XML format is particularly useful
for sending raw data to a client application that doesn’t need the presentation features of HTML.
XML is actually the format that we chose to represent relationships between Web presences (see
section 4.3.4).

XML descriptions and HTML pages are treated the same way in our architecture. To avoid the
repetition of information in both formats, common information can be stored in a component
called Static Information (see section 4.3.5). Eventually, when XML and XSL will be commonly
supported by both Web browsers and authoring tools, HTML pages will disappear and only the
XML description generation will remain.

The Dynamic Parser (see section 4.3.6) is the central component of our architecture. It generates
the contents on the fly based on the HTML or XML templates (combination of HTML or XML
with script commands. See section 4.3.2 and 4.3.3) and on information coming from the
following other components:

• The Directory, which is the component that handles the automatic storage and updating
of the relationships with other Web presences. See section 4.3.4 for more details

• The Client context and identity, which is sent within the HTTP get request of the client.
See section 4.3.1 for more details.

• The Static information component, which handles security policies configuration and
static information about the entity common to both HTML and XML pages. See section
0 for more details.

4.3 Components of the architecture
4.3.1 Client context and identity

Information about the client’s context must be presented with each URL accessed using cookie
mechanisms. This process is more described in [2]. By context we mean the user’s identity,
location, and the capability of the browsing device. This information is used by the dynamic
parser (cf. 4.3.6) to create a customized view of the entity for this client.

4.3.2 HTML templates

An HTML template contains HTML code combined with script commands that are processed by
the Dynamic parser when a query is made. A dynamic and custom HTML page is then
generated.

These HTML pages are accessible by a client using simple URLs. Actually, the URLs do not
reference directly a static HTML page but a method of the Dynamic parser that will dynamically
generate this HTML page. Only the URL referencing the home page actually needs to be
provided. The client can then access the other web pages by following links in this home page.

 5

4.3.3 XML templates

The XML descriptions of an entity are used by a client application or another entity’s web
presence to get raw information about an entity without the presentation features of the HTML
format. An XML template contains XML code combined with the same script commands used
for the HTML templates.

The XML descriptions are also accessed by a client using URLs. The URLs reference the
method of the dynamic parser that will dynamically generate them.

If there are several XML descriptions for a same entity, one of them must be the default XML
description. The others can be more or less detailed ones depending on the needs of the client.
The client can choose among those different XML descriptions by electing the desired URL in
the interface of the Web presence. For instance, there could be one XML description called
‘default’, another one called ‘basic’ and another one called ‘full’.

The URL referencing the default XML description of the Web presence is essential in our
architecture because it is used as the unique key to reference this Web presence in interactions
with other Web presence (see section 4.3.4).

The XML descriptions must contain some well-known attributes that will be commonly
recognized by every client applications and especially in interactions with other Web presences.
It can also contain specific attributes that will be used in arbitrary queries (see section 4.3.4.2) or
specific client applications.

4.3.4 Directory

The Directory is the component that records relationships with other Web presences. Entities
related to the current entity are called ‘resources’ of the current entity.

The directory of an entity is just a list of keys referencing each of its resources (the key of an
entity is the URL referencing its default XML description as seen in 4.3.3). Using the key of a
resource, the Web presence can retrieve all the useful information concerning this resource. This
concept of a unique key referencing the rest of the data is analog to the primary key concept in a
relational database.

For efficiency purposes, the Directory also caches the XML description of all the resources. The
queries made on the resources (see section 4.3.4.2) are then much faster because the data doesn’t
need to be retrieved from the network. This caching is analog to the indexing in relational
databases in the sense that it increases the efficiency of queries.

4.3.4.1 Registration

The directory component also provides web accessible methods to register and unregister an
entity as a resource. An entity needs to register as a resource of another entity when enters into a
relationship with the other entity. For instance, let us consider the scenario of a Web present
person entering into a Web present room:

The person may just want to access information about the place or they may also want to
become a resource for the place. In the first case, the person just needs to get the URL for the
Web pages of the place and access it.

In the second case, the person’s Web presence needs to be registered in the directory of the
place. This is done using the URL for the register method of the place’s directory. This method
adds the person’s Web presence in the place’s directory and also adds the place’s Web presence
in the person’s directory. At the end of this process, the person is in the place’s directory and the
place is in the person’s directory.

