

Understanding Memory Allocation
of Scheme Programs

Manuel Serrano*, Hans-J. Boehm
Internet and Mobile Systems Laboratory
HP Laboratories Palo Alto
HPL-2000-62
May, 2000

Email: manuel.serrano@unice.fr
 hboehm@hpl.hp.com

memory
management,
profiling,
garbage
collection

Memory is the performance bottleneck of modern architectures.
Keeping memory consumption as low as possible enables fast
and unobtrusive applications. But it is not easy to estimate the
memory use of programs implemented in functional languages,
due to both the complex translations of some high level
constructs, and the use of automatic memory managers.

To help understand memory allocation behavior of Scheme
programs, we have designed two complementary tools. The first
one reports on frequency of allocation, heap configurations and
on memory reclamation. The second tracks down memory leaks.
We have applied these tools to our Scheme compiler, the largest
Scheme program we have been developing. This has allowed us
to drastically reduce the amount of memory consumed during
its bootstrap process, without requiring much development
time.

Development tools will be neglected unless they are both
conveniently accessible and easy to use. In order to avoid this
pitfall, we have carefully designed the user interface of these
two tools. Their integration into a real programming
environment for Scheme is detailed in the paper.

∗ Université de Nice Sophia-Antipolis 930, route des Colles, B.P. 145 F-06903 Sophia-Antipolis,
CEDEX
 Copyright Hewlett-Packard Company 2000

Internal Accession Date Only

Understanding Memory Allocation of Scheme Programs

Manuel Serrano
1
and Hans-J. Boehm

2

1 Manuel.Serrano@unice.fr 2 hboehm@hpl.hp.com
http://kaolin.unice.fr/~serrano http://www.hpl.hp.com/personal/Hans Boehm
Universit�e de Nice Sophia-Antipolis Hewlett-Packard Company

930, route des Colles, B.P. 145 1501 Page Mill Road, MS 1U-17
F-06903 Sophia-Antipolis, CEDEX Palo Alto, CA 94304

ABSTRACT
Memory is the performance bottleneck of modern architec-
tures. Keeping memory consumption as low as possible en-
ables fast and unobtrusive applications. But it is not easy
to estimate the memory use of programs implemented in

functional languages, due to both the complex translation-
s of some high level constructs, and the use of automatic
memory managers.

To help understand memory allocation behavior of Scheme
programs, we have designed two complementary tools. The

�rst one reports on frequency of allocation, heap con�gura-
tions and on memory reclamation. The second tracks down
memory leaks. We have applied these tools to our Scheme
compiler, the largest Scheme program we have been devel-
oping. This has allowed us to drastically reduce the amount
of memory consumed during its bootstrap process, without

requiring much development time.

Development tools will be neglected unless they are both
conveniently accessible and easy to use. In order to avoid
this pitfall, we have carefully designed the user interface of

these two tools. Their integration into a real programming
environment for Scheme is detailed in the paper.

1. INTRODUCTION
Since CPU speeds continue to increase faster than mem-
ory speeds, memory is and will increasingly be the factor
that limits performance [8]. Excessive memory use has two

drawbacks: The program itself makes less e�ective use of the
higher layers in the memory hierarchy, and it may interfere
with other processes running on the same machine. Func-
tional languages have a reputation for memory consump-
tion. In order to deliver fast applications implemented in

these languages, we need tools that can be used to diagnose
problems with unexpected memory use. We have designed
two such tools that aid in reduction of memory consumption
of Scheme programs.

1.1 Garbage collected languages
Garbage collectors (GCs henceforth) have very desirable
properties: by automatically reclaiming useless memory cell-
s, they make programs easier to write, safer, and easier to
maintain.

Unfortunately, GCs often hide the complexities of memory
management so well that programmers lose track of its cost.
It is extremely diÆcult to determine when a GC will deal-
locate a data structure. It is a misunderstanding to think
that because GCs automatically reclaim useless cells, they

keep the memory occupation minimal. It has already been
noticed that, in some situations, GCs enlarge the size of
the programs working sets [19]. Consequently, very often,
programs allocate and consume more memory than needed.

1.2 Scheme specificities
Precise evaluation of memory allocation size is more diÆ-
cult in higher order programming languages than in con-
ventional languages due to the distance between the high
level constructs and the instructions executed on the hard-

ware. Compilers have to generate sequences of operations for
which the complexity is not always apparent at the source
code level. It may happen that the compilers introduce run
time heap allocations where none were obvious in the source.

Such \hidden" allocations are frequent in Scheme programs.

For instance, let's take the following de�nition:

(definedefine (show-value value)
(print "value is: " value))

The function print accepts optional arguments. The Scheme

semantics specify that such optional arguments must be
placed in a freshly allocated list that is passed as the ac-
tual argument. That is, if print is implemented as:

(definedefine (print . l)
(for-each display l))

each time show-value is called three pairs are allocated.
These allocations have no location in the source code. They
are not apparent!

Scheme library functions may allocate substantial amounts

of memory. One may write a function like:

(definedefine (append-rev l1 l2)
(append (reverse l1) (reverse l2)))

If len1 is the number of pairs of l1 and len2 is the num-
ber of pairs of l2 then append-rev allocates 2*len1+len2

pairs because both append and reverse allocate. Changing
append-rev to:

(definedefine (append-rev! l1 l2)
(append! (reverse! l1) (reverse! l2)))

eliminates all allocations from append-rev because it re-
verses the two lists in place, and then appends them using
one single pointer assignment. Obviously append-rev! and
appendrev are not equivalent because append-rev! changes

its arguments. But append-rev can sometimes be replaced
with append-rev!.

When studying a program it may be diÆcult to detect that a
function such as append-rev is responsible for manymemory
allocations. This is the role of an allocation pro�ler. It

reports the frequency with which allocation sites are used.

1.3 Our Tools
We have implemented two distinct tools for analyzing mem-
ory allocation.

Kprof is an allocation pro�ler embedded in our regular
Scheme time pro�ler. For each source code function, it

reports on the number and kind of allocations. Kprof

presents estimates of the exact allocation numbers, using
a technique similar to gprof [6]. In addition, it provides
information about the operation of the GC. All of this can
be accomplished with low overhead, and no per object space
overhead.

Allocation pro�ling reports on heap growth, but it cannot
report on memory leaks. Kbdb is a heap inspection tool.
At �rst, it acts as a debugger. Programs are run interac-
tively. They can be stopped, the variables, the stack and
the heap can be inspected, and execution can be resumed.

But in addition, the heap can be displayed, with each pixel
representing one cell of the heap.

Individual cells can be inspected by simply pointing at their
corresponding pixel in the image. When a cell is inspect-
ed, the Scheme type of its value, its allocation site, and its

approximate age are displayed. In addition, Kbdb displays
root chain links. That is, Kbdb can be used to understand
why a speci�c cell is considered live by the garbage collec-
tor. This facility can be used to track down most kinds of
memory leaks presented in Section 2.

The bitmap representation can be cheaply generated from
the heap. However, unlike Kprof cell inspection requires
additional per object memory overhead.

1.4 Contributions
We characterize the types of \memory leaks" we have en-
countered in garbage collected environments, and discuss
in detail our experience with memory leaks in one partic-

ular Scheme program. We are not aware of other general

discussions of the issue, especially in the context of strict

languages.

