

Efficient Backtracking Instruction
Schedulers

Santosh G. Abraham
Compiler and Architecture Research
HP Laboratories Palo Alto
HPL-2000-56
May, 2000

E-mail: abraham@hpl.hp.com

instruction
scheduling,
global
scheduling,
compiler
optimization,
EPIC,
VLIW,
instruction-level
parallel
processors

Current schedulers for acyclic regions schedule operations in
dependence order and never revisit or undo a scheduling decision on
any operation. In contrast, backtracking schedulers may unschedule
already scheduled operations, in order to make space for the
operation currently being scheduled. Backtracking schedulers have
the potential for generating better schedules, e.g. more effectively
filling branch delay slots, but are more compile-time intensive and
therefore, not considered practical for production use.

In this report, we first describe conventional cycle and list schedulers
followed by two novel backtracking schedulers. The full-backtracking
OperBT scheduler enables backtracking for all operations and un-
schedules already scheduled operations to make space for the current
operation, if, among other situations, there is no available slot that
satisfies dependence constraints. This scheduler is effective in
generating high quality schedules that for instance, successfully fill
branch delay slots but likely backtracks too often. The selective
backtracking ListBT scheduler enables backtracking only when
scheduling certain types of operations, for which backtracking is
likely to be advantageous, e.g. branches. When not scheduling these
operations (or operations that were displaced through backtracking),
the scheduler reverts to efficient scheduling in dependence order. The
ListBT scheduler backtracks less often than the OperBT scheduler.
Both schedulers successfully fill a large fraction of the branch delay
slots and improve performance of the scheduled code significantly.

 Copyright Hewlett-Packard Company 2000

Internal Accession Date Only

 2

1 Introduction

With the increasing demand for high performance processors for media-intensive applications

and the improvements in the underlying semiconductor technology, processors support

increasing levels of instruction-level parallelism (ILP). Compilers that detect, exploit and match

the available levels of parallelism in these applications to the parallelism supported by the

processor are an essential component of the overall solution. In particular, scheduling technology

plays a key role in the effective compilation of applications to ILP processors. Instruction

scheduling reorders the operations in a scheduling region and packs them into instructions that

match the available ILP in the processor.

Superscalar processors have hardware to dynamically pack instructions that can be issued in

each cycle. In contrast, EPIC (Explicitly Parallel Instruction Computing) [1] and VLIW (Very

Long Instruction Word) processors rely on the compiler to statically pack operations to be issued

in each cycle. In many emerging mobile and communication applications where power

consumption has to be optimized, EPIC processors are often preferred, partly because they do

not require the additional power-consuming hardware to dynamically schedule instructions. Even

though superscalar processors are less reliant on compiler technology, superscalar performance

can also be improved through instruction scheduling. For the rest of this report, we discuss

instruction scheduling technology for EPIC/VLIW processors, even though we believe that

similar techniques can be profitably used in superscalar processors as well.

Following EPIC terminology, operations correspond to RISC-style instructions and

instructions are a group of operations that issue in a particular cycle. A scheduler schedules

individual operations to issue in certain cycles and use certain resources. A conventional

scheduler schedules operations one by one, and does not undo or revisit scheduling decisions that

were made previously. This report develops and evaluates backtracking schedulers that

sometimes undo previous scheduling decisions and reschedule operations. We believe major

trends in processor design highlight the need for such backtracking schedulers.

The first trend is toward deeper pipelines. Even a simple RISC processor may have five pipe

stages for instruction fetch, align, decode/register read, execute, and write back respectively.

 3

Modern superscalar or VLIW processors may have as many as 15 or 20 stages. In these

processors, branches are resolved in the register read or execute phases. The true latency of the

branch is the length of the pipeline to the point where the branch is resolved. Processor designs

attempt to hide the latency of the branch by predicting the branch. But if the branch prediction is

wrong, the early stages of the pipeline have to be emptied causing a bubble and a mis-prediction

penalty of as much as 10 cycles. A supplement and/or alternative to branch prediction are to

expose all or some of the latency of the branch to the compiler and enable the compiler to fill the

delay slots of the branch. Consider the latency of an edge from an arithmetic operation

generating a live-out value to a branch. This edge latency must guarantee that the branch does

not transfer control to another scheduling region before the arithmetic operation generates its

live-out value. If the branch latency exceeds the arithmetic operation latency, this edge latency is

negative, permitting the arithmetic operation to descend below the branch into its delay slots.

As demonstrated in the example in Figure 1, current schedulers that schedule instructions cycle

by cycle are not effective in handling such negative latencies and filling delay slots. In the

example, we assume a single-issue processor with an arithmetic operation latency of one, load

latency of one and a branch latency of three. On the left hand side, we show the operations in the

body of a while loop that scans to the end of a linked list. The cmpeq operation sets the

predicate register pr4 to true if register r2 is 0. The bfalse operation branches to the Loop

label if the register pr4 is false. The edges between operations are labeled with their

0: cmpeq pr4 <- r2, 0

1: add r3 <- r1 + r2

2: load r2 <- (r3)

3: bfalse pr4, Loop

4: <empty delay slot>

5: <empty delay slot>

0: cmpeq pr4 <- r2, 0

1: bfalse pr4, Loop

2: add r3 <- r1 + r2

3: load r2 <- (r3)

bfalse pr4, Loop

load r2 <- (r3)

add r3 <- r1 + r2

cmpeq pr4 <- r2, 0

1
0

1

1-3=
-2

Figure 1: Conventional scheduler does not fill branch delay slots

 4

associated latencies. Certain redundant transitive edges are not shown. Solid arrows indicate true

(flow) dependences and dashed arrows indicate anti-dependences. The edge from the load to

the bfalse indicates that the live-out value of r2 must be generated before control is

transferred to another block. This edge latency is the difference between the load latency of one

and the bfalse latency of three. The add and load operations can descend below the

bfalse into the branch’s delay slots. But conventional schedulers schedule instructions cycle

by cycle and make sure that all predecessors of an operation (e.g. the load and add) are

scheduled before the bfalse. As a result, the bfalse is scheduled after all other operations

and consequently, its delay slots are unfilled as shown in the middle column. The example also

demonstrates a backtracking scheduler. In this example, the bfalse has a higher priority than

the add and displaces the scheduled add, which displaces the scheduled load in cycle 2, which

in turn is eventually scheduled in cycle 3. Both the delay slots of the bfalse are now filled.

The schedule length is reduced from six to four, for a reduction in cycles of 33%.

The second trend is toward power-sensitive processor designs for mobile applications.

Effective branch prediction hardware requires large memories/caches to maintain a sufficient

amount of branch behavior history. The power consumption of large memories that are accessed

frequently is high and can account for a large fraction of total on-chip power consumption.

Accordingly, exposing the branch latency and reducing/eliminating prediction hardware may be

an attractive alternative for mobile processor designs.

The third trend is toward wide-issue processors. Media-intensive applications have large

amounts of parallelism that can be effectively exploited by processors that issue many operations

in each cycle. But, wide-issue processors also require a commensurate increase in the number of

register read and write ports. Increasing the number of write ports is especially difficult and

expensive. One alternative is to use a clustered approach with many register files with each

cluster (group) of functional units using its own set of register files. But, this requires compiler

techniques to map operations to clusters and may not be effective for some applications because

of excessive inter-cluster communication. Another alternative is to move away from a dedicated

write port for each functional unit to shared write ports. The compiler is now responsible for

 5

scheduling operations so that there is no resource conflict on the write ports, even among

operations with disparate latencies.

