

Faste r MPEG-1 Laye r III Audio De coding

Scott B. Marovich
Com pute r Syste m s and Te ch nology Laboratory
H P Laboratorie s Palo Alto
H PL-2000-66
June , 2000

fast de scre te
cosine
transform ,
digital audio,
MPEG coding,
signal
proce ssing

In MPEG-1 audio de coding, a m e th od pre viously used to
acce le rate th e synth e sis subband filte r's m atrixing ope ration,
plus a ne w e xtens ion of Le e 's algorith m and oth e r
im prove m e n ts, also acce le rate s th e Laye r III IMDCT ste p.

 Copyrigh t H e w le tt-Pack ard Com pany 2000

-- --

Contents

1 Introduction . 1
2 Exploiting Trigonometic Symmetry 1
3 Fast Odd-Order IDCTs . 3
4 Windowing and Overlapped Addition 7
5 Computation Time . 8
6 Conclusions . 10
7 References . 10

List of Figures

Figure 1. Fast 3-Point IDCT Kernel 4
Figure 2. Fast 5-Point IDCT Kernel 6
Figure 3. Fast 4-Point IDCT Kernel 7

List of Tables

Table 1. Number of Arithmetic Operations 9

- i -

-- --

1 Introduction
One of the most time-consuming steps in a nai

..
ve software MPEG-1 audio data decoder [1] is the

synthesis subband filter’s matrixing operation, which can be accelerated using Konstantinides’
method [3]. Much of a Layer III decoder’s overhead after making this improvement is spent in
the preceding steps: an inverse modified discrete cosine transform (IMDCT), windowing, and
overlapped addition of successive input vectors. Using Konstantinides’ method and other
improvements, we show that these can be similarly accelerated.

Recently Sakamoto et al. [7] noticed the trigonometric symmetry underlying our Theorem 1 but
overlooked its connection to Konstantinides’ method and consequent opportunities to further
simplify IMDCTs. Liu and Lee’s simplification by permuting vector elements [5] presents a
result like Theorem 1 that also overlooks Konstantinides. Our derivation emphasizes this
result’s relation to previous work, and we pursue its consequences.

Section 2 follows Konstantinides’ procedure to show how the IMDCT can be reduced to a fast
DCT-like computation and some data copying operations. The cases of interest are 6- and 18-
point IDCTs, which can be reduced to 3- and 9-point IDCTs using Lee’s method [4], so Section
3 generalizes the latter to an odd number of points. Section 4 shows how to improve a decoder’s
windowing and overlapped addiition steps, then Section 5 analyzes our method’s performance.

2 Exploiting Trigonometic Symmetry
Konstantinides [3] used a phase-shifting permutation of input vector elements to exploit tri-
gonometric symmetry in the synthesis subband filter’s matrixing operation, showing that this
32-to-64 element matrix multiplication can be reduced to a 32-point DCT-like computation,
efficiently done using Lee’s method [4] and 32 data copying or negation operations. We follow
a similar procedure to decompose the IMDCT defined in [1] (cf . [5,7] for related results):

xi =
k =0
Σ

N /2−1
Xk cos (2i + 1 + N /2)(2k + 1)

2N
πhhh (1)

for i = 0, . . . , N −1 and N = 12 or 36.

Definition 1 . Let xk
′ be the phase-shifting permutation of xk ,

xi
′ =

IKLxi −N /4

xi +3N /4

, i = N /4, . . . , N −1

, i = 0, . . . , N /4−1
(2a)

whose inverse is:

xi =
IKLxi −3N /4

′

xi +N /4
′

, i = 3N /4, . . . , N −1

, i = 0, . . . , 3N /4−1
(2b)

1

-- --

Substituting (1) in (2a) yields:

xi
′ = −

k =0
Σ

N /2−1
Xk cos (2i + 1)(2k + 1)

2N
πhhh, i = 0, . . . , N /4−1 (3a)

xi
′ =

k =0
Σ

N /2−1
Xk cos (2i + 1)(2k + 1)