We present a complete, easily usable, set of tools for ex-
amining memory allocation in garbage collected languages.
We demonstrate how they can be used to identify and track
\memory leaks".

OurKprof allocation and time pro�ler is based on standard
time pro�ling techniques. We explore and measure its utility
as an allocation pro�ling tool.

Our Kbdb tool allows exploration of heap reference patterns

in a style similar to Jinsight [4]. However, it uses a di�erent
mechanism for displaying the results, and a di�erent data
gathering strategy. The latter simpli�es use, allows easier
scaling to large applications, and allows problems involving
the garbage collector itself to be isolated.

We believe the techniques presented here apply to any lan-
guage environment with garbage collection and run-time
type information (e.g. Smalltalk, CLOS or Java).

1.5 Organization
Section 2 discusses memory leaks in garbage collected envi-
ronments. Then, Section 3 presents the facilities provided
by Kprof and how it �ts into our integrated environment
named Bee. It also discusses how allocations are estimated
by Kprof. Section 4 presents Kbdb and its integration in
the Bee. Section 5 demonstrates how Kprof and Kbdb

can be used in the context of a real application and shows
the run time overhead of instrumented programs. Section 6
compares Kprof and Kbdb to existing tools. Section 7
presents some possible extensions to Kprof and Kbdb.

2. MEMORY LEAKS OF GARBAGE COL-
LECTED LANGUAGES

In an environment using C-like explicit memory dealloca-
tion, the term \memory leak" usually refers to memory that
is no longer accessible via any chain of pointer dereferences,
but has not been deallocated. Since it is no longer accessible,

it cannot possibly be deallocated in the future.

It is the job of a garbage collector to eliminate such leaks.
Thus such leaks cannot occur in garbage collected environ-
ments. When we talk about a \memory leak" in a garbage

collected language, we are referring to memory that still
appears accessible to the garbage collector but is, in some
other sense, no longer needed by the program. There are a
number of reasons why this may occur:

� It may be referenced through an algorithmically dead
variable or an easily identi�able slot in a data struc-
ture. This is the most common problem. Once iden-

ti�ed, it can be usually be easily repaired by resetting
the reference. Such leaks are usually bounded, but see
[2] for a case in which an extra reference introduces
an unbounded leak. In most cases, the reference is
eventually overwritten, and the leak is thus temporary.
But even temporary leaks can appreciably increase the

heap size required by a process.

� It may be referenced through and algorithmically dead

slot in a data structure, but the slots are interspersed
in the data structure and expensive to identify. This
is rare, especially in programs written for garbage col-
lection. But we know of one case (a compiler) in which
it prevented easy replacement of manual deallocation
with garbage collection. This is similar to the pre-

ceding case, except that it may require much more
substantial algorithmic changes to repair.

� It may be referenced through a pointer that is itself
still live (e.g., for use in a Scheme eq? comparison),
but is never dereferenced. This can happen, for ex-
ample, if the later stages of a compiler refer to iden-

ti�ers exclusively with symbol table pointers, so that
the actual strings representing the identi�er could be
discarded. This again appears to be rare.

� It may be genuinely referenced from a data structure
that grows much larger than intended. The canonical
example of this is a cache that was intended to remain

bounded, but in fact grows without bound over time.
Although the extra data may be accessed, overall per-
formance of the program would increase if some of it
were discarded.

� It may appear to be referenced to the collector, even

though it is not truly accessible by following pointer
chains from a live variable. This may happen because
the collector has imperfect information about liveness
of pointer variables, because the collector is conserva-
tive and has misidenti�ed a non-pointer as a pointer[2],
or because of an unfortunate promotion in a genera-

tional collector [10]. In most, though not all cases,
such leaks are again temporary and bounded.

Usually, though not always, the hardest task in removing
such a \memory leak" is to identify its source. We de-
scribe tools that can be used to do so. The tools rely on
the garbage collector itself, and hence can be used to trace
problems caused by idiosyncrasies of the garbage collection
algorithm itself, or by interactions between the garbage col-

lector and client, in addition to those caused purely by the
client program.

3. Kprof: AN ALLOCATION PROFILER FOR
SCHEME PROGRAMS

The �rst of our two pro�ling tools is named Kprof. It
reports the number of times allocators are called from each
function. In addition, Kprof reports on the evolution of
the heap during the execution of the program. Each time

a collection is triggered, the heap size, the number of live
objects, and the number of allocations since the previous
GC are recorded.

3.1 How to use Kprof

Kprof is one of the tools comprising the Bee [18], an inte-
grated development environment for the Scheme program-
ming language [7]. We think that it is of primary importance
for development tools such as pro�lers and debuggers to be
highly available and easy to use. Pro�ling with Kprof re-

quires the usual pro�ling cycle: compile, record (i.e., run

Figure 1: A plain pro�ling window

the application with a speci�c input set), display. The Bee
helps with all these tasks by handling compilation and ex-
ecution. That is, to pro�le the allocation of one program

execution, a user just has to click one dedicated icon. Once
compilation and execution are completed, a new window dis-
playing the main pro�le information is popped up. Figure 1
displays the time pro�le for the Queens program, a small
Bigloo program that computes the number of solutions to
the N-queens problem. The Queens program builds all pos-

sible con�gurations of the queens on a chess-board. Each
con�guration is implemented as a list. Thus the benchmark
is allocation intensive.

3.1.1 Plain profiling
Kprof distinguishes between the execution time spent in
Scheme functions (labeled Bigloo as the name of our Scheme

compiler), the garbage collector, and other C functions. Us-
er programs may mix C functions with Scheme functions.
In such an environment we have found it best to display
information by implementation language. The top lines of
the pro�le window teach us that about 67% of the execu-
tion time is spent inside Bigloo functions and 33% inside the

garbage collector. The bottom lines display the time spent
in each function of the program. In particular, we read that
16% of the total execution time is spent in the Scheme CONS
function.

Kprof may also display the overall amount of memory al-
location during an execution (see Figure 2). We learn that
11.6MB have been allocated to run the Queens program and
that 90% of the allocations are lists.

3.1.2 Dynamic call graphs
Since Kprof uses regular pro�ling facilities, it can browse

the dynamic call graph. For instance, it can report which
functions are allocating a large fraction of the CONSes. Ex-
amining the functions that call CONS would report that the
Scheme function MAP-REC is responsible for more than 42%
of the calls. Kprof may also compute estimates of the num-
ber of allocator calls by a function and its (direct and indi-

rect) callees. We refer to these as indirect allocations. For

Figure 2: Queens's allocations

Figure 3: CONCMAP pro�ling

instance, consider the CONCMAP function of Queens:

(definedefine (concmap f l)
(ifif (null? l)

'()
(append (f (car l)) (concmap f (cdr l)))))

This function does not directly call any allocator, but obvi-

ously the functions it calls (its callees, notably APPEND) call
CONS. Figure 3 presents the pro�le information computed by
Kprof. The Direct allocs section is empty, as expected.
But we discover that the CONCMAP callees are responsible for
99% of the calls to CONS (Indirect allocs, %called colum-
n). These calls account for 90.3% of the overall allocations

invoked from CONCMAP (Indirect allocs, %allocs column).