 6

The calling of the registration method can be manual but there is a great value in enabling
automatic registration by using external automatic discovery mechanisms. This is more
described in [2].

4.3.4.2 Queries

Another functionality of the directory is to provide web accessible methods to make arbitrary
queries into the resources of the entity. For example, an administrator of a place may want to
have a list of all the devices of a specified type that are present in the place, accomplished by
querying the place’s directory. Those methods could also be used to get the place where a person
is currently located by quering the person’s directory.

4.3.5 Static Information

Some information about an entity is common for both XML descriptions and HTML pages. For
instance it can be the name of the entity, its general description, its type (people, place or
thing)... This information is stored in the Static information component. The script commands
integrated in the XML or HTML templates can then retrieve this information and generates
dynamic contents based on it.

The Static information component also handles the security policy configuration. See section 4.4
for more details.

4.3.6 Dynamic parser

This component enables to dynamically generates the HTML pages and the XML descriptions
of the entity. This gives the ability to integrate the contents of the directory of the entity in the
Web pages or in its XML descriptions. It also permits application of security policies on what is
output in the Web pages or in the XML descriptions.

Here is how it works:

• A client web browser or a client application makes a HTTP request to the Dynamic
parser. In the request, the client specifies as a parameter, the Web page or the XML
description he is interested in. The request also contains the client context and identity.

• The Dynamic Parser picks the corresponding Web page template or XML template.

• The Dynamic parser processes the template and generates a resulting page. The script
commands in the template can for instance query the Directory or static information on
the entity. They can also specify a security policy depending on the user context or
identity.

• The resulting page is sent back to the client browser or to the client application.

4.4 Security
There are many security checkpoints needed in our infrastructure. The security component is not
represented in our diagram because it is closely integrated with it at different points. This section
describes the need for access control, privacy, integrity, non-reputability.

There are several roles that users play with respect to a Web presence. There is an administrator
role that is allowed to create HTML and XML template, establish security policy, and manually
enter resources into the entity’s directory. There are users who may choose to register as a
resource with the entity’s directory (Resource role), and there are users who are viewers of an
entity’s web presence. These different roles require different security mechanisms.

 7

The access control policy specified by an administrator determines which consumers may view
an entity’s web page or XML description, and in addition may specify which parts of the web
page or of the XML description may be viewed.

To accomplish this access control policy, the administrator can define different groups of users
that will have different permissions. For instance, one group can be ‘Family member’, another
can be ‘HP employee’, another can be ‘Administrator’... Then the administrator can associate
user credentials to each group.

Then, in the HTML or XML templates, there can be script commands specifying which part of
the HTML or XML page is shown to which group of users.

The configuration of the access control policy is stored in the Static Information component.

Another policy decision the administrator makes is whether anonymous access is permitted by
viewers. If anonymous access is allowed, then the anonymous view can differ from the
authenticated view using the dynamic parsing mechanisms. The anonymous view can present
just the information that anonymous viewers are permitted to see. In that case, it is
recommended that the Web page provide a log in button to allow viewers to authenticate
themselves and thus gain access to the additional information in the web page. Typically, if
anonymous access is allowed, the URL that references the anonymous content is considered to
be the URL of the entity. For example, it is the anonymous URL that will be obtained in the
physical presence of the entity.

Additional security can be obtained by requiring the Web presence to only accept HTTPS
requests (Secure Sockets Layer [12]). By using at least server authentication, a secret key is
negotiated and all communication is encrypted in this key. Encrypting the communication
ensures privacy which is especially important in a wireless environment. Furthermore, it ensures
that any tampering with the communication will be detected. If mutual client/server
authentication is used, then we achieve non-repudiation as well. In a highly secured environment
where trust is of paramount importance, a user’s identity implies both privilege and
responsibility. Special privileges may be granted certain user identities, and those users are also
liable for damage done as a result of receiving those privileges. For example, a school place
might grant the teacher the ability to change students’ grades. Now, imagine teacher gives away
her credentials to her students who can now masquerade as teacher and change their own or
other students’ grades. The security breach would be traceable to the teacher, and the teacher
would be liable for any damages.