2N
πhhh, i = N /4, . . . , N −1 (3b)

Lemma 1 . For xi
′ defined in (2),

xN /2+i
′ =

IKL xN /2−1−i
′

−xN /2−1−i
′

, i = N /4, . . . , N /2−1

, i = 0, . . . , N /4−1
(4)

Proof . For i = 0, . . . , N /4−1, (3b) yields:

xN /2+i
′ =

k =0
Σ

N /2−1
Xk cos (N + 2i + 1)(2k + 1)

2N
πhhh = −

k =0
Σ

N /2−1
−1k Xk sin (2i + 1)(2k + 1)

2N
πhhh (5a)

xN /2−1−i
′ =

k =0
Σ

N /2−1
Xk cos (N − [2i + 1])(2k + 1)

2N
πhhh =

k =0
Σ

N /2−1
−1k Xk sin (2i + 1)(2k + 1)

2N
πhhh (5b)

Comparing (5a) to (5b) proves the first case of (4). For i = N /4, . . . , N /2−1, (3a) yields:

xN /2−1−i
′ = −

k =0
Σ

N /2−1
Xk cos (N −[2i +1])(2k +1)

2N
πhhh = −

k =0
Σ

N /2−1
−1k Xk sin (2i +1)(2k +1)

2N
πhhh (5c)

Comparing (5a) to (5c) proves the second case of (4). `
Lemma 1 shows that we need only evaluate (3) for i = 0, . . . , N /2−1, then do N/2 data copying
operations.

Definition 2 . Let xi
′′ invert the signs of xi

′ as:

xi
′′ =

IKL xi
′

−xi
′

, i = N /4, . . . , N /2−1

, i = 0, . . . , N /4−1
(6)

Note that (6) is its own inverse.

Lemma 2 . For xi
′′ defined in (6),

xi
′′ =

k =0
Σ

N /2−1
Xk cos (2i + 1)(2k + 1)

2N
πhhh, i = 0, . . . , N /2−1 (7)

Proof . For i = 0, . . . , N /4−1, (6) and (3a) yield:

xi
′′ = −xi

′ =
k =0
Σ

N /2−1
Xk cos (2i + 1)(2k + 1)

2N
πhhh (8a)

For i = N /4, . . . , N /2−1, (6) and (3b) yield:

2

-- --

xi
′′ = xi

′ =
k =0
Σ

N /2−1
Xk cos (2i + 1)(2k + 1)

2N
πhhh (8b)

`
Since (7) is an N/2-point DCT-like computation [2,6], Lemmas 1 and 2 establish:

Theorem 1 . Output vector x→of IMDCT (1) can be computed (within a scale factor) from the
N/2-point DCT of X

→
and N/2 data copying operations.

Like Lee [4], we convert (7) to a more easily computed form using the trigonometric identity,

2 cos (2i + 1)
2N
πhhh cos (2i + 1)(2k + 1)

2N
πhhh = cos (2i + 1)k

N
πhh + cos (2i + 1)(k + 1)

N
πhh (9)

Substituting (9) in (7) for i = 0, . . . , N /2−1 yields:

2xi
′′ cos (2i + 1)

2N
πhhh =

k =0
Σ

N /2−1
Xk cos (2i + 1)k

N
πhh +

k =0
Σ

N /2−1
Xk cos (2i + 1)(k + 1)

N
πhh (10)

Subsituting k = k ′ −1 in the second sum of (10), defining X −1 = 0, and observing that

cos (2i + 1)k
N
πhh JJk =N /2 = 0 (11)

for i = 0, . . . , N /2−1, we rewrite (10) as:

xi
′′ =

2 cos (2i + 1)
2N
πhhh

1hhhhhhhhhhhhhhh
k =0
Σ

N /2−1
(Xk −1 + Xk) cos (2i + 1)k

N
πhh, i = 0, . . . , N /2−1 (12)

Expressing (12) using Lee’s notation shows how (7) can be evaluated using his procedure:

Gi = gi = 0 (13a)