Kprof may display the dynamic paths that exist from one
function to another, for instance, the paths that go from
CONCMAP to CONS as the one presented Figure 4. Each edge
label stands for the percentage of the caller calls devoted

to that callee. For instance, 20% of the calls operated by

Figure 4: CONCMAP calls to CONS

TESTCOL are calls to FILTER and 8.47% of FILTER calls are

calls to CONS.

3.1.3 Memory profiling
Kprof may then display the heap con�gurations recorded
by each garbage collection during program execution, as in
Figure 5. Here, execution time is measured in GCs. We

learn that eighteen GCs were required to execute Queen-
s. For each GC, we learn the heap size (that varies here
from 1.05MB to 1.20MB). Kprof also displays the stack
size (the maximum is reached on GC 9 with about 0.25MB).
The other low curve represents the number of live objects
after each collection. That one goes from about 0.13MB to

about 0.30MB with a maximum reached at GC 6 with about
0.30MB of live objects. The fourth curve takes into account
the number of objects that have been allocated since the
previous GC (about 1.0MB of allocations to GC 12).

During the study of such a pro�le it may be convenient to

focus on some speci�c parts of the program. For instance,
our Queens example includes two di�erent implementation-
s of the same strategy. It could be interesting to compare
these di�erent implementations at a glance. This is permit-
ted by our Scheme extension: the profile form. Its syntax

is:

(profileprofile <label > <s-expr >)

Its evaluation is equivalent to (begin s-expr) but it will
force Kprof to report data for a pseudo-function named
lbl, with all costs associated with the evaluation of s-expr

reported as part of the execution of lbl. It will thus be pos-
sible to determine the number of allocations executed dur-
ing the evaluation of s-expr . In addition, the evaluation
period for lbl is displayed on the Kprof's memory pro�le.
Figure 5 includes the result of several profile forms, la-
belled SOL1, SOL2, and POS-L, indicated immediately above

the memory usage graph.

Figure 5: Queens's memory con�gurations

Profile forms are close to the ghc Haskell implementation's
\set cost center" construction (scc in short) [16, 15, 17].

Cost centers are more central to Haskell because they form
the basis of pro�ling for this lazy programming language.
To Kprof, profile is only a convenience that enhances the
presentation of the generated pro�les.

3.2 Kprof implementation
Bigloo, our Scheme compiler, translates from Scheme to C.
The generated C code conforms to the standard C coding

style [3]. In short, Scheme functions are compiled into C
functions and Scheme variables are compiled into C vari-
ables. Because a direct correspondence exists between the
produced C code and the initial Scheme source �le, it is
possible to reuse standard C tools to pro�le Scheme source
programs. Kprof is designed as a layer surrounding the s-

tandard Unix Gprof tool [6, 5]. This technique is described
in a forthcoming paper [18]. Kprof decodes Gprof infor-
mation (in particular, Kprof demangles Gprof symbols)
and uses the result to compute allocation pro�les.

3.2.1 Inherited features
Since Kprof is a front-end to Gprof it inherits some of its
facilities and, alas, some of its inaccuracies. These are de-

scribed in some details in the GNU-gprof documentation [5].
We shortly summarize them in this section.

� Run-time �gures are based on a sampling process. To
determine the time spent in each function Gprof sam-
ples the hardware program counter at regular intervals
(e.g., every 0.01 seconds). The entire time interval is
charged to the corresponding function. To produce re-

liable execution time estimates, the overall execution

time of the application must be much larger than the

sampling period.

� The number of calls are exact. They are computed by
inserting an additional call to an accounting function
into the prelude of every pro�led function. This func-
tion is responsible for recording in an in-memory call
graph table both its parent routine and its parent's
parent.

� Callees run times presented in the call graph report-
s are probabilistic. The record made of an execution
does not contain any information relative to the dy-
namic call graph. Here is an excerpt of the Gprof
documentation describing the technique:

\The assumption made is that the average time spent in
each call to any function foo is not correlated with who
called foo. If foo used 5 seconds in all, and 2/5 of the
calls to foo came from a, then foo contributes 2 seconds to
as callees time, by assumption.

This assumption is usually true enough, but for some pro-

grams it is far from true. Suppose that foo returns very

quickly when its argument is zero; suppose that a always

passes zero as an argument, while other callers of foo pass

other arguments. In this program, all the time spent in foo

is in the calls from callers other than a. But Gprof has no

way of knowing this; it will blindly and incorrectly charge

2 seconds of time in foo to the children of a."

3.2.2 Allocation estimates
Kprof reports on the number of direct and indirect calls
to allocators. The indirect calls are the calls made by the
functions themselves and their callees. The direct calls are
exact values but the indirect ones are estimated.

The assumption made to compute indirect allocations is sim-
ilar to the one used to compute callees run times. The indi-
rect allocations of a function F are the direct allocations of
that function plus a percentage of the allocations performed
by its callees. For each callee C, this percentage is calculat-
ed by dividing the time spent in C when called by F by the

overall time spent in C. For instance, let us suppose a func-
tion F1 calls an allocator A1 n times and also calls a function
F2. F2 calls the allocator A1 m times and it calls no other
functions. Now let us suppose that 30% of the run time of
F2 is spent when it is invoked by F1. Kprof reports that
the number of recursive calls to A1 from F1 is n+ 0:3�m.

The algorithm has to distinguish between functions that be-
long to recursive cycles and functions that don't. In the
former case, functions are one of their own callees. Here is
the algorithm that computes the allocation estimates for a

function f:

1: alloc(f) =
2: if it exists a cycle going through f
3: then cycle-alloc(f)
4: else no-cycle-alloc(f)

In the presence of recursion, the call graph contains cycles,
starting with a given function, proceeding through its (pos-
sibly indirect) callees, and leading back to the original func-

tion. A function cannot belong to more than one cycle in a

Gprof report. If it could, then a function would be part of

two di�erent cycles which can be drawn as follows:

b

b b

b

foo

hux gee

bar

u

u

uuu

However Gprof has no way to �nd out that there is no
path that goes from bar to hux or gee because foo is a
callee of bar and gee a callee of foo. Thus Gprof assumes
that all such functions can be indirectly called by each oth-
er. Thus Kprof�s cycle-alloc function handles strongly

connect components of the call graph as single nodes. This
is the same strategy as the one described in the Gprof pre-
sentation [6].

If the function f does not belong to a cycle, then, the formula
illustrated with F1 and F2 is applied to all of f's callees:

1: no-cycle-alloc(f) =
2: let C = the cycle going through f
3: (a possibly empty set of functions)
4: E = f's callees
5: R = f's direct allocations
6: foreach function g in E - C do
7: if g is not an allocator
8: then let A = alloc(g)
9: Æ = the percentage of time spent
10: executing g when called

from f
11: foreach call k in A do
12: add Æ * k calls to R

13: return R

Computing indirect allocations for a function f belonging to
a cycle C requires two steps. In the �rst one, the indirect
allocations are computed excluding all the functions of C by
the means of no-cycle-alloc. Then, in a second step, all

indirect allocations of the functions of C are added to the
indirect allocations of f. In the graph example the set of
indirect allocations of the function foo is the union of the
direct allocations of foo, hux, bar and gee.