In addition, there is another kind of privacy that we need to consider: the privacy of relationships
among entities. In other words, which entities are allowed to know about a relationship among
other entities? For example, are other users allowed to know the phone number of the cell phone
I carry? Are they allowed to contact me on that cell phone even if the system hides the phone
number? Does a person entering an adult bookstore with web presence want other people to
know he/she is there?

The generic infrastructure provides the ability of a Web presence to permit anonymous viewers
and resources. An anonymous viewer is one that can view the entity’s web content without the
viewer’s identity being disclosed. A Web presence, however, will choose to use this feature or
not as a matter of policy.

We also provide the ability of resources to disguise their real identity. A resource is registered
into another entity’s directory for the purpose of allowing interaction between the entities. As
such, the resource must provide a means of contact. However, the name associated with the
resource need not be authenticated, and thus any name can be chosen. An example of this is
how most chat rooms work today. Participants in the chat room must register their interest in

 8

participating in the discussion so that others can contact them. However, the participants are free
to choose whatever name and description of themselves they want whether it’s true or not.
Whereas the administrator for a science fiction convention place supporting an on-line chat
service might elect to allow role playing among participants, the administrator of a company’s
conference room might not elect to provide anonymity (or disguised identity).

The ability to view an entity’s content anonymously protects the privacy of the viewer. This can
be especially important to provide in a place Web presence. People entering a place might not
want others to know they are there. They need to be able to view the place’s web contents
without having to authenticate or register their presence.

Of course, the Web presence must ensure the data integrity of the directory and static
information as well.

4.5 Integration of pre-existing Web pages
One requirement for our architecture is to support the integration of already existing Web pages
describing a physical entity and providing services related to this entity. For instance, a printer
might already be described by some Web pages provided by the manufacturer of the printer. A
person might already have his personal Web pages served up by his ISP or by his company Web
server. In this case, what if this person enters in a room equipped with our Web presence
architecture and wants to become a resource of this room?

There are two solutions to this specific case that are applicable to others:

• The pre-existing personal Web page of this person can be easily moved to a server
hosting Web presences with our architecture. These Web pages will be considered by the
server as HTML templates (see 4.3.2) without script commands. A short XML template
describing the person needs to be manually created to enable interaction with other Web
presences. Later, the person can benefit from the dynamicity of our architecture by
adding script commands enabling security policies or contents generation based on user
context and relationships with other entities.

• A simple and static XML description of the person referencing his Web pages can be
manually created and served up by any Web server. When the person wants to register in
the directory of a place, he just needs to send the URL of the static XML description as
the key for his Web presence. The XML description will contain the URL of the static
HTML page.

5 Our implementation
An important point to keep in mind is that the Web presence implementation of an entity does
not need to be embedded in this physical entity. For instance, the web presence implementation
of a person does not need to be embedded in his PDA or personal computer but it could be
anywhere in the network. However, there might be advantages of embedding the Web presence
implementation in the entity itself. For instance, if the entity is a device like a printer, a Web
presence implementation embedded in the printer can have direct control over the printer.

Therefore, there are two different approaches to implement this architecture. A first solution is to
have a big server hosting and serving up a lot of Web. The second solution is to have an
implementation running only one Web presence and designed to be embedded in the physical
entity itself and therefore small, portable and easy to install. This second implementation could
then run on a simple PC or on appliances such as a printer. Both solutions can coexist. So far,

 9

we have developed a first version of the second solution and we are in the process of developing
the first one. It is planned to be ready before Fall 2000.

We use HP’s Chaiserver platform as the basis for our implementation. There are several
advantages to using this platform. The Chaiserver platform implements the web-appliance
connectivity architecture [8]. Chaiserver provides basic distributed systems services such as
security, loading, and notification. We depend heavily upon the Chai gatekeeper [3].
Developers create objects called Chailets that are invoked when they implement the object type
specified in the HTTP request. The base chailet from which all chailets are derived, provides
HTML helper functions that make it easy to create dynamic html. Finally, Chaiserver was
designed to run in web-appliances; it is portable and small. However, Chaiserver also runs on
large HPUX platforms. This means that our implementation can scale to meet the requirements
of the application.