Hk = Xk −1 + Xk (13b)

hi =
k =0
Σ

N /2−1
Hk cos (2i + 1)k

N
πhh (13c)

hi
′ =

2 cos (2i + 1)
2N
πhhh

hihhhhhhhhhhhhhhh (13d)

xi
′′ = [gi +] hi

′ (13e)

3 Fast Odd-Order IDCTs
Section 2 shows that for N = 12, (1) can be reduced to a 6-point DCT-like computation and 6
data copying or negation operations. A single application of Lee’s method reduces this to two
3-point DCT-like computations of the form,

3

-- --

xi
′′ =

k =0
Σ
2

Xk cos (2i + 1)k
6
πhh (14)

which expand to:

x0
′′ = X 0 + X 1√dd3 /2 + X 2/2

x1
′′ = X 0 − X 2 (15)

x2
′′ = X 0 − X 1√dd3 /2 + X 2/2

These are efficiently evaluated using two extra variables, 2 multiplications, and 4 additions, as
shown by pseudo code in Figure 1.

T 0 := X 2/2 + X 0
T 1 := X 1√dd3 /2
x0

′′ := T 0 + T 1
x1

′′ := X 0 − X 2
x2

′′ := T 0 − T 1

Figure 1. Fast 3-Point IDCT Kernel

Section 2 shows that for N = 36, (1) can be reduced to an 18-point DCT-like computation and 18
data copying or negation operations. A single application of Lee’s method reduces this to two
9-point computations like (12)-(13), and we follow a procedure like Lee’s to decompose this
case. Suppose that (12) includes a DCT-like computation of the form,

xi
′′ =

k =0
Σ

N −1
Xk cos (2i + 1)k

2N
πhhh, i = 0, . . . , N −1 (16)

where N > 1 is odd. Collecting even- and odd-index terms, rewrite (16) as:

xi
′′ =

k =0
Σ

QN /2 P
X 2k cos (2i + 1)2k

2N
πhhh +

k =0
Σ

QN /2 P−1

X 2k +1 cos (2i + 1)(2k + 1)
2N
πhhh, i = 0, . . . , N −1

(17)

Substituting i = N −1−i′ in (16) also yields:

xN −1−i
′′ =

k =0
Σ

N −1
Xk cos (2N − [2i + 1])k

2N
πhhh =

k =0
Σ

N −1
−1kXk cos (2i + 1)k

2N
πhhh, i = 0, . . . , N −1 (18)

which can be rewritten like (16) and (17) as:

xN −1−i
′′ =

k =0
Σ

QN /2 P
X 2k cos (2i + 1)2k

2N
πhhh −

k =0
Σ

QN /2 P−1

X 2k +1 cos (2i + 1)(2k + 1)
2N
πhhh, i = 0, . . . , N −1

(19)

4

-- --

Observe that (17) and (19) can be rewritten using Lee’s notation with minor changes:

xi ′′ = gi + hi
′ , i = 0, . . . , QN /2 P−1 (20a)

x QN /2 P = g QN /2 P (20b)

xN −1−i ′′ = gi − hi
′ , i = 0, . . . , QN /2 P−1 (20c)

Gk = X 2k (20d)

gi =
k =0
Σ

QN /2 P
Gk cos (2i + 1)k

N
πhh, i = 0, . . . , QN /2 P (20e)

hi
′ =

k =0
Σ

QN /2 P−1

X 2k +1 cos (2i + 1)(2k + 1)
2N
πhhh, i = 0, . . . , QN /2 P−1 (20f)

For i = QN /2 P, (20e) reduces to:

g QN /2 P =
k =0
Σ

QN /2 P
−1k Gk (21)

The reader may verify that (20f) reduces to h0
′ = X 1√dd3 /2 for N = 3, and that (20a)-(20e) then

yield (15). For odd N > 3, substituting (9) in (20f) yields:

2hi
′ cos (2i + 1)