The example in Figure 2 demonstrates why conventional scheduling approaches may not

handle write port conflicts effectively. In this example, we assume a single-issue processor

where the multiply and add share the same write port and their latencies are two and one

respectively. The cmpeq operation has the highest priority and is scheduled in cycle 0. A

conventional scheduler then schedules the multiply and finds that it cannot schedule the add

in the next cycle due to the resource conflict on the write port. None of the other operations can

be issued in cycle 1. Thus, the schedule length is 8. A backtracking scheduler also schedules the

multiply in cycle 1. Since the delay in scheduling the add in cycle 3 extends the entire

schedule, the add displaces the multiply. The load uses distinct ports and can be issued in

cycle 3. Finally, as in the example in Figure 1, the branch displaces other scheduled operations

and is scheduled eventually in cycle 3. The schedule length is reduced by three cycles, two due

to filling branch delay slots and one due to filling a write port conflict slot.

Though backtracking schedulers can be more effective than conventional schedulers for a

variety of reasons, this report focuses on how backtracking schedulers can fill branch delay slots.

An alternative to backtracking schedulers is to use peephole optimization strategies that work

locally across a few instructions. For instance, a post-scheduling peephole strategy to fill delay

slots is to go through the schedule and first identify branches whose delay slots are unfilled.

0: cmpeq pr6 <- r3, r2

1: mul r3 <- r3 * r5

2: <empty - write port confl>

3: add r2 <- r5 + 1

4: load r5 <- (r4)

5: bfalse pr6, Loop

6: <empty delay slot>

7: <empty delay slot>

load r5 <- (r4)

add r2 <- r5 + 1

mul r3 <- r3 * r5

cmpeq pr6 <- r3, r2

bfalse pr6, Loop

01

0

1-3=
-2

2-3=
-1

0

Partial Schedule

0: cmpeq pr6 <- r3, r2

1: add r2 <- r5 + 1

2: mul r3 <- r3 * r5

3: load r5 <- (r4)

Complete Schedule

0: cmpeq pr6 <- r3, r2

1: add r2 <- r5 + 1

2: bfalse pr6, Loop

3: mul r3 <- r3 * r5

4: load r5 <- (r4)

Figure 2: Backtracking schedulers can handle resource conflicts

 6

Then, we attempt to swap such branches with other regular operations scheduled in earlier cycles

without violating dependence and resource constraints.

The first problem with such peephole optimization strategies is that they tend to work well

only when they are developed specifically for a particular design with its own set of latencies and

resources. In a world with a multitude of customized designs for different applications, where

each design is not a big revenue generator, it may not be cost-effective to develop these kinds of

compiler optimizations. For instance, the objective of the PICO project is to automatically

develop a customized processor for an application The PICO system walks over a large design

space[2, 3] generating a machine-description driven compiler for each design point. Any

compiler optimization must be automatically generated for each design point. It is difficult to

automatically develop and tune a peephole optimization based on a machine description. The

second problem is the local scale of peephole optimizations. Consider superblock scheduling

where the scheduling region is a chain of basic blocks with one entry point. Moving the branch

up in the first basic block of the superblock may relax the dependences between the branch and

subsequent operations further down in other basic blocks. It may be possible to move these

operations up in the schedule too. But such large-scale scheduling changes are difficult to encode

as peephole optimizations.

A basic block scheduler may first schedule the single branch exit and schedule all other

operation in reverse order relative to the branch. This approach is successful in filling branch

delay slots when there is a single branch exit. Due to the limited amount of instruction-level

parallelism in a single block, compilers tend to use larger scheduling regions such as

superblocks, which have several branch exits. Though basic block schedulers are a core

component of global scheduling approaches, the delay slot filling approach does not extend to

global schedulers.

In summary, deeper pipelines and the power requirements of prediction hardware motivate

exposing all or some of the branch latency to the compiler. Current instruction schedulers do not

generate schedules that consistently fill delay slots and handle resource conflicts effectively.

Peephole optimizations are relatively expensive to implement for each processor design under

consideration and are not effective in performing larger scale code motions that are required.

 7

Backtracking schedulers are an attractive alternative and have proven useful in modulo

scheduling [4, 5]. However, backtracking schedulers for basic block and superblock schedulers

have not been developed and their efficacy and compile-time complexity have not been studied

previously.

In this report, we first describe the overall scheduling model consisting of a processor model,

scheduler input and output model and the overall objective. Then, we describe the operation of a

conventional Cycle scheduler that schedules operations cycle by cycle or in VLIW parlance,

instruction by instruction. The List scheduler schedules ready operations in priority order, not

necessarily cycle by cycle. We demonstrate that these conventional schedulers, viz. Cycle

scheduler and List scheduler, cannot fill branch delay slots effectively. The OperBT scheduler is

a full backtracking scheduler that attempts to schedule operations in priority order. This

scheduler fills branch delay slots successfully but unschedules operations unnecessarily. The

ListBT scheduler is a selective backtracking scheduler that schedules operations in dependence

order and selectively backtracks when it is likely to be profitable. This scheduler is almost as

effective in filling branch delay slots but has better compile times than the full backtracking

scheduler. We put all four schedulers into a single software framework, which is amenable to

experimentation.

2 Scheduling Model

2.1 Processor architecture

We use a family of VLIW processors based on the HPL-PD architecture [6]. Each processor

has a set of integer, floating-point and memory (load/store) units. A particular processor is

described concisely as, say, a 312 processor, indicating that it can issue up to three integer

operations, one floating-point operation and two memory operations in a cycle. Each instruction

consists of a set of operations, where each machine operation is a RISC-style operation with

source and destination operands. Each instruction may contain several operations of a certain

type up to the number of units of that type. Thus, an instruction for a 312 processor may contain

up to three integer operations and up to a total of six operations. We assume that functional units

are fully pipelined. Thus, operations from different instructions (necessarily issued in distinct

cycles) do not compete for resources.

 8

Additionally, a processor can issue a branch operation on each cycle on one of the integer

units. The branch latency is varied from 1 through 3 and the concise notation for a particular

processor design encodes the branch latency as a suffix, e.g. 312L2 denotes a 312 processor with

a branch latency of two. The latencies of all other operations are fixed as follows: integer ALU 1,

float add 3, int/float multiply 3, int/float divide 8, load 2, and store 1. Table 1 describes the

variable parameters of six processors that we will use throughout this report.

2.2 Scheduler input

We first use the Impact compiler from the University of Illinois that is part of the Trimaran

compiler infrastructure [7] to generate an intermediate representation of the application that is in

aggressively optimized superblock form. A superblock is a linear chain of basic blocks with a

single entry and exits at each of the individual exits of the basic blocks. The Impact compiler

performs traditional global optimizations, unrolls loops up to eight times, forms superblocks and

applies ILP optimizations to each superblock. The memory disambiguation information

computed by the IMPACT compiler is part of the input. In addition, the input code contains

profile information; each superblock is annotated with weights indicating how often each

superblock is executed and how often each exit is taken when the benchmark is run on its data

set.

The Elcor compiler from HP Laboratories, which is also part of the Trimaran compiler

infrastructure [7], takes the input in superblock form, performs data-flow analyses and constructs

dependence graphs. Live-in values at the superblock entry are associated with data merge (DM)

operations. Live-out values at each superblock exit are associated with data switch (DS)

Table 1: Processor configurations: Functional units and branch latencies
Processor
configuration

Integer
units

Floating-
point
units

Load/store
units

Branch
latency

Maximum
issue
width

111L1 1 1 1 1 3
211L1 2 1 1 1 4
111L2 1 1 1 2 3
211L2 2 1 1 2 4
111L3 1 1 1 3 3
211L3 2 1 1 3 4

 9

operations. The first operation of each constituent basic block is a control-merge (CM) operation.