5.1 Authoring Environment
An HTML template is authored in Front Page or any HTML authoring tool and designed to
create the content look and feel. Several alternative representations can be authored by creating
distinct sections of the web page demarked by the tag directives described below. The dynamic
parser is passed a vector of argument/value pairs that it uses to instantiate the template. If the
Authorize argument appears in the list, then the user has been authenticated. If the UserInSpace
argument appears, the user’s presence in the place has been authenticated. The UserName
argument is another built-in argument that contains the name of the credential of the user if it is
not anonymous. Other than those two built-in arguments, the rest of the arguments are those that
are passed in the query string when fetching the URL.

In addition to the argument vector, the dynamic parser can also query the directory for resources
that match certain criteria. For matching resources, the value of specified tags may be substituted
for the tag name.

The script commands in the templates are wrapped in a pair of <% and %>. Here are some
examples of script commands that can be incorporated in the HTML or XML code:

<%=host_url%> The host_url directive is replaced with the URL of the host
on which the dynamic parser runs: http://<hostname>:4242

<%=login_url%> This directive is replaced by the URL of the authorized
access point to the Dynamic Parser.

<%=logout_url%> This directive is replaced by the URL of the anonymous
access point to the Dynamic Parser.

<%=args.ArgName%> This directive is replaced by the value of the argument
ArgName.

<%if ARGUMENT then%>
body1…
<%else%>
body2…
<%/if%>

The ‘if’ statement determines which of two alternative
sections will be displayed. If the ARGUMENT specified is
present in the argument list, then body1 is displayed;
otherwise, body 2 is displayed.

<%loop getResources([type])%>
body…
<%/loop%>

This directive starts a loop. It gets the resources
corresponding to the specified type. The type parameter is
optional. If no type is specified, all resources are returned.
The body of the directive is displayed for each resource.
Within the body, the tags <%=current.TagName%> are
replaced by the corresponding tag value of the XML
description of the current resource.

<%loop getArgs([ArgName])%>
body…
<%/loop%>

This directive starts a loop. It gets the arguments received
by the Dynamic parser. If the ArgName parameter is
specified, only the arguments starting with ArgName will be

 10

returned.
The body of the directive is displayed for each argument.
Within the body, the tag <%=current.name%> is replaced
by the name of the current argument and
<%=current.value%> is replaced by the value of the current
argument.

5.2 Security
To accomplish access control security, the administrator must first set up a security realm which
is the collection of authenticated identities that will be used to specify access control policy.
This is done by using the Chai gatekeeper [3]. Next, the administrator fills out a Web presence
configuration form for configuring security policy. The administrator configures the name of the
realm created for the entity. Then, the administrator can define tag names to denote groups of
user identities that can be used in defining information hiding rules on sections of the entity’s
web page. For example, a family home Web presence might want to specify that only family
members may view the family calendar and photo album. The administrator might create a
USERISFAMILY tag and associate with it the identities of each of the family members. Then, in
the HTML template, this tag can be used to define a region of the web page that only family
members may view:

<%if USERISFAMILY then %>
link to family calendar
link to family photo album
<%/if%>

A similar mechanism for selectively disclosing sections of an XML description are possible as
well. The idea is that certain attributes of an XML description may be selectively disclosed or
hidden based on some access control policy.

6 Related Work
Because our solution is web-based, our implementation looks very much like any other web
application: it receives HTTP requests containing control information and data, processes
HTML content (sometimes with embedded commands), retrieves information from other back-
end services, and returns a dynamically generated web page. As we said earlier, we based our
solution on the ASP [4] or JSP [5] model. Other technologies like Java Servlets [6], Common
Gateway Interface [7], PHP [9] or SSI [10] enable on the fly Web page generation but these
solutions are less accessible for non-programmers.

Others have built context managers that were specific to creating Web presence for places, but
not appropriate for people or thing Web presences [11]. Spreitzer and Theimer [13] describe an
architecture to provide location based services in pervasive computing environment but their
architecture is not Web based and therefore less easily deployable and accessible to non-
programmers.

A lot of work has been done on virtual places such as the mushroom project [14]. Our work
differs from this since we focus on a tighter link between the physical reality and its Web
representation.