2N
πhhh =

k =0
Σ

QN /2 P−1

X 2k +1 cos (2i + 1)k
N
πhh +

k =0
Σ

QN /2 P−1

X 2k +1 cos (2i + 1)(k + 1)
N
πhh,

i = 0, . . . , QN /2 P−1 (22)

Substituting k = k ′ −1, defining X −1 = 0, and noting that N = 2 QN /2 P+1 in the second term of
(22) further yield:

2hi
′ cos (2i + 1)

2N
πhhh =

k =0
Σ

QN /2 P−1

X 2k +1 cos (2i + 1)k
N
πhh +

k =0
Σ

QN /2 P
X 2k −1 cos (2i + 1)k

N
πhh

= −1i XN −2 sin (2i + 1)
2N
πhhh +

k =0
Σ

QN /2 P−1

(X 2k −1 + X 2k +1) cos (2i + 1)k
N
πhh,

i = 0, . . . , QN /2 P−1 (23)

Equation (23) can be rewritten using notation like Lee’s for i = 0, . . . , QN /2 P−1:

Hk = X 2k −1 + X 2k +1 (24a)

hi = −1i XN −2 sin (2i + 1)
2N
πhhh +

k =0
Σ

QN /2 P−1

Hk cos (2i + 1)k
N
πhh (24b)

5

-- --

hi
′ =

2 cos (2i + 1)
2N
πhhh

hihhhhhhhhhhhhhhh (24c)

Equations (20) and (24) establish:

Theorem 2 . For odd N > 3, the N-point DCT-like computation (16) can be evaluated using the
RN /2 H-point DCT-like computation (20e), the QN /2 P-point DCT-like computation in (24b),

N −1 multiplications, and
2

5N −7hhhhhh additions.

When evaluating (1) for N = 36, Theorems 1-2 and Lee’s method produce 5- and 4-point compu-
tations of the form:

gi =
k =0
Σ
4

Gk cos (2i + 1)k
9
πhh , i = 0, . . . , 4 (25a)

hi
′ =

k =0
Σ
3

Hk cos (2i + 1)k
9
πhh , i = 0, . . . , 3 (25b)

It is not obvious how to recursively decompose these further, but they can be quickly evaluated
by factoring common subexpressions ad hoc; for example, (25a) expands to:

g0 := G 0 + G 1 cos
9
πhh + G 2 cos

9
2πhhh + G 3/2 + G 4 cos

9
4πhhh

g1 := G 0 + G 1/2 − G 2/2 − G 3 − G 4/2

g2 := G 0 − G 1 cos
9

4πhhh − G 2 cos
9
πhh + G 3/2 + G 4 cos

9
2πhhh (26)

g3 := G 0 − G 1 cos
9

2πhhh + G 2 cos
9

4πhhh + G 3/2 − G 4 cos
9
πhh

g4 := G 0 − G 1 + G 2 − G 3 + G 4

These can be efficiently evaluated using three extra variables, 11 multiplications, and 15 addi-
tions, as shown in Figure 2.

T 0 := G 3/2 + G 0
T 1 := G 0 − G 3
T 2 := G 1 − G 2 − G 4

g0 := T 0 + G 1 cos
9
πhh + G 2 cos

9
2πhhh + G 4 cos

9
4πhhh

g1 := T 2/2 + T 1

g2 := T 0 − G 1 cos
9

4πhhh − G 2 cos
9
πhh + G 4 cos

9
2πhhh

g3 := T 0 − G 1 cos
9

2πhhh + G 2 cos
9

4πhhh − G 4 cos
9
πhh

g4 := T 1 − T 2

Figure 2. Fast 5-Point IDCT Kernel

6

-- --

Similarly (25b) expands to:

h0 := H 0 + H 1 cos
9
πhh + H 2 cos

9
2πhhh + H 3/2

h1 := H 0 + H 1/2 − H 2/2 − H 3
(27)

h2 := H 0 − H 1 cos
9

4πhhh − H 2 cos
9
πhh + H 3/2

h3 := H 0 − H 1 cos
9

2πhhh + H 2 cos
9

4πhhh + H 3/2

These are efficiently evaluated using two extra variables, 8 multiplications, and 10 additions, as
shown in Figure 3.