Control-merge, data-merge and data-switch operations are referred to as pseudo-operations

because they do not map to actual assembly-level operations. The regular operations that

ultimately map to assembly-level operations are called real operations. The nodes in the

dependence graph are composed of all real as well as all pseudo operations. Data-merge

operations are associated with and assume the schedule times of their corresponding control-

merge operation. Similarly, data switch operations are associated with and assume the schedule

times of their corresponding branch operation.

An edge between two operations is annotated with a latency indicating the minimum

separation in their schedule times and hence their issue times. Data-flow, -anti, and -output

dependence edges arise from constraints between the production/consumption of values between

operations. In addition, branch operations are associated with control dependences. Figure 3

shows a dependence graph and a valid schedule on a 111L3 processor.

2.3 Scheduler output

The scheduler assigns a valid issue cycle for each operation in the superblock. The scheduler

assigns resources to each operation so that there are no resource conflicts between scheduled

operations. The scheduler encodes the resource assignment for each operation by associating it

with a machine-specific opcode. In addition, the scheduler orders the operations within each

cycle so that all zero-cycle dependencies flow from left to right. Finally, the scheduler threads all

the non data-switch/merge operations in the superblock into a single chain in which operations

are sorted in increasing order of schedule cycles and further all operations scheduled in the same

cycle are contiguous and in the prescribed left to right order.

2.4 Scheduler objectives

The schedule generated by the scheduler must satisfy the following constraints:

1. dependence edge constraints are satisfied, i.e. for each dependence edge the issue cycle

of the destination operation minus the issue cycle of the source operation is not less

than the edge latency

 10

2. resource constraints are satisfied, i.e. in our simplified processors, the number of

operations of a certain type scheduled in a particular cycle does not exceed the number

of operations of that type. For instance in a 312L3 processor, no more than two

memory operations are scheduled in any cycle. Also, at most a single branch is

scheduled in a cycle and the number of integer operations plus branches does not

exceed three.

The scheduler optimizes the profile-weighted execution time of each superblock. The

execution time of a particular superblock is obtained by summing up the contributions of each of

its exits. The contribution of a particular exit is the product of the number of times this exit was

taken during profiling times its exit time. The exit time of a branch is the sum of the

corresponding branch’s issue cycle and the branch latency.

The performance measurements we report are based on profiling information and not based on

actually simulating the scheduled code. This performance measure does not account for stalls

caused by cache misses, branch mis-predictions, TLB misses, etc. These other factors are

expected to be similar with or without backtracking schedulers and are not expected to affect

significantly the accuracy of our evaluation of backtracking schedulers vis-a-vis conventional

cycle scheduling. Further, we do not use a separate training run using a training data set to

0: CM; cmp pr4 <- r2, 0

1: branch pr4, Label

2: add r3 <- r1 + r2

3: load r2 <- (r3)

branch pr4, Label DS r2

load r2 <- (r3)

add r3 <- r1 + r2

cmp pr4 <- r2, 0

1 0

1

1-3=
-2

CM DM r1 DM r2

0
0

0

Figure 3 Internal representation of dependence graph

 11

generate profile information and another run on an evaluation data set to evaluate the schedules

generated. All schedulers evaluated in this report use profiling information in an identical

manner to generate static priorities for operations. Therefore, we expect that using a single run

for both training and evaluation will affect the performance of all schedulers in a similar manner.

3 Conventional schedulers

In this section, we describe common pre-scheduling steps as well as two conventional

schedulers that do not backtrack. The Cycle scheduler schedules all the operations to be issued in

a particular cycle before going on to the next cycle. The List scheduler schedules operations in

dependence order, ensuring that all predecessors of an operation have been scheduled before an

operation is considered for scheduling. Secondarily, the List scheduler schedules operations in

static priority order.

3.1 Common pre-scheduling steps

The Cycle scheduler as well as the other schedulers described in this report starts by

computing early and late times for each operation. The early time of an operation is the earliest

time that it can be issued on a processor with infinite resources. The start operation is the

control-merge at the beginning of the superblock on which all operations are dependent. The

length of a path from operation A to operation B is the sum of the latencies of the edges in the

path from operation A to operation B. The early time of an operation is the longest path from the

start operation to the operation under consideration. The dependence graph of a superblock is

acyclic. We determine the early times of all operations by visiting each operation exactly once in

topological order, where we visit the ancestors of an operation before visiting an operation.

When we visit an operation, we already have computed the early times of its predecessors and

the early time of the operation is the maximum over all incoming edges of the sum of the

predecessor’s early time and the edge latency.

The late time of an operation A with respect to an exit E is the latest cycle at which operation

A can be issued on an infinite resource machine while still issuing exit E at its early time. The

late time of an operation A is computed as the early time of operation E minus the longest path

from operation A to exit E. We determine the late times of all operations by starting from the exit

 12

E and visiting the operations in the dependence graph of a superblock in reverse topological

order, where we visit the descendants of an operation before visiting an operation. The late times

of operations that are not visited in this traversal are set to maxheight, where maxheight is the

maximum early time among all operations in the superblock.

The late time of an operation with respect to an exit E represents how low or late an operation

can be issued while still being able to schedule E at its early time on an infinite resource

processor. The height of an operation with respect to an exit E is maxheight minus the late time

of that operation with respect to E. The weighted height of an operation is the sum over all

superblock exits, E, of the product of the profiled weight of E times the height of the operation

with respect to E. Though the Elcor compiler supports several priority functions, all the

evaluations reported here are based on the weighted height priority function [8].

3.2 Conventional Cycle Scheduler

Before we describe the main scheduling loop of the Cycle scheduler, we describe some

concepts and data structures.

3.2.1 Concepts and main scheduling loop

The CurrentCycle is the cycle in which operations are being scheduled currently by the Cycle

scheduler. The CurrentCycle is initially set to 0 and incremented when no more operations can

be scheduled in the CurrentCycle because of dependence or resource constraints. The

CurrentOperation is the operation currently being considered for scheduling. The ScheduleCycle

is the issue cycle assigned to an operation by the scheduler.

The EarlyCycle is the earliest cycle that an operation can be scheduled. On entering the main

scheduling loop, the EarlyCycle of an operation is set to its early time. If an operation is found to

be not schedulable at its EarlyCycle, then its EarlyCycle is incremented, so that we do not

repeatedly and unsuccessfully attempt to schedule an operation in a particular cycle.

A ready operation is an operation whose predecessors have been scheduled and a ReadyList is

a list of all ready operations. A ready operation for the CurrentCycle is a ready operation whose

EarlyCycle is not more than the CurrentCycle and whose latency constraint on its incoming

edges will not be violated by scheduling it in the CurrentCycle, i.e. the difference between the

 13

CurrentCycle and its predecessor operations’ ScheduleCycle is not less than the edge latency.

The CCReadyList is the list of all ready operations for the CurrentCycle.

The main scheduling loop iterates until all operations have been scheduled. In each iteration of

the main scheduling loop, we recompute the CCReadyList, the list of all ready operations for the

current cycle. We discuss below how to incrementally recompute ReadyList and CCReadyList. If

the CCReadyList is empty, there are no more operations that can be scheduled in the

CurrentCycle. Therefore, we increment CurrentCycle and continue on to the next iteration of the

main scheduling loop. If the CCReadyList has one or more operations, we remove the highest

priority operation from the CCReadyList. If this operation has no resource conflicts with already

scheduled operations, we schedule the operation in the CurrentCycle. Otherwise, this operation

cannot be scheduled in the CurrentCycle because of resource conflicts. We increment the

operation’s EarlyCycle to ensure that we do not consider it for scheduling again in the

CurrentCycle. This completes the description of the main scheduling loop.