The algorithm is partially validated by the fact that Kprof

correctly reports that the entry point of a Scheme program
indirectly calls 100% of the allocators (a whisker away be-
cause of oating point errors). However, as we will see in
Section 5.2 these estimates may be imprecise. Nevertheless,
since they are fast to compute, they can be used as a �rst
indication that thorough investigation is needed. In many

cases even these estimates may unveil obviously wrong be-
haviors. We will show in Section 5.1.1 that the estimates
have permitted drastic reductions in the memory consump-
tion of the Bigloo compiler itself.

3.3 Kprof and code generation
To \record" an execution, the source code has to be compiled
in \pro�le" mode. That is, the compiler has to introduce
some extra instructions for producing pro�le output �le used

by Kprof. In this section we describe that code.

3.3.1 Profiling and optimizations
Optimizations that change the initial structure of the source
code have to be disabled in order to make pro�le information
accurate. Inlining is one of these optimizations, since it re-
places function calls with the bodies of the called functions.
Since functions are the smallest entities the pro�ler reports

on, it is important that user functions are not inlined when
in pro�le mode. However it has been demonstrated that in-
lining is an important optimization, especially for functional
languages [9]. We are thus facing a dilemma: should the pro-
�le compilation mode enable aggressive optimizations such
as inlining even if this reduces the accuracy of the pro�l-

er reports, or should it disable optimizations? One should
notice that the second solution also e�ectively reduces the
accuracy of the pro�ler, since the measured program is likely
to behave di�erently from the �nal version.

We don't think there is a \best" solution for this problem,

and instead provide the user with two di�erent pro�ling
modes. One enables aggressive optimizations, the second
disables all of them. Figure 1 presents the pro�le with opti-
mizations enabled. Note that Bigloo never inlines CONS since
the allocation sequence is too long.

Ghc's cost center construct and profile forms allow �ne
grain tuning. The more they are introduced, the more opti-
mization is inhibited. These two forms require source code
changes, but they allow exact control of pro�ling.

3.3.2 Profiling and local functions
As in most functional languages, Scheme has local, possibly
anonymous, functions. Kprof reports on these as it does
on global functions. Because several local functions may
have the same name and reside inside the same module, the
pro�ler pre�xes their name with the name of the enclosing

function.

For anonymous functions, the compiler generates a name
from the source �le location. For instance, let us suppose
an excerpt of a �le F.scm:

150: (definedefine (foo x)
151: ... (map (lambdalambda (y) (+ x y)) ...) ...)

The function of line 151 will be named F.scm:151:7347,
where 7347 is a stamp that avoids name collision. When
the user invokes the editor on that function, the pro�ler
invokes the editor on the correct �le.

3.4 Kprof limitations
Allocation pro�les are not suÆcient to track down memo-
ry leaks. For instance, in Figure 1 the \live objects" curve
seems to reveal an increase of live objects in the sol1 stage.
When sol1 completes there are still some live objects and

the di�erence between the number of live objects at the be-
ginning and at the end of sol1 is positive. Kprof provides
no information as to whether this increase is normal or if it
is due to a memory leak. It reports on allocations whereas
memory leaks concern deallocations. To address this prob-
lem, we have designed and implemented a second tool named

Kbdb.

Figure 6: An heap view according to object types

4. Kbdb: A HEAP INSPECTOR FOR SCHEME
PROGRAMS

Kbdb is an interactive heap inspector. It displays the live
objects and the chains of pointers that link these objects

in the heap. Kbdb is embedded in our regular Scheme de-
bugger. Each time an execution is suspended (for instance,
when a breakpoint is reached) the heap may be inspected.

When Kprof reveals a suspect increase of live objects Kbdb

can be used to discover if this is due to a memory leak. Obvi-
ously this requires thorough knowledge of the source code.
To suspect that a computation leaks memory, it must be
known that this computation should not increase the num-
ber of live objects. Kbdb can only answer the question
\what is the amount of memory still in use after evaluating

that particular expression of the source code?".

4.1 Plain heap inspection
To start with, Kbdb acts as a regular Scheme debugger. It
enables suspension and resumption of execution. When an
execution is suspended the variables and the stack of the
computation may be inspected. In addition to these tradi-

tional features, Kbdb can also display a snapshot of the heap
as a 2 dimensional picture in which each pixel is associated
with a memory location. Unused memory locations are left
blank. Objects are distinguished by their color. Current-
ly two color schemes have been implemented. In the �rst,

objects are colored according to their type. For instance,
all strings are displayed in blue, the pairs in red, and so on.
The second classi�cation uses the age of the objects to deter-
mine their color. Figure 6 is a snapshot of Kbdb displaying
a heap during the execution of the queens program, with
objects classi�ed by types.

Objects are represented by horizontal stripes ended with a
white pixel. The larger an object is, the longer is its associ-
ated stripe. Sections of the heap can be magni�ed to make
selection of speci�c objects accurate. Detailed information
about a clicked object is then reported. For instance, click-

ing on a PAIR stripe could display:

Holder : FILTER, frame 4 (local L) ;; The value
holder
type : PAIR (0) ;; The object
type
Producer : CONCMAP ;; The
producer
Generation: 1 ;; The bird
date (in GC)
Size : 12 ;; The byte
size

[PAIR] (1) ;; The hold-
er chain links

[PAIR] (2)
(bdb:MAIN) display (0)
$63 = (8)
(bdb:MAIN) display (2)
$63 = (6 7 8)

The PAIR we have clicked on has been allocated in the func-
tion FILTER before the sixth collection and its size is 12
bytes. The producer is the \�rst" user function that calls
the allocator. That is, library de�ned functions are not re-

ported as producers. For instance, the producer of the pairs
allocated by APPEND in the CONCMAP function of Section 3.1.2
will be reported as allocated by CONCMAP, not APPEND. The
PAIR was held by the local variable L of the function FILTER.
An \holder" is either a global variable, a local variable, or
simply a stack frame (when the value is not stored in any

local variable but simply passed to another function). In
the remainder of the paper, we will indistinguishly name an
holder, a GC root. The stack frame of the FILTER invoca-
tion that holds L is the fourth one in the stack (frame 4).
The holder chain links represent the pointers chain from the
holder (i.e., FILTER's L local variable) to the inspected ob-

ject (here a PAIR). The labels of the holder chain links can
be used to explore or display the objects of that chain.

4.2 Memory leaks
Provided with a heap inspector, memory leak detection is

easy. The framework for �nding leaks in a suspect expression
E is the following:

1. Stop the execution before the evaluation of E .

2. The number of already completed collections is GC0.

3. Trigger a garbage collection.

4. Resume the execution.

5. Stop the execution when evaluation of E is completed.

6. Trigger a new garbage collection.

The current collection number is now GCn. Leaking objects
are those that have been allocated during the evaluation of
E that are still live, i.e. live objects that have been allocated
after GC0 and before GCn.