T 0 := H 3/2 + H 0
T 1 := H 1 − H 2

h0 := T 0 + H 1 cos
9
πhh + H 2 cos

9
2πhhh

h1 := T 1/2 + H 0 − H 3

h2 := T 0 − H 1 cos
9

4πhhh − H 2 cos
9
πhh

h3 := T 0 − H 1 cos
9

2πhhh + H 2 cos
9

4πhhh

Figure 3. Fast 4-Point IDCT Kernel

4 Windowing and Overlapped Addition
For the most frequent input vector formats in [1], Type 0 blocks where N = 36 and Type 2
blocks of triples where N = 12, xi from (1) are windowed through the quantized half-sinusoid,

zi = xi sin (2i + 1)
2N
πhhh, i = 0,...,N −1 (28)

and the first N/2 zi of one IMDCT are added to the last N/2 zi of the previous IMDCT. The 90°
phase-shifting permutation (2) inhibits trigonometric symmetry to coalesce (28) and (1), but
implementation-dependent simplification might be possible. If a host computer has a multiply
and accumulate instruction, computations zi = si + xi sin... can be coalesced at no extra cost. If
the computer has enough registers to hold N/2 xi

′′ from (7), one can eliminate some data copying
and negation in (2b) and the inverse of (6) by windowing and overlapping xi in successive
halves. To see how, note that (2b), (4), and the inverse of (6) map xi

′′ to xi by quartiles of N as:

7

-- --

xi =

IJJKJJL−xi −3N /4
′′

−x3N /4−1−i
′′

−x3N /4−1−i
′′

xi +N /4
′′

, i = 3N /4, . . . , N −1

, i = N /2, . . . , 3N /4−1

, i = N /4, . . . , N /2−1

, i = 0, . . . , N /4−1

(29)

Linearly translating these quartiles’ indices to the common input range, i = 0, . . . , N /4−1,
rewrite (29) as:

xi = xi +N /4
′′ (30a)

xN /2−1−i = −xi +N /4
′′ (30b)

x3N /4−1−i = −xi
′′ (30c)

x3N /4+i = −xi
′′ (30d)

These equations represent the same symmetries as [3; Fig. 1]. Note that (30a) and (30b) yield
just the xi needed for a current IMDCT’s windowing and overlap, and they access only the last
N/4 xi

′′ from (7), possibly in the opposite order. Likewise (30c) and (30d) yield (after window-
ing) just the xi to save for the next IMDCT’s overlap, and they access only the first N/4 xi

′′ from
(7), again possibly in the opposite order. Thus the IMDCT, windowing, and overlap can be
interleaved in two phases without extra copying. Moreover, negations in (30c) and (30d) can be
factored out and done once.

5 Computation Time
Evaluating (1) nai

..
vely requires N 2/2 multiplications and N 2/2−N additions: 72 and 60 opera-

tions for N = 12, or 648 and 612 operations for N = 36. To compare our approach, note that
Lee’s method and the decompositions introduced here can be considered recursive functions on
matrices that are composed in one order when evaluating (1) for N = 12 but in a different order
for N = 36. A simple way to compute the number of multiplications and additions in each case
is: (i) associate two scalar recursive functions with each decomposition primitive, tallying the
two operations for each recursion level; (ii) compose each operation’s tally functions isomorphi-
cally to the matrix functions’ decomposition; (iii) evaluate the two scalar functional composi-
tions for N = 12 and 36.