3.2.2 Incremental recomputation of ReadyList and CCReadyList

The initial and any non-incremental computation of the ReadyList requires visiting all the

operations in the scheduling region and retaining those operations that are not themselves

scheduled but whose predecessors are all scheduled. The CCReadyList computation requires

iterating through the ReadyList and selecting those operations whose EarlyCycle is not less than

the CurrentCycle and whose predecessors are scheduled sufficiently in advance that all

dependence edge constraints will be satisfied if the operation is scheduled in the CurrentCycle.

We now discuss how we can incrementally recompute ReadyList and CCReadyList. The above

algorithm requires computing the CCReadyList after each scheduling iteration, which:

1. finds that CCReadyList is empty and increments CurrentCycle,

2. removes an operation from CCReadyList and schedules it for CurrentCycle,

3. removes an operation from CCReadyList and increments its EarlyCycle.

In case 1, the ReadyList is up to date, but since the CurrentCycle is incremented, we recompute

CCReadyList by iterating through all the operations in ReadyList. In case 2, the scheduling of an

 14

operation may create other ready operations and CurrentCycle ready operations. We find all

these operations by iterating through the successors of the scheduled operation. In case 3, no

additional ready operations are created, so the ReadyList and CCReadyList are up to date. Note

that case 2 above is the most time-consuming of the three cases. We have to examine all the

successors of the scheduled operation and further iterate over all the predecessors of this

successor to determine if the successor has become ready.

By maintaining a count of unscheduled incoming edges (NumUnsched) for each operation, we

obtain a further improvement in incremental recomputation of ReadyList and CCReadyList in

case 2. An unscheduled incoming edge is an incoming dependence edge from an operation that is

currently not scheduled. Before entering the main scheduling loop, we initialize each operation’s

NumUnsched with the total number of incoming edges from predecessors. When an operation is

scheduled, we visit each of its successors and decrement their NumUnsched and update their

EarlyCycle. If NumUnsched is 0, then this successor operation is now a ready operation and is

moved to the ReadyList and possibly to the CCReadyList. When we maintain NumSched, we do

not need to iterate through the predecessors of a successor operation.

Consider the example in Figure 1, where the Cycle scheduler generates the inefficient schedule

of length six. Initially, the only ready operation, CM, for cycle 0 is scheduled in cycle 0. This

operation does not use issue resources and makes the cmpeq and add ready for cycle 0. The

priority of cmpeq is higher because its height is one above the branch versus –1 for the add.

Therefore, the cmpeq is first scheduled in cycle 0 followed by the add in cycle 1. Scheduling

the add in cycle 1, makes the load ready for cycle 2. Scheduling the load in cycle 2, makes

the bfalse ready for cycle 1. Because CurrentCycle is now at cycle 2, the bfalse is only

considered for scheduling in cycle 2. But, in a single-issue processor, the bfalse resource

conflicts with the load. So, its EarlyCycle is incremented to 3 and the bfalse is scheduled in

cycle 3.

3.2.3 Cycle scheduling and peep-hole optimizations

An alternative is to use a post-scheduling peephole optimization strategy to improve the quality

of the schedule while retaining the simplicity of the cycle scheduler. A peephole optimization

 15

recognizes common inefficient patterns of operations and replaces them with a more efficient

pattern. In the context of branch scheduling, one can recognize branches whose delay slots are

unfilled and consider the validity of a swap with another operation within a neighborhood of the

unfilled delay slots of the branch. In the example in Figure 1, the branch has two unfilled delay

slots. We first consider swapping the schedules for the bfalse and the add, but this violates

the dependence edge from the add to the load. We then consider swapping the schedules for

the branch and the load, which is valid. The resulting peephole optimized schedule fills one

delay slot. Of course, a more comprehensive peephole optimization strategy can consider three-

way swaps of operations and perhaps fill both delay slots.

Figure 4(a) shows the dependence graph for a superblock consisting of two unrolled blocks

from the example in Figure 1. Figure 4(b) show the 12 cycle long schedule generated by the

Cycle scheduler. A peephole optimizer that does a three-way swap may reorganize the schedule

and shorten it to 10 cycles as shown in Figure 4(c). But, there are still two empty delay slots,

which can be filled only by moving up all the operations in cycles 6 through 9 as in Figure 4(d).

In this case, all the operations in cycles 6 through 9 move up as a group, but in general that may

not be the case. Therefore, we may not be able to generate the optimum schedule of 8 cycles

shown in Figure 4(d).

Though a peephole optimization strategy may be effective in filling some of the delay slots, it

may not produce the same quality of schedules that a more sophisticated backtracking scheduler

can generate and it may require expensive manual fine-tuning for each processor model. One

drawback of peephole optimization techniques is that they have to be specifically developed and

tuned for a particular machine with its set of resources and latencies. For instance, one may

develop a simple and effective two-way swap for a processor model with a branch latency of

two. But one may be forced to develop a more complex three-way swap when the branch latency

changes to three. Another drawback of peephole optimizers is that they do not work well when

the scope of the optimization is enlarged.

 16

3.3 List scheduler

Like the Cycle scheduler, the List scheduler also maintains ReadyList, a list of operations

whose predecessors have already been scheduled. In each iteration of the main scheduling loop,

it selects the highest static priority operation from the ReadyList and schedules it in the earliest

cycle possible that satisfies all resource constraints, starting with the EarlyCycle of the operation.

In the List scheduler, EarlyCycle is the earliest cycle that an operation can be scheduled without

violating any dependence constraints with its scheduled predecessors.

Once an operation is scheduled, the ReadyList is updated. As described in Section 3.2.2, each

operation has an associated NumUnsched count, indicating the number of incoming dependence

edges whose source operations have not been scheduled. After an operation is scheduled, we

iterate through all its outgoing edges and decrement the NumUnsched count and update the

(b)

0: CM; cmp pr4 <- r12, 0
1: add r3 <- r1 + r12
2: load r2 <- (r3)
3: branch pr4, SideExit
4: <empty delay slot>
5: <empty delay slot>
6: cmp pr14 <- r2, 0
7: add r13 <- r1 + r2
8: load r12 <- (r13)
9: branch pr14, Loop
10: <empty delay slot>
11: <empty delay slot>

0: CM; cmp pr4 <- r12, 0
1: branch pr4, SideExit
2: add r3 <- r1 + r12
3: load r2 <- (r3)
4: <empty delay slot>
5: <empty delay slot>
6: cmp pr14 <- r2, 0
7: branch pr14, Loop
8: add r13 <- r1 + r2
9: load r12 <- (r13)

(c)

0: CM; cmp pr4 <- r12, 0
1: branch pr4, SideExit
2: add r3 <- r1 + r12
3: load r2 <- (r3)
4: cmp pr14 <- r2, 0
5: branch pr14, Loop
6: add r13 <- r1 + r2
7: load r12 <- (r13)

(d)

branch pr4, SideExit DS r13 DS r2

load r2 <- (r3)

add r3 <- r1 + r12

cmp pr4 <- r12, 0

1

1

1-3=
-2

CM DM r1 DM r12

0

0

branch pr14, Loop DS r12

load r12 <- (r13)

add r13 <- r1 + r2

cmp pr14 <- r2, 0

1

1

1-3=
-2

(a)

0

0

1

10

Figure 4: Peephole optimizations

 17

EarlyCycle of the successor operations. We move any operation whose NumUnsched count

reaches zero to the ReadyList.

In the List scheduler, operations are not necessarily scheduled cycle by cycle. We may

schedule an operation in cycle 4 and then schedule the next operation in cycle 2. However, since

we schedule an operation’s predecessors prior to scheduling an operation, we are guaranteed that

we can always make forward progress and backtracking is not needed. Further, List scheduling

is very efficient in compile time because once an operation is selected for scheduling it is always

scheduled.