To �nd a memory leak using the current Kbdb interface,
two breakpoints have to be set. One before the suspected
expression and one after. When the execution reaches the
�rst breakpoint, a simple click on the leaks icon triggers
the previously described steps 2 to 6. A picture consisting

only of the live objects is then displayed as in Figure 7. In

this snapshot of the heap only the \leaking" objects, i.e.

newly allocated and still live objects, are displayed. The
roots causing the leaks are displayed in a di�erent color than
the leaking objects. As reported on the left side of �gure 7,
the entire leak size is of 8480 bytes in this case. Leaking
objects may be selected as before. Clicking on one of these
objects could produce:

Holder : COUNT
Type : PAIR (0)
Producer : NSOLN
Age : 2
Size : 12

[PAIR] (1)
[CELL] (2)
[PROCEDURE] (3)

This object can be displayed:

(bdb:MAIN) display (0)
(2 3 4 5 6 7 8)

Even if this is not obvious in the gray scale display, there is
only one GC root that is culprit for the entire leak. That
root is the end of the root chain of the object we have se-

lected. It can also be selected:

(bdb:MAIN) explore (5)
Holder : COUNT
Type : PROCEDURE (0)
Producer : COUNT
Age : 2
Size : 20

We can now draw some conclusions from this inspection of
the Queens program:

� As we suspected, the evaluation of the SOL1 form leaks
memory.

� That leak is composed of small lists (the entire leak
size is 8.3KB).

� All lists are accessible from the same root.

� The root is the anonymous closure (a PROCEDURE type)
that has been allocated in the COUNT function.

Actually, the COUNT function is a memo function. It allo-
cates lists and stores them in a table that is never reset. In
Section 3 we suspected a memory leak. Kbdb has demon-
strated that this leak really exists.

4.3 Kbdb implementation
We modi�ed the Boehm-Demers-Weiser garbage collector
to provide back-pointer information, as part of the debug
information that could already be associated with individual
objects. Each allocated object is provided with additional
slots to store the source code location of the allocation and
one back pointer slot that is �lled by the collector during the

marking process.

Figure 7: Memory leaks unveiled

The contents of the back pointer slot point to the location of
the pointer that caused the object in question to be marked.
If the object is reachable by more than one path, the one
that happened to be followed by the collector will be reect-
ed in the Kbdb output. In the, usually infrequent, cases in

which the conservative collector follows a stale stack pointer,
or a misidenti�ed pointer, that fact will also be accurately
reected in the chain of back pointers. Thus even such prob-
lems become debuggable.

As discussed in the related work section, there are other

ways to display backward reference chains. This technique
is the second one we have implemented, and by far the sim-
plest. It was suggested by Alan Demers.

Details of the collector backtracing interface can be found
in the collector distribution. In this section, we focus on the

implementation of the heap picture construction and the
Kbdb architecture.

4.3.1 The debugged applications
Debuggable applications embed special library functions that
are in charge of constructing the heap display. When Kbdb
is to display a heap, it requests that the debugged appli-

cation produce a �le on disk containing the picture. The
picture �le is constructed without additional memory con-
sumption by means of simple linear scans of the heap. The
garbage collector is able to report, for each address of the
heap, if it is part of a live object, and to retrieve the size of
that object. The algorithm to build a heap picture is:

1: make-picture(F) =
2: let min-addr = The heap min address
3: max-addr = The heap max address
4: i = 0
5: pic = create-picture()
6: while i + min-addr < max-addr do
7: if i + min-addr is the address of a live object?
8: then let size = GC-object-size(i + min-addr)
9: stop = size + i
10: type = SCM-type(i + min-addr)
11: while i < stop do
12: set-pixel-color(pic, i, F(type))
13: i = i + 1
14: else set-pixel-color(pic, i, "white")
15: i = i + 1
16: return pic

The argument F is a parameter of the picture construction.
It is a function that maps Scheme objects to colors. It en-
ables various coloring schemes to be applied to the heap
construction (such as the type based or the age based ones).

The key point of this algorithm is that a picture �le is di-
rectly dumped during a heap traversal. There is no need to
allocate a memory area of the size of the inspected heap be-
cause of the direct mapping from heap addresses to picture
pixels. This is possible only if the garbage collector is able
to report information about random addresses in the heap.

It is not clear how exact collectors could implement this.

File generation is straightforward. Leak detection and age-
based coloring do not require pre-computation. On the other
hand, association between types and color requires an addi-
tional �rst linear traversal of the heap in order to allocate

colors to the most frequently used types (only those are allo-
cated speci�c colors, infrequent types are all displayed with
one unique color). Then, during a second linear traversal,
the picture is built according to the make-picture algorith-
m.

4.3.2 Kbdb display generation
When a debugged application has generated a picture �le,
Kbdb reads that �le. Note that a picture �le is often much
smaller than the inspected heap because one pixel repre-
sents a memory word (i.e., 4 or 8 bytes). For a monochrome
picture 8 pixels, can be stored in a single byte, making a

monochrome picture about 32 times smaller than the in-
spected heap. A four color picture is 16 times smaller than
the heap. Four colors are suÆcient for memory leak displays.

We have concentrated on the compactness of the heap rep-
resentation. We think this is a central issue. If the repre-

sentation requires too much memory, the system cannot be
used to inspect large heaps. We have successfully applied
Kbdb to our Scheme compiler, demonstrating that it can
be used on heaps larger than 8MB.

5. APPLYING Kprof AND Kbdb

This section presents the results of our �rst attempt to apply
Kprof and Kbdb to a real application: our Scheme compil-
er. The aim of this section is to show that Kprof and Kbdb
are useful in practice. For this experiment we have looked
at bootstrapping the compiler, that is, compiling a part of
the compiler with an instrumented version of the compiler.

We have arbitrarily time bounded that e�ort by allocating
only two days to pro�ling. This section reports on what we
have learned about the compiler during these two days and
concludes with some measurements that show the execution
overhead of pro�ling and debugging.

5.1 The Bigloo compiler
Bigloo compiles Scheme into C. It is written in Scheme and
compiled by itself. Bigloo consists of 40,000 lines of code.
It reads the program to be compiled and builds an abstract
syntax tree (henceforthAst) to represent the program. This
tree contains a structure of 23 di�erent node types. There

are nodes for constants, variable assignments, conditionals,

function calls, etc. The compiler is made up of stages, each

of which can be seen as a process that modi�es the Ast.
The driver is a Scheme function that looks like:

(definedefine (compiler src)
(letlet ((ast (build-ast src)))

(macro-expand! ast) ;; 1st stage
(function-inline! ast) ;; 2nd stage
...
(code-generate! ast))) ;; 20th stage

This rigid structure, in which each stage acts as a stand

alone program, helps the implementation and maintenance
of the compiler. It also helps with pro�ling the compiler.
Because of that structure it is easy to let Kprof reports on
allocations stage by stage. It only requires instrumenting
the compiler driver with pro�le forms such as

(profile ast (build-ast src)).

5.1.1 Reducing compiler memory allocation
Figure 8 presents the heap pro�le as reported by Kprof

when bootstrapping a module of the compiler. The �le cho-
sen for that experiment is the one that compiles into the
largest C �le. That �le contains most of the classes repre-
senting Bigloo's Ast. In Bigloo's object system, class in-
stance slots are fetched and changed via getter and setter

functions. These functions are automatically generated by
the compiler. The module we are studying produces a large
C �le because it contains most of the getters and setters of
the Ast.