Definition 3 . For Lee’s method, let the tally functions producing [4; Table I] be:

×LEE(N) =
IKL0
2 ×?(N /2) + N /2

, N = 1

, N > 1
(31a)

+LEE(N) =
IKL0
2 +?(N /2) + 3N /2 − 1

, N = 1

, N > 1
(31b)

8

-- --

For sign-inversion functions (4) and (6), let the joint tally functions be:

×SGN(N) = ×?(N) (32a)

+SGN(N) = +?(N) + N /2 (32b)

For IMDCT (12) of Theorem 1, let the tally functions be:

×TH 1(N) = ×?(N /2) + N /2 (33a)

+TH 1(N) = +?(N /2) + N /2 − 1 (33b)

Noting that N = 2 QN /2 P+1 for odd-order DCT-like computations (20) in Theorem 2, let the tally
functions be:

×TH 2(N) = ×?(
2

N + 1hhhhhh) + ×?(
2

N − 1hhhhhh) + N − 1 (34a)

+TH 2(N) = +?(
2

N + 1hhhhhh) + +?(
2

N − 1hhhhhh) +
2

5N − 7hhhhhhh (34b)

For minimal DCT-like computations (14) and (25), let the tally functions be:

×DCT(N) =

IJKJL11, N = 5

8, N = 4

2, N = 3

(35a)

+DCT(N) =

IJKJL15, N = 5

10, N = 4

4, N = 3

(35b)

For f = × or +, compose (31)-(35) as:

fSGN b fTH 1 b fLEE b fDCT(3), N = 12 (36a)

fSGN b fTH 1 b fLEE b fTH 2 b [fDCT(5) + fDCT(4)], N = 36 (36b)

Here (32b) assumes that negation in (6) counts as "addition" but that data copying is free. Table
1 summarizes arithmetic operations in our method, from (36).

Table 1. Number of Arithmetic Operationsiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
× +iiiiiiiiiiiiiiiiiiiiiiiiiN

Old New Old Newiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
12 72 13 60 27
36 648 81 612 149iiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc

cc
cc

cc
cc
cc

cc
cc
cc

cc
cc
cc

cc
cc
cc

For N = 36, the most frequent case in practice, our method eliminates 88% of the multiplications
and 76% of the additions in a nai

..
ve evaluation of (1). For N = 12, the savings are 82% and 55%.

9

-- --

6 Conclusions
In a software MPEG-1 audio data decoder, Konstantinides’ method of accelerating the synthesis
subband filter’s matrixing operation can also accelerate the Layer III IMDCT step. Together
with a Lee-style method of performing DCT-like computations on an odd number of points, we
have shown how to reduce the IMDCT’s execution time by up to 88% and enable further
implementation-dependent optimizations. Konstantinides sought to reduce the largest source of
overhead in a typical decoder, and we build on his work to reduce the largest remaining source.
These results let faster MPEG-1 Layer III audio decoders run on general-purpose computers.

7 References
1. Coding of Moving Pictures and Associated Audio for Digital Storage Media at up to about

1.5 Mbit/s; Part 3, Audio. ISO/IEC Standard No. 11172-3, 1994.

2. Jain, Anil K. A Sinusoidal Family of Unitary Transforms. IEEE Transactions on Pattern
Analysis and Machine Intelligence 1, 4 (October 1979), 356-365.

3. Konstantinides, Konstantinos. Fast Subband Filtering in MPEG Audio Coding. IEEE Sig-
nal Processing Letters 1, 2 (February 1994), 26-29.

4. Lee, Byeong Gi. A New Algorithm to Compute the Discrete Cosine Transform. IEEE
Transactions on Acoustics, Speech, and Signal Processing 32, 6 (December 1984), 1243-
1245.

5. Liu, Chi-Min, and Wen-Chieh Lee. A Unified Fast Algorithm for Cosine Modulated Filter
Banks in Current Audio Coding Standards. Journal of the Audio Engineering Society 47,
12 (December 1999), 1061-1075.

6. Rao, K. R. and P. Yip. Discrete Cosine Transform; Algorithms, Advantages, Applications.
(New York: Academic Press) 1990.

7. Sakamoto, Tadashi, Maiko Taruki, and Tomohiro Hase. A Fast MPEG-Audio Layer III
Algorithm for a 32-Bit MCU. IEEE Transactions on Consumer Electronics 45, 3 (August
1999), 986-993.

10