Rather than focusing on creating the best solution for a particular application, we have
concentrated on building general-purpose mechanisms that are common to providing web
presence for people, place, and things. In addition, we are trying to lower the barrier to adoption
of Cooltown technology by making it very easy for non-programmers to create web presence for
people, places, and things they care about. We have favored techniques supported by off-the-
shelf authoring tools.

 11

7 Conclusion and future work
We have defined both an architecture for a Web presence and a model for the interaction
mechanisms between Web presences. These elements enable us to create a Web representation
of the physical world. We also described an implementation solution for this architecture. The
work on this project is still in progress. Some security requirements described in our architecture
have not yet been implemented. An XML template authoring solution easy to use and specific to
our needs has to be found.

8 Acknowledgements
Our Dynamic Parser evolved from work originally done by Jeff Morgan. We wish to recognize
and thank our reviewers Tim Kindberg, John Barton and Gary Herman who gave us invaluable
suggestions for improvement and support. Tim Kindberg also helped us to refine this
architecture.

9 References
[1] T. Kindberg, J. Barton, J. Morgan, G. Becker, D. Caswell, P. Debaty, G. Gopal, M. Frid, V.
Krishnan, H. Morris, J. Schettino, B. Serra. People, Places, Things: Web Presence for the Real
World, http://www.cooltown.hp.com HPLabs Technical Report HPL-2000-16

[2] D. Caswell and P. Debaty, Creating a Web Representation for Places. Submitted to
HUC2000.

[3] Hewlett-Packard Chai, http://www.internetsolutions.enterprise.hp.com/chai/

[4] Microsoft Active Server Page, http://msdn.microsoft.com/workshop/server/asp/ASPover.asp

[5] JavaServer Page, http://www.javasoft.com/products/jsp/index.html.

[6] Java Servlet, http://www.javasoft.com/products/servlet/index.html

[7] Common Gateway Interface (CGI), http://web.golux.com/coar/cgi/

[8] Morgan, J. http://cooltown.hp.com/papers/jam/WebDeviceAccess.htm

[9] PHP, http://www.php.net

[10] SSI, http://www.sonic.net/~nbs/unix/www/ssi/

[11] A.K Dey, G.D. Abowd, and D. Salber. A Context-Based Infrasructure for Smart
Environments. Proceedings of the 1st International Workshop on Managing Interactions in
Smart Environments, Dublin, Ireland; Dec. 13-14, 1999.

[12] Secure Sockets Layer (SSL), http://home.netscape.com/eng/ssl3/index.html

[13] M. Spreitzer and M. Theimer . Providing location information in a ubiquitous computing
environment. In Proceedings of the 14th International Conference on Distributed Computing
Systems, pages 29-38, Poznan, Poland, June 1994.

[14] T. Kindberg, A framework for collaboration and interaction across the Internet, the
International Workshop on CSCW and the Web, Sankt Augustin, Germany, February 1996,
http://www.dcs.qmw.ac.uk/research/distrib/Mushroom/publications/CSCWWeb.html.

http://www.cooltown.hp.com/
http://www.internetsolutions.enterprise.hp.com/chai/
http://msdn.microsoft.com/workshop/server/asp/ASPover.asp
http://www.javasoft.com/products/jsp/index.html
http://www.javasoft.com/products/servlet/index.html
http://web.golux.com/coar/cgi/
http://cooltown.hp.com/papers/jam/WebDeviceAccess.htm
http://www.php.net/
http://www.sonic.net/~nbs/unix/www/ssi/
http://home.netscape.com/eng/ssl3/index.html
http://www.dcs.qmw.ac.uk/research/distrib/Mushroom/publications/CSCWWeb.html

	Introduction
	Definitions
	Motivation and requirements
	User context consideration
	Security
	Dynamic relationships between Web presence
	Additional requirements

	Architecture
	Diagram
	Overview
	Components of the architecture
	Client context and identity
	HTML templates
	XML templates
	Directory
	Registration
	Queries

	Static Information
	Dynamic parser

	Security
	Integration of pre-existing Web pages

	Our implementation
	Authoring Environment
	Security

	Related Work
	Conclusion and future work
	Acknowledgements
	References