For the example in Figure 1, the List scheduler generates the same inefficient schedule of

length six as the Cycle scheduler. As in the Cycle scheduler, the cmpeq, add and load are

scheduled in cycles 0, 1, 2 respectively. Scheduling the load in cycle 2, makes the bfalse

ready for cycle 1. Therefore, unlike the Cycle scheduler, the List scheduler attempts to schedule

the bfalse starting at cycle 1. We fail to schedule the bfalse in cycles 1 and 2 due to

resource conflicts with the already scheduled add and load. The bfalse is eventually

scheduled in cycle 3. If there were no resource conflicts in the earlier cycles, the List scheduler

would have scheduled the bfalse earlier, filling some of the delay slots. But, in this example,

the List scheduler does not fill branch delay slots.

4 Backtracking schedulers

In this section, we describe two novel backtracking schedulers; OperBT and ListBT. The full-

backtracking OperBT scheduler enables backtracking for all operations and unschedules already

scheduled operations to make space for the current operation. The selective backtracking

scheduler ListBT enables backtracking only when scheduling certain types of operations, for

which backtracking is likely to be advantageous, e.g. branches. When not scheduling these

operations (or operations that were displaced through backtracking), the scheduler reverts to

efficient scheduling in dependence order like the List scheduler

4.1 Common concepts

As in the conventional scheduler, we compute early times, late times and priorities for each

operation before entering the main scheduling loop. Unlike the conventional scheduler, not all

 18

predecessors of an operation may be scheduled at the time when an operation is considered for

scheduling. Therefore, the EarlyCycle of an operation is the maximum of its early time and the

earliest time that an operation can be issued while satisfying all dependence edges from

predecessor scheduled operations. Also, unlike the conventional scheduler, there are bounds on

how late an operation can be scheduled. The LateCycle of an operation is the latest time that an

operation can be issued while satisfying all the dependence edges to successor scheduled

operations.

A resource conflict prevents the scheduling of CurrentOperation in CurrentCycle if the

scheduled operations have reserved resources that are required by the CurrentOperation. The

CurrentOperation has a resource conflict with a particular scheduled operation if that operation

has reserved some resources that are required by CurrentOperation and there are no other free

resources of that type available. A dependence conflict indicates that a dependence edge latency

from a scheduled operation to the CurrentOperation is not satisfied if the CurrentOperation is

scheduled at CurrentCycle. The set of conflicting operations is the set of all operations that either

have resource or dependence conflicts with CurrentOperation.

Since the backtracking schedulers do not always schedule operations in dependence order, it is

possible that an operation’s predecessor(s) and successor(s) may already be scheduled. As a

result, there may only be a limited (or even null) range of cycles in which the CurrentOperation

may be scheduled without violating dependencies with already scheduled operations. Even when

a range of cycles is available, the operation may have resource conflicts that prevent it from

being scheduled in these cycles.

In such situations, we need a mechanism to make forward progress. The backtracking

schedulers may unschedule other conflicting operations in order to schedule CurrentOperation in

a particular cycle. A scheduled operation is unscheduled by removing its association with a

particular issue cycle, releasing resources that it may have reserved, putting it back among the

pool of operations to be scheduled and in general, undoing any steps that were performed when

the operation was last scheduled. While iterating through the cycles ranging from EarlyCycle

through LateCycle, the backtracking scheduler may displace schedule by first unscheduling

lower priority conflicting operations and then scheduling CurrentOperation. If the scheduler is

 19

unable to normal or displace schedule CurrentOperation in the cycles ranging from EarlyCycle

through LateCycle, the backtracking scheduler forcibly schedules by first removing operations

that conflict with CurrentOperation at a chosen ForceCycle and then scheduling

CurrentOperation in ForceCycle. The forcible scheduling mechanism ensures that once we

select a CurrentOperation, we are always able to successfully schedule CurrentOperation, even

if that requires unscheduling other operations.

The next problem that we may encounter is that the scheduler gets into an infinite loop in

which it, say, unschedules operation A to schedule B and later unschedules operation B to

schedule operation A in the same cycle. In order to avoid such termination problems, we

maintain AttemptedCycle with each operation. AttemptedCycle is the last attempted cycle that we

forcibly scheduled that operation. When we first unschedule a particular operation, we set its

AttemptedCycle to ScheduleCycle-1, where ScheduleCycle is the cycle in which the operation

was scheduled. ForceCycle is the cycle in which we forcibly schedule CurrentOperation and we

choose ForceCycle to be the maximum of EarlyCycle and AttemptedCycle+1 and set

AttemptedCycle to the updated ForceCycle. Thus, the ForceCycle in which a particular operation

is forcibly scheduled is guaranteed to increase monotonically.

4.2 OperBT scheduler

The OperBT scheduler maintains an UnschedList, a sorted list of operations that have not been

scheduled in priority order, where the priority is as computed for instance by the weighted

priority algorithm. The main scheduling loop iterates until UnschedList is empty. In each

iteration, we remove the highest priority operation from the UnschedList and set it to

CurrentOperation. We compute the EarlyCycle, LateCycle and ForceCycle of

CurrentOperation. We iterate through the cycles from EarlyCycle through LateCycle attempting

to schedule an operation. We normal schedule the operation at CurrentCycle, if resources are

available. Otherwise, we displace schedule CurrentOperation at CurrentCycle if CurrentCycle is

not less than ForceCycle and if the conflicting operation(s) occupying the required resources

have lower priority. In the latter case, we unschedule the conflicting operations. If we do not

schedule the operation after iterating through the cycles ranging from EarlyCycle through

LateCycle, we force schedule CurrentOperation at ForceCycle. Regardless of the relative

 20

priority of the resource and dependence conflicting operations, we unschedule all the conflicting

operations and forcibly schedule the CurrentOperation in the ForceCycle. The pseudo-code for

the OperBT scheduling algorithm is shown in Figure 5.

Lemma 1

The OperBT scheduler does not deadlock and does terminate.

Proof:

Once we select a CurrentOperation from UnschedList, we always schedule it, either in the

cycles ranging from EarlyCycle through LateCycle or at ForceCycle. Therefore, the scheduler

does not deadlock.

 Initialize EarlyCycle, LateCycle and compute priorities of operations
 while (CurrentOperation = UnschedList.pop())
 Compute EarlyCycle and LateCycle for CurrentOperation
 ForceCycle = max (AttemptedCycle+1, EarlyCycle)
 success = FALSE
 for (CurrentCycle ranging from EarlyCycle through LateCycle)
 if (resources required by CurrentOperation available)
 Schedule CurrentOperation in CurrentCycle
 success = TRUE
 break
 elsif ((CurrentCycle >= ForceCycle) AND
 (HasHigherPriority (CurrentOperation, CurrentCycle)))
 Unschedule conflicting operations and push them back into UnschedList
 Schedule CurrentOperation in CurrentCycle
 success = TRUE
 break
 endif
 endfor
 if (success = FALSE)
 Unschedule conflicting operations at ForceCycle
 and push them back into UnschedList
 Schedule CurrentOperation in ForceCycle
 Set AttemptedCycle to ForceCycle for CurrentOperation
 endif
 endwhile

Figure 5: OperBT scheduler

 21

For our purposes, operation latency is the maximum number of cycles for which an operation

uses resources in the processor. Since register writes (or forwarding) also use resources, the

operation latency also limits the latency of outgoing edges. Let MaxLatency be the maximum of

the operation latency of any operation and the edge latency between any two operations. Let SL

be the sum of the absolute values of the dependence edge latencies and the operation latencies.