The overall allocation for compiling that module is 17.3MB

amongst which, 56% are CONSes. This was a surprise to us.
The Ast of the compiler is represented by a class hierarchy
and we thought we have successfully avoided CONSing in the
code of the compiler. Actually, variable size data structures
are implemented using CONSes. For instance, the list of for-
mal parameters of a function is represented by a Scheme list,

and sequences of expressions are also stored in lists (that is
the sequence node of the Ast holds several values, one of
which is a list of expressions). Kprof shows that these lists
are much more numerous than we suspected. It is possible
to reduce allocation for such lists. It would for instance, be
possible to use vectors instead. This would reduce memory

requirements since vectors are more compact than lists (at
least when they contain more than two elements).

Kprof points out several other surprising allocations. We
focus here on the most signi�cant ones. The last compiler

stage (namely CGEN) writes the C code on a disk �le. This
stage only dumps the Ast. It is not supposed to allocate
memory. However, Kprof demonstrates that CGEN actually
does allocate! Inspecting CGEN allocations using the allo-
cator pro�ler shows that CGEN is responsible for more than
13% of the calls to CONS. Studying the dynamic paths that

go from CGEN to CONS shows that nearly all the CONSes allo-
cated during the evaluation of CGEN are called by functions
that write on the disk. That is, the CONSes are allocated
when the compiler uses the standard Scheme output func-
tions (DISPLAY, NEWLINE, ...). These CONSes are allocated
because, as reported in Section 1.2, variable arity functions

allocate, and standard Scheme output functions accept an

Figure 8: Pro�ling Bigloo

optional output port. In order to remove these allocations,
we have implemented a simple source-to-source transforma-
tion. When a call to a regular Scheme output function is
detected, it is replaced with a call to a specialized function

accepting one or two arguments, depending on the nature
of the call. We don't claim that this optimization is \gener-
al purpose", we only claim that with a one-hour e�ort, we
have been able to reduce the memory allocation to 14.3MB,
which is a reduction of 21%. The proportion of CONSes for
compilation of the compiler dropped to 47%.

5.1.2 Chasing bootstrap memory leaks
Some stages of the compiler are expected to increase the live
memory (such as the AST stage that constructs the Ast, or
INL that implements inlining optimization). On the other

hand, some stages implement optimizations or analyses that
should reduce the size of the Ast. Amongst these stages is
EFF (GC 10 to GC 11) which is a pass that computes the
side e�ect property for each function of the Ast. The result-
s of EFF are later used to implement regular optimizations
such as data optimizations (RED stage). Surprisingly Kprof

reports that EFF slightly increases the number of live object-
s (2.45MB to 2.55MB). We used Kbdb to inspect memory
leaks of the EFF stage. Kbdb reported that EFF is respon-
sible for 210KB of leaks due to only two GCroots. One is
in a function called MAKE-SIDE-EFFECT! and the other in
a function called FUN-CALL-GRAPH!. Inspecting the source

code of these functions has revealed the nature of the two
leaks: both functions use a table that is not reset when EFF

is completed.

5.2 Impact of profiling and debugging
The performance di�erence of programs compiled in pro-
�le mode, debug mode or optimization mode should be as
small as possible. If the di�erence is very noticeable, the
pro�ler or debugger would be tedious to use. Even more
seriously, if the performance degradation is too substantial,
large programs can simply not be pro�led or debugged. In

this section we present some time and allocation measure-

ments for the di�erent versions. We have used three dif-
ferent programs: a small one (Queens, a 100 lines long
program we previously discussed), a mid-size one (Eval the
500 line long Bigloo Scheme interpreter), and a large one

(Bootstrap, the 46,000 line long Scheme compiler itself).
Figure 9 compares the compilation time, execution time and
the heap size of these three programs using di�erent compi-
lation ags, all other things being equal. The compilation

time (?), run time (�) and allocation size (]) �gures for the
compiler Bootstrap have been gathered when compiling
only one module of the source code of the compiler.

Comp is the compilation time, Size the size of the binary
�le. In order to present the impact of pro�led compilation

on the executable size, we have decided not to strip (that
is not to remove the symbol tables from) the binary �les
in optimization mode. However, one should be aware that
on our working architecture stripping an executable shrinks
it by about a factor of three. In addition, all binaries are
linked against static Bigloo libraries. (There is no issue here

because all modes support shared libraries.) Run is the exe-
cution time (the minimum of user plus system time for three
consecutive runs). Alloc is the amount of memory allocated
during the execution.

The di�erences in size of the executable are important. Pro-
�led executables are about four times larger. Debuggable ex-
ecutables are up to 10 times bigger (for Bootstrap). There
is no way to avoid this increase because it does not depend
on the Bigloo C generated code but on the assembly code
generated by the C compiler. For instance, app.scm is one

of the compiler source �les. The generated C �le app.c is
56KB long. When compiled with C optimization enabled,
the object �le app.o is 10KB in size When compiled in C
debug mode, it enlarges to 51KB!

Debugged and pro�led programs run slower than optimized

programs. Independent of instrumentation, disabling opti-
mization slows down programs by a ratio of 1.5 to 2. For

Queens Eval Bootstrap
Comp. modes Comp. Size Run Alloc Comp. Size Run Alloc Comp. Size Run Alloc

Optimized 2.3s 185k 1.3s 15.5MB 3.6s 167k 1.8s 7MB 6.6s? 898k 5.3s� 9.3MB]

Pro�led 2.2s 494k 5.5s 15.5MB 3.41s 500k 6.11s 7MB 4.1s? 4643k 8.2s� 9.3MB]

Debugged 3.4s 620k 15s 69.2MB 7.4s 209k 9.0s 43.9MB 5.8s? 15929k 17.4s� 49MB]

Figure 9: Impact of the pro�ling and debugging compilations. Hardware con�guration: K6/200, Linux 2.0.x, 64MB.

small programs, the di�erence in performance for instru-
mented programs is important (a factor of 10 for Queens).
Experience seems to show that the larger the programs are,

the smaller are the gaps between optimized and instrument-
ed applications: A factor 5 for Eval and a factor 3.2 for
Bootstrap.

As we have previously stated, Kprof does not increase
memory consumption. In contrast Kbdb does! The allo-

cation growth factors are: 4.5 times for Queens, 6.3 for E-
val and 5.2 for Bootstrap. That is, the memory overhead
introduced by Kbdb cannot be neglected. For our current
implementation of the current run time system, the overhead
for each allocated cell is of 6 words: 1 for a back pointer, 1
for producer information, 1 for age, and three other word-

s used internally by the collector, primarily to support C
debugging. These 6 additional words explain why the allo-
cation size grows so much. Without debugging information,
a Bigloo CONS is two words. That is, the run time type in-
formation is stored in the pointer to the pair (i.e., there is

no header word for pairs). This technique is no longer avail-
able in debug mode because all objects must have the very
same data layout. As a consequence, in debug mode, a pair
is 9 words large. Because of hardware alignment constraints
this turned to 10 words, that is, 5 times larger. As report-
ed by Kprof CONS allocations are dominant, it is thus not

surprising that the overall heap usage increases by about a
factor of 5, though we expect that to be reduced somewhat
in the future.