Let SLB be SL times the number of operations in the dependence graph.

In each scheduling step, the scheduler may (1) schedule an operation without unscheduling

(normal), (2) unschedule lower priority operations and schedule an operation at CurrentCycle

(displace), (3) unschedule high priority operations and schedule an operation at ForceCycle

(force). Normal scheduling reduces the size of UnschedList that contains operations that are not

currently scheduled. Displace and force scheduling may increase the size of UnschedList. Let PR

be the priority of the highest priority operation in UnschedList.

Assume that the scheduler does not terminate. The scheduler must intersperse force scheduling

that may increase PR with normal and displace scheduling that never increases PR. Otherwise,

PR decreases indefinitely and the UnschedList becomes empty terminating the scheduler.

Therefore it must forcibly schedule at least one operation A more than SLB times. Since the

AttemptedCycle is at least advanced by 1 on each forcible schedule, the ScheduleCycle of A must

advance past SLB.

Consider a partial schedule, PS, in which A has a ScheduleCycle more than SLB. The slack of a

dependence edge is defined when both its source and destination operations are scheduled in the

partial schedule and is equal to the difference between the destination operation’s ScheduleCycle

and the sum of the source operation’s ScheduleCycle and the edge latency. Obviously, the slack

of some dependence edges in PS in a path from the start operation to A have a slack more than

SL.

Consider the set C of scheduled operations in PS that are connected to the Start operation by

dependence edges with slack less than SL. This set does not contain A because A’s ScheduleCycle

is more than SLB and at least one edge along a path from the Start operation to A must have a

 22

slack more than SL. Consider the non-empty set D of the remaining scheduled operations in PS,

which includes A.

Consider the subgraph of the dependence graph induced by the operations in D. This subgraph

is acyclic because the entire dependence graph is acyclic. Choose a root, R, of this subgraph, SG

(an operation with no incoming edges from operations in D). When R was last scheduled, it must

have had a scheduled predecessor P scheduled within MaxLatency of R’s current ScheduleCycle

(if R did not have resource conflicts with other operations) or within SL of R’s current

ScheduleCycle (if R had resource conflicts with potentially all the operations). Otherwise, the

EarlyCycle of R would at most be MaxLatency more than the maximum ScheduleCycle of the

operations in C and the operation R would have been scheduled with less than a slack of SL on

its incoming edges.

This scheduled predecessor P is currently unscheduled because otherwise R would not be a

root of the subgraph SG. We now consider the partial schedule PS’, in which P was last

scheduled. We recursively apply the argument we used for R in PS to P in PS’. Since the number

of such currently unscheduled predecessors is finite, we conclude that some ancestor of R

currently unscheduled in PS, did not have any scheduled predecessors when it was last scheduled

within SL of its last ScheduleCycle and yet it was scheduled with a slack of more than SL with

respect to the operations in C, something the OperBT scheduler would not do. This leads to a

contradiction and the OperBT scheduler does terminate.�

Experimental results indicate that the OperBT scheduler is very effective in filling the delay

slots of branches. Further, the OperBT scheduler is guaranteed to terminate with a complete

schedule. However, the number of unscheduling steps might be excessive. In the next section, we

develop a modified backtracking algorithm that normally schedules operations in dependence

order to reduce the number of backtracking (unscheduling) steps.

4.3 ListBT Scheduler

The ListBT scheduler normally schedules operations in dependence order. Only ready

operations, those whose predecessors are scheduled, are considered for scheduling. Among the

ready operations, the ListBT scheduler selects operations based on priority, as computed prior to

 23

entering the main scheduling loop. Finally, the ListBT scheduler backtracks by enabling certain

operations to unschedule lower priority scheduled operations.

Prior to entering the main scheduling loop, the ListBT scheduler calculates early and late times

and priorities for each operation. Additionally, only certain operations are permitted initially to

unschedule other operations and the AttemptedCycle of these operations are set to early time

minus unity. The ReadyList, the set of operations whose predecessors are scheduled, is initially

set to the start operation of the superblock.

The ListBT scheduler selectively enables forcible scheduling to control the amount of

unscheduling, while still maintaining the quality of the overall schedule. Given the objective of

successfully filling branch delay slots, only operations with negative incoming latencies are

allowed to unschedule other operations. For our machine models, only branches have negative

incoming edge latencies. If the objective is, say, to handle write port resource conflicts between

high-latency and low-latency operations, we allow the low-latency operations to unschedule

operations.

Initially, operations are scheduled in dependence order. Therefore the LateCycle of an

operation is infinity and the operation can always be successfully scheduled in some cycle. Once

an operation is unscheduled, it may have a finite range of valid cycles between its EarlyCycle

and LateCycle. If unscheduling is disabled for this operation, it may not be possible to

successfully schedule this operation, leading to a deadlock. Therefore, unscheduling is enabled

for any operation that is unscheduled for the first time and its AttemptedCycle is set to the

ScheduleCycle-1. The ForceCycle of an operation is the minimum cycle in which an operation

may be forcibly scheduled by unscheduling other operations. The ForceCycle of an operation is

the maximum of its EarlyCycle and AttemptedCycle+1.

The main scheduling loop iterates until the ReadyList is empty. In each iteration, we remove

the highest priority operation from the ReadyList and set it to be the CurrentOperation. We find

EarlyCycle and LateCycle for this operation; LateCycle is infinity unless this operation has been

unscheduled. We iterate through the range from EarlyCycle and LateCycle. If resources are

available for the CurrentCycle, we schedule the operation for the CurrentCycle. Otherwise, if

 24

unscheduling is enabled for CurrentOperation and the CurrentCycle is not less than the

ForceCycle of the operation, and the conflicting operations are lower in priority than

CurrentOperation, we first unschedule all conflicting operations and then forcibly schedule the

operation for the CurrentCycle. If we do not schedule the operation in the range EarlyCycle

through LateCycle then the operation must be an unscheduled operation (because only such

operations have LateCycle less than infinity) and unscheduling must be enabled for this

operation. We forcibly schedule the operation at ForceCycle, unscheduling operations that have

dependence or resource conflicts with CurrentOperaton being scheduled at ForceCycle. When

an operation is forcibly scheduled, its AttemptedCycle is set to the ForceCycle. The pseudo-code

for the ListBT scheduling algorithm is shown in Figure 6.

As in OperBT, the previous backtracking scheduler, we never forcibly schedule an operation

in the same cycle twice. Using this property and other aspects of the scheduling algorithm, we

can show that ListBT always terminates.

5 Framework for scheduling algorithms

Though we have discussed four schedulers that differ substantially in their behavior, they

require a fair amount of shared functionality. This common part is a substantial fraction of the

software code base for the scheduler. There are the common pre-scheduling steps such as early

and late time calculation and priority calculation. There are also some common utilities that are

required in the main scheduling loop such as calculating the EarlyCycle and LateCycle, finding

the conflicting operations, determining if an operation has higher priority than its conflicting

operations, forcibly scheduling an operation in a cycle, scheduling and unscheduling operations.

This common part also includes various post-scheduling steps such as reordering/rethreading the

operations in schedule order, marking operations that have speculated, treating branches for

different machine models and compiling models and checking the schedule for correctness.

This section puts all the schedulers that we discussed in the same software framework. This

framework helps us to understand the different components of a scheduling algorithm and also

enables us to factor the code base effectively, so that the common parts of the scheduler are

leveraged across all schedulers. In our framework, there are three distinguishing characteristics

 25

about a particular scheduler, viz. which operation is chosen next for scheduling, which cycles do

we attempt to normally schedule an operation, and which cycle, if any, can we forcibly schedule

an operation by unscheduling other operations.

The Priority class is responsible for choosing the next operation for scheduling. Before

entering the main scheduling loop, the Priority class is initialized with a new scheduling

region. In the main scheduling loop, the Priority.pop() function delivers the next

operation to be scheduled, accounting for dependence, priority and other constraints. If an

 Initialize EarlyCycle, LateCycle and compute priorities of operations
 ReadyList = Start operation
 while (CurrentOperation = ReadyList.pop())
 Compute EarlyCycle and LateCycle for CurrentOperation
 ForceCycle = max (AttemptedCycle+1, EarlyCycle)
 success = FALSE
 for (CurrentCycle ranging from EarlyCycle through LateCycle)
 if (resources required by CurrentOperation available)
 Schedule CurrentOperation in CurrentCycle
 Update ReadyList with ready successors of CurrentOperation
 success = TRUE;
 break
 elsif ((unscheduling enabled for CurrentOperation) AND
 (CurrentCycle >= ForceCycle) AND
 (HasHigherPriority (CurrentOperation, CurrentCycle)))
 Unschedule conflicting operations and update ReadyList
 Enable unscheduling for conflicting operations
 Schedule CurrentOperation in CurrentCycle and update ReadyList
 success = TRUE
 break
 endif
 endfor
 if (success = FALSE)
 Unschedule conflicting operations at ForceCycle and update ReadyList
 Enable unscheduling for conflicting operations
 Schedule CurrentOperation in ForceCycle and update ReadyList
 Set AttemptedCycle to ForceCycle for CurrentOperation
 endif
 endwhile

Figure 6: ListBT scheduler

 26

operation is unscheduled or is not successfully scheduled, the Priority.push() function

puts the operation back on the unscheduled list of operations.

There are several derived classes (specializations) of the Priority class that are used with

the specific schedulers discussed earlier. The PriorityCycle class maintains the ReadyList,

a list of ready operations and MinCycle, the minimum cycle that any of these ready operations

can be scheduled without violating dependence constraints with predecessor scheduled

operations. The PriorityCycle also maintains CCReadyList, the list of ready operations that

can be issued at MinCycle. The PriorityCycle.pop() function delivers the ready

operation with the highest priority among the operations in CCReadyList. The

PriorityCycle.push() function increments the EarlyCycle of an operation and puts the

operation back on the ReadyList.

The PriorityDependence.pop() delivers highest priority operation among all ready

operations (not necessarily those schedulable at MinCycle). The PriorityDependence.

push() updates the AttemptedCycle of an operation to its current ScheduleCycle-1, if it is the

first time that the operation is being unscheduled and puts the operation back on the unscheduled

set of operations.

The PriorityStatic.pop() function delivers the highest priority operation among all

operations (not necessarily among the ready operations). The PriorityStatic.push()

puts the operation back on the unscheduled list of operations with an AttemptedCycle of

ScheduleCycle-1, if it has not been scheduled previously.

The Cycle class is responsible for deciding the CurrentCycle in which CurrentOperation

should be scheduled. At the beginning of each iteration of the scheduling loop, the Cycle class

is initialized with the CurrentOperation and its EarlyCycle and LateCycle. The main scheduling

loop then repeatedly invokes Cycle.nextCycle() to obtain CurrentCycle till this

function returns NULL. The CycleEtime.nextCycle() returns EarlyCycle on the first

invocation and NULL thereafter. The CycleSequential.nextCycle() returns the value

of an internal counter that is initially set to EarlyCycle and that increments following each

 27

invocation. After the counter advances past LateCycle, CycleSequential.nextCycle()

returns NULL.

The Unschedule class is responsible for deciding if the scheduler should forcibly schedule

CurrentOperation. At the beginning of each iteration of the scheduling loop, the Unschedule

class is initialized with CurrentOperation, EarlyCycle and LateCycle. The

Unschedule.getForceCycle() either returns a ForceCycle or returns NULL to indicate

that the scheduler should not forcibly schedule the CurrentOperation. The

UnscheduleNever.getForceCycle() always returns NULL and never permits forcible

scheduling. The UnscheduleSometimes.getForceCycle() returns NULL if the

CurrentOperation has an un-initialized value for AttemptedCycle, otherwise it returns the

maximum of EarlyCycle and (AttemptedCycle+1). The UnscheduleAlways. -

getForceCycle() returns the maximum of EarlyCycle and (AttemptedCycle+1) always.

The Scheduler class constructs specialized versions of the Priority, Cycle and

Unschedule classes. Prior to scheduling each region, the Scheduler initializes the

Priority class. In the main scheduling loop, the Scheduler repeatedly pops an operation

from the Priority class and sets it to the CurrentOperation. When there are no more

operations to be scheduled, the Priority class returns NULL and the scheduling loop

terminates. The Scheduler calculates the EarlyCycle and LateCycle of CurrentOperation based

on scheduled predecessors and successors of CurrentOperation respectively. The Scheduler

initializes the Cycle and Unschedule classes. Then, it relies on the Cycle class to iterate

over all the valid cycles for CurrentOperation, until CurrentOperation is successfully scheduled

or all the valid cycles are exhausted. In each valid CurrentCycle, the Scheduler first checks to

see if sufficient resources are available to schedule CurrentOperation. If so, it schedules

CurrentOperation in CurrentCycle. Otherwise, it next checks to see if

Unschedule.getForceCycle() returns a non-NULL ForceCycle and if this ForceCycle is

not more than CurrentCycle, and if the conflicting operations (UnscheduleSet) with

CurrentOperation are of lower priority relative to CurrentOperation. If so, it forcibly schedules

CurrentOperation in CurrentCycle and removes the operation in UnscheduleSet from the

 28

partially generated schedule. If an operation cannot be scheduled in any of the valid cycles, and

if Unschedule.getForceCycle() returns a non-NULL ForceCycle, the scheduler

removes all conflicting operations from the partial schedule and forcibly schedules

CurrentOperation in ForceCycle. Otherwise (if Unschedule.getForceCycle() returns

NULL), the Scheduler invokes Priority.push() to push the CurrentOperation back into the

unscheduled set of operations.

The three schedulers that we discussed before, the CycleScheduler, ListScheduler,

OperBTScheduler, and ListBTScheduler are all implemented using the same

Schedule class and surrounding infrastructure. The only difference is that when we construct

each of the Schedulers, we use certain combinations of specialized versions of the

Priority, Cycle and Unschedule classes. Table 2 shows the specialized classes that are

used to implement a particular scheduler. We emphasize that the main scheduling loop that

implements all four schedulers is identical.

6 Experimental evaluation

The schedulers were evaluated on a set of Unix benchmarks, viz. grep, cmp, eqn, qsort, tbl, wc,

yacc, cccp. A 111L3 processor configuration with a branch latency of three and one each of

integer, floating and memory units was used. The OperBT scheduler schedules each operation

almost twice (1.95) compared to once for the Cycle scheduler, each operation on the average

being scheduled 1.32 times normally and 0.63 times otherwise (displace or force). On

approximately half the forcible scheduling steps, only one operation is unscheduled though in a

few cases seven operations are unscheduled. Due to the fairly large number of unscheduling

Table 2: Schedulers and associated specialized Priority, Cycle and Unschedule classes

Scheduler Priority Cycle Unschedule
CycleScheduler PriorityCycle CycleEtimeOnly UnscheduleNever

ListScheduler PriorityDependence CycleSequential UnscheduleNever

OperBTScheduler PriorityStatic CycleSequential UnscheduleAlways

ListBTScheduler PriorityDependence CycleSequential UnscheduleSometimes

 29

steps, the OperBT scheduler is substantially slower than the non-backtracking Cycle and List

schedulers. The ListBT scheduler backtracks less often and runs almost as fast as the List

scheduler. The ListBT scheduler runs even faster than the Cycle scheduler, because the ListBT

scheduler always schedules the CurrentOperation it selects, whereas the Cycle scheduler

may repeatedly push the CurrentOperation back to the ReadyList if resources are not

available in the CurrentCycle.