5.3 Profiling validation
Kprof is implemented on top of Gprof. That is, Kprof
re-targets the Gprof C sampling technique for Scheme. It is
usually accepted that the accuracy of the C approximations
delivered by Gprof is suÆcient. However, it is conceivable
that, due to di�erences in programming style, the Gprof

technique applied to Scheme delivers inaccurate results. For
instance, if Scheme programs make use of numerous smaller
functions, higher smapling rates could be needed than for C.
In order to show that it applies equally well to C and Scheme
we have conducted another experiment. We have measured

the number of calls per second for optimized Scheme and
C programs. The number of calls have been gathered us-
ing exact Gprof function call counting. We use the three
Scheme programs from Section 5.2. It is extremely diÆcult
to compare Scheme and C programs, especially because it is
nearly impossible to establish a set of representative bench-

mark programs. As much as possible we have tried to use
C programs that perform the same kind of computation as
our Scheme programs. The �rst one, Amd is a test released
by AMD, which uses it to estimate the speed of its proces-
sors. The second, Li is a Lisp interpreter implemented in
C, which is part of the Spec 95 benchmark suit. The last

one, Gcc is the special version of the GNU-C compiler that

is also included in the Spec 95 suite.

Prgm Function call per second

Amd (c) 2,787,920 cs-1

Queens (scm) 3,524,345 cs-1

Spec95 Li (c) 5,280,070 cs-1

Eval (scm) 1,581,905 cs-1

Spec95 Gcc (c) 1,445,991 cs-1

Bootstrap (scm) 1,453,832 cs-1

These time �gures show that function call frequency is sim-
ilar for Scheme and C. In particular, the frequency is aston-
ishingly close for Bootstrap and Gcc, both of which are

compilers. Consequently, the execution time spent in each
Scheme function is proportionally close to the time spent in
each C function. Thus, there is no a priori reason to believe
that Scheme requires di�erent sampling techniques than C.

The second step of our validation was measurement of the
accuracy of Kprof's allocation pro�ler. For this, we built
a special version of the Bigloo runtime system that reports
exactly on heap allocation performed by each function. In
that version, each time an allocator a is called, every ac-
tive function on the execution stack is marked as calling a.

When execution completes, all this information is dumped
into a �le. This experimental runtime system is unrealistic
because it is far too slow. With this version, execution of
the Bootstrap benchmark requires about 8 hours on our
hardware con�guration. However, this slow implementation
is still suÆcient for estimating the accuracy of the indirect

allocations reported by Kprof.

For the small and medium sized programs we have tested
(including Queens and Eval), Kprof allocation pro�ling is
very precise. We observed that function allocation estimates
computed by the algorithm presented in Section 3.2.2 have

an error rate of less than 5 %.

For larger programs, the accuracy of the estimates varies. If
we inspect a function f that indirectly calls an allocator a,
the quality of the estimate is highly dependent on the length

of the path from f to a, that is, how many functions calls
are needed to reach a from f . For instance, in Figure 4 the
longest path from CONCMAP to CONS is 6, the shortest is 2. If
shortest paths from f to a count a lot, that is shortest paths
are more frequently traversed (in Figure 4 the shortest path
is important because the vertex from CONCMAP to APPEND-2

represents 33.3 % of all the calls made by CONCMAP) then
the estimate for f is reliable. Otherwise, it is imprecise. In
the compiler bootstrap benchmark the paths are relatively
small, Kprof reports that the control ow analysis (cfa
stage on Figure 8) allocates 1% of all closures and 1.2 %
of the CONS cells, while actually it is responsible for 1.25

% of procedures and 2 % of the CONS cells. On the other

hand, when paths are longer the estimates are imprecise. For

the AST construction (the ast label on Figure 8), Kprof
estimates the number of CONS cells to be 4.5 % and the
number of procedures to be 7.1 %, while exact measures
report 16 % of CONS cells and 12 % of procedures. The
errors in Kprof's estimates are inherent to the lack of exact
information about the dynamic paths. Using Gprof results,

we don't think it is possible to produce more reliable results.
However, in addition to the current estimates, Kprof could
report on their accuracy. This new information could be
computed from the number of paths and their length from
a function to an allocator and it could be presented on the
same window as the estimates, or it could be based on a call

stack sampling technique.

6. RELATED WORK
Kprof is implemented on top of Gprof [6, 5]. Thus, Kprof
inheritsGprof's run-time instrumentation and its computa-
tion of the dynamic call graph. In the past, alternative tech-
niques to gather pro�le informations have been proposed [1];
however these techniques seem less accurate than Gprof's
ones.

Mprof [20] is an allocation pro�ler. It relies on techniques
which are similar to those of Kprof but with a di�erent
implementation. Instead of re-using Gprof results, mprof
implements its own monitoring and textual displayer. In-

strumented applications record all the call chains that lead
to allocation sites. In order to avoid overly large record �les,
mprof compacts its records with a technique slightly more
accurate than the Gprof's one.

The Haskell community has been fairly active at exploring

heap pro�ling for lazy functional languages. Some of this
work concentrates on studying the graphical means to dis-
play pro�ling information [14]. Other research concentrates
on providing a semantics to the evaluation of lazy languages
with pro�ling [17]. Yet other work focuses on issues close to
memory leak detection [13, 12].

The graphical display advocated in an early paper by Runci-
man and Wakeling [14] is used in all other Haskell studies.
This representation is totally di�erent from the one we use.
It displays, over the whole execution of a program, the heap
composition. That is, the heap size and the percentage of

pairs, strings, vectors, etc. It could be that such a nice
representation enables faster understanding of the memory
allocations of a program, in particular when it is used to
display a producer view. A producer is a function that calls
some allocators. This view de�nitively enables understand-

ing of who's responsible for the allocations of a program and,
more importantly, how long these objects live. We think this
representation could point out memory leaks. However, we
don't think it helps much with �xing these leaks. To �x a
leak, one has to understand why objects fail to be reclaimed,
which is not reported by heap pro�ling.

A more recent paper R�ojemo and Runciman [11] presents a
study that could help in understanding memory leaks. They
present the so-called lag, drag, void and use phases. They
characterize wasted space as that occupied by objects that
have passed their last use, or have been allocated but are not

yet in use. They present tools to analyze the presence of such

objects. Execution has to be completed before any pro�ling

information can be reported. This approach is orthogonal
to the one presented here and could be usefully combined
with it.

Kbdb has been inspired by the work of De Pauw and Se-
vitski [4], in which the authors present Jinsight, a tool for

visualizing reference patterns and tracing memory leaks in
Java programs. Jinsight operates on an instrumented JVM
that keeps track of back pointers, linking all the live object-
s of the heap. To avoid displaying individual objects they
classify objects using their type (their Java class). By suc-
cessive re�ned requests, it is possible to determine which

objects are responsible for memory leaks. Kbdb owes much
to Jinsight: the de�nition of a memory leak and the basic
framework for using it comes from that work. However, Kb-
db di�ers greatly in its representation of objects and in its
runtime overhead. Jinsight creates records describing the
pro�led heap. These records are very large. Three examples

are presented for which the records are respectively 32, 46
and 49 times larger than the pro�led heaps (110Kb heap
is recorded in a 3.5Mb record �le, 20Kb in a 0.9Mb record
and 25Kb in a 1.2Mb). Even worse, the memory needed by
Jinsight is much larger than the recorded �les (in the better
case, Jinsight uses 370 times more memory than the heap

pro�led). To visualize our 17Mb heap (the heap size of the
Bootstrap of Section 5.1.1) we would have required a 6Gb
heap!

A very primitive pointer backtracking facility for leak de-

tection was incorporated in the Xerox Portable Common
Runtime by the second author around 1995.

Although it required no per object space overhead, this re-
lied on a full search of the heap to trace back one pointer lev-
el in the reference chain. In spite of the obvious performance

issues, it proved useful in tracking down real problems in a
large system. However the implementation was tricky, in
that it tended to su�er from \accidental reection": It was
easy to mistreat the local variables used by the backtracking
code itself as roots.

7. FUTURE WORK
Kbdb is a heap visualization tool. It displays live cells in
the heap. Currently, three di�erent visualizations are im-

plemented: a type based classi�cation, an age based clas-
si�cation and a leak detection view. Kbdb could be used
to display information �a la Haskell. That is, we could im-
plement a new Kbdb module that displays producer graphs
such as the one presented in [14]. Our run time provides

enough information for this. In addition, we think it could
be interesting to provide the user with a statistical infor-
mation about the heap, such as the average number of GCs
survived by certain objects. We think a GC is a wonderful
tool for pro�ling and debugging because a GC keeps track of
all pointers. Since a GC is able to scan an entire heap, it can

answer questions such as \how many objects are pointing to
that other object". This could be used by the debugger to
exhibit, on an on-demand basis, sharing properties.

The memory overhead, and to a lesser extent the time over-
head, associated with Kbdb can be reduced by specializing

the GC so that it keeps only information relevant to Kbdb

and not other information more suited to C program debug-

ging. We expect to report performance numbers based on
such a specialization in the �nal paper.

As we have reported, for large programs such as Bigloo itself,
Kprof supplies rough estimates. We are currently exploring
another strategy for allocation pro�ling. We are developing

a technique that computes exact �gures. Because it will be
slower than the current one it won't replace it. It will be an
additional tool that could be deployed when current Kprof
fails.

Conclusion
In that paper we have presented two memory pro�lers for
the Scheme programming language. The �rst one Kprof,
reports on allocations that take place in program execution-
s. It acts as a regular pro�ler. A sampling execution is
recorded and, afterwards, allocation pro�ling information is

reported. Kprof can point out which functions consume
memory. Kprof imposes a low run time overhead and in
particular it does not enlarge memory consumption of pro-
�led executions. The second tool, Kbdb acts as a debugger.
Programs are stepped and, on a on-demand basis, heaps can
be visualized. The heaps are then represented by 2 dimen-

sional pictures in which each live cell of a heap is represented
by pixels. Zooming in that picture enables cells selection.
Kbdb is used to �x memory leaks. It slows down execu-
tions of about 10 times and it enlarges heap size of about 5
times. However, Kbdb is still spare enough to be practical
at inspecting the 17MB heap of the bootstrap of our Scheme

compiler.

Acknowledgments
Many thanks to Simon Peyton-Jones, Erick Gallesio, and
to C�eline for their helpful feedbacks on this work and to Al

Demers for his suggestion about the back-pointers imple-
mentation.

8. REFERENCES
[1] A. Appel, F. Duba, D. MacQueen, and A Tomach. Pro�ling

in the Presence of Optimization and Garbage Collection.
Technical Report CS-TR-197-88, Princeton University,
November 1988.

[2] H.J. Boehm. Space eÆcient conservative garbage collection.
In Conference on Programming Language Design and
Implementation, number 28, 6 in Sigplan Notices, pages
197{206, 1993.

[3] L. Cannon, R. Elliot, L. Kircho�, J. Miller, J. Milner,
R. Mitze, E. Schan, N. Whittinton, D. Spencer, H. Keppel,
and M. Brader. Recommended C Style and Coding
Standards, June 1990.

[4] W. De Pauw and G. Sevitski. Visualizing Reference
Patterns for Solving Memory Leaks in Java. In Proceedings
ECOOP'99, pages 116{134, Lisbon, Portugal, June 1999.

[5] J. Fenlason and B. Baccala. GNU-gprof: user manual.
Technical report, Free Software Foundation, Inc., 59 Temple
Place - Suite 330, Boston, MA 02111-1307, USA, 1997.

[6] S. Graham, P. Kessler, and McKusik M. gprof: a call graph
execution pro�ler. In Compiler Construction, SIGPLAN
Notices 17(4), pages 120{126, 1982.

[7] R. Kelsey, W. Clinger, and J. Rees. The Revised5 Report
on the Algorithmic Language Scheme. Higher-Order and
Symbolic Computation, 11(1), September 1998.

[8] D. Patterson and J. Hennessy. Computer Organization and
Design The hardware/software interface. Morgan
Kaufmann, 2nd edition, 1998.

[9] S. Peyton Jones and S. Marlow. Secrets of the Glasgow
Haskell Compiler Inliner. In Implementation of Declarative
Languages, Paris, France, September 1999.

[10] N. R�ojemo. Generational Garbage Collection without
Temporary Space Leaks. In Int'l Workshop on Memory
Management, 1995.

[11] N. R�ojemo and C. Runciman. Lag, drag, void and use {
heap pro�ling and space-eÆcient compilation revised. In
1fst Int'l Conf. on Functional Programming, pages 34{41,
Philadelphia, Penn, USA, May 1996.

[12] C. Runciman and N. R�ojemo. Heap pro�ling for space
eÆciency. In E. Meijer J. Launchbury and T. Sheard,
editors, LNCS Vol. 1129, 2nd Intl. School on Advanced
Functional Programming, pages 159{183, August 1996.

[13] C. Runciman and N. R�ojemo. New dimensions in heap
pro�ling. Journal of Functional Programming, 6, 1996.

[14] C. Runciman and D. Wakeling. Heap pro�ling of lazy
functional programs. Journal of Functional Programming,
3(2):217{245, 1993.

[15] P. Sansom. Time Pro�ling a Lazy Functional Compiler. In
Functional Programming, Glasgow 1993, Workshop in
Computing, Glasgow, 1994. Springer Verlag.

[16] P. Sansom and S. Peyton Jones. Pro�ling Lazy Functional
Programs. In Functional Programming, Glasgow 1992,
Workshop in Computing, Glasgow, 1993. Springer Verlag.

[17] P. Sansom and S. Peyton Jones. Time and space pro�ling
for non-strict, higher-order functional languages. In 22nd
ACMSymposium on Principles of Programming Languages,
San Francisco, USA, January 1995.

[18] M. Serrano. Bee: an Integrated Development Environment
for the Scheme Programming Language. Journal of
Functional Programming, ???(???):???, ????

[19] B. Zorn. The Measured Cost of Conservative Garbage
Collection. Software | Practice and Experience,
23(7):733{756, July 1993.

[20] B. Zorn and P. Hil�nger. A Memory Allocation Pro�ler for
C and Lisp Programs. In Usenix conference, pages 223{237,
1998.