Both backtracking schedulers generate similar quality schedules, with the OperBT scheduler

only slightly better than the List scheduler. The improvement in estimated dynamic cycles using

the backtracking schedulers averages around 2.2%. The percentage improvements in overall

dynamic cycles are limited by the fact that empty delay slots account for a small fraction of

overall cycles and the backtracking schedulers are targeted at filling these delay slots. A more

comprehensive evaluation of the schedulers is currently underway in collaboration with

Professor Waleed Meleis and graduate student, Ivan Baev, from Northeastern University,

Boston.

7 Related Work

The early work on parallel instruction scheduling for processors was carried out in the context

of microcode compaction [9-11]. The pre-scheduling steps such as the construction of

dependence graphs are also examined in [12]. A reservation table, which was originally

developed in the context of designing hardware pipelines [13], represents resource constraints

during scheduling. Each row of a reservation table represents a particular cycle and each column

a particular resource. A cell in a reservation table records the usage of the corresponding

resource in a particular cycle. Eichenberger and Davidson describe efficient methods for

representing resource constraints during scheduling [14].

Heuristics for scheduling instructions in a basic block for pipelined processors [15, 16] and

superscalar processors [17] typically rely on ordering the operations in a block based on priority

functions and scheduling the operations one by one as in Cycle or List scheduling. Approaches

for basic block scheduling using optimization techniques such as finite state automata have been

studied [18]. The joint optimization of scheduling and register allocation is addressed by [19]

 30

and [20]. General backtracking algorithms for constraint satisfaction problems have been

evaluated [21].

The amount of parallelism within a basic block is limited and not sufficient for modern EPIC

processors. Global schedulers use a larger scheduling region and perform code motion between

basic blocks. The trace scheduler constructs a trace consisting of a linear chain of basic blocks

with multiple entries and exits [8, 22, 23]. A major concern is the complexity of inserting

compensation code in the side entries/exits due to code motion between basic blocks in the

global scheduling region. Global schedulers restrict the scheduling regions to reduce this

complexity [24-26]. The schedulers described in this report use the superblock [27] [28] and

hyperblock [29, 30] as the global scheduling region. Wavefront scheduling uses a region

consisting of a tree of basic blocks [31].

Meld scheduling extends the scope of the optimization without increasing the complexity

associated with code motion [32, 33]. Latency constraints are allowed to propagate outside the

scheduling region, thereby giving some of the benefits of increasing the scheduling regions size

Programs spend a significant fraction of the total execution time in loops and special

scheduling techniques have been developed for loops [34] [35]. The Cydrome Cydra 5 compiler

uses modulo scheduling to schedule loops [36] [37]. Rau developed the iterative modulo

scheduler, which backtracks in a manner similar to the ListBT scheduler [4, 5]. Modulo

schedulers attempt to schedule for a particular iteration interval (II) and typically increase the II,

if it is unable to generate a schedule within the prescribed compile time budget. Any schedule

that meets a particular II are equivalent to the first order. These unique characteristics of modulo

scheduling give rise to a different set of algorithmic choices. Firstly, the iterative modulo

scheduler may occasionally get locked in a repetitive orbit. However, once the compile time

budget is exhausted, the iterative modulo scheduler attempts to schedule using a different II. The

OperBT and ListBT are guaranteed to never revisit the same partial schedule and never get into

a repetitive orbit. This guarantee is essential because there is no option similar to increasing the

II and trying to schedule again. Secondly, the iterative modulo scheduler must account for a

cyclic dependence graph, which may constrain LateCycle even when no successor from the same

loop iteration has been scheduled. The OperBT and ListBT scheduler does not face such

 31

constraints. Thirdly, the schedule length is the primary optimization metric in acyclic scheduling

as opposed to a secondary metric in modulo scheduling. In order to optimize schedule lengths,

ListBT and OperBT are allowed to unschedule operations in any cycle ranging from EarlyCycle

through LateCycle (not necessarily at the ForceCycle), provided the operation has higher priority

than the operations in UnscheduleSet.

8 Conclusions

This report motivates the need for backtracking schedulers by presenting processor features

such as branch delay slots and resource conflicts that cannot be addressed adequately by non-

backtracking schedulers. We present the familiar Cycle and List schedulers and describe the

scheduling infrastructure. We then present two backtracking schedulers that fill branch delay

slots. The OperBT full backtracking scheduler picks operations in priority order and permits any

operation to unschedule already scheduled operations. The ListBT selective backtracking

scheduler picks operations primarily in dependence order and therefore greatly reduces the need

for backtracking. Preliminary experiments demonstrate that both backtracking schedulers

successfully fill a significant fraction of branch delay slots, providing an increase in schedule

quality of between 1-3%.

Acknowledgements

The ListBT scheduler arose from suggestions by Scott Mahlke and Bob Rau. The Elcor

scheduling framework was architected in conjunction with Vinod Kathail and implemented with

assistance from Brian Dietrich. The author thanks all the members of the Compiler and

Architecture Research (CAR) group at Hewlett-Packard Laboratories who were engaged in the

Elcor compiler project. Waleed Meleis and Ivan Baev provided useful feedback and comments

on earlier versions of this report.

References

[1] M.S. Schlansker and B.R. Rau, “EPIC: Explicitly Parallel Instruction Computing,” IEEE Computer,
pp. 37-45, Feb. 2000.

[2] S.G. Abraham and S.A. Mahlke, “Automatic and efficient evaluation of memory hierarchies for
embedded systems,” Proc. Int. Symp. Microarchitecture, pp. 114-125, Haifa, Israel, Nov. 1999.

 32

[3] S.G. Abraham and S.A. Mahlke, “Automatic and efficient evaluation of memory hierarchies for
embedded systems,” Technical Report HPL-1999-132, Hewlett-Packard Laboratories,
http://www.hpl.hp.com/techreports/1999/HPL-1999-132.pdf Nov. 1999.

[4] B.R. Rau, “Iterative modulo scheduling,” HPL-94-115, Hewlett Packard Laboratories,
http://www.hpl.hp.com/techreports/94/HPL-94-115.html Nov. 1995.

[5] B.R. Rau, “Iterative modulo scheduling,” Int. J. Parallel Programming, vol. 24, no. 1, pp. 3-64, Feb.
1996.

[6] V. Kathail, M.S. Schlansker, and B.R. Rau, “HPL PlayDoh Architecture Specification: Version 1.1,”
Technical Report HPL-93-80 (R.1), Hewlett-Packard Laboratories, Feb. 2000 (originally published as
"HPL PlayDoh Architecture Specification: Version 1.0", Feb. 1991).

[7] “Trimaran compiler infrastructure,” http://www.trimaran.org 1998.

[8] J.A. Fisher, “Global code generation for instruction-level parallelism: Trace scheduling-2,” Technical
Report HPL-93-43, Hewlett Packard Laboratories, June 1993.

[9] S. Davidson, et al., “Some experiments in local microcode compaction for horizontal machines,”
IEEE Trans. Computers, vol. C-30, no. 7, pp. 460-477, July 1981.

[10] B.R. Rau and J.A. Fisher, “Instruction-level parallel processing: History, overview and perspective,”
Technical Report HPL-92-132, Hewlett Packard Laboratories, Oct. 1992.

[11] B.R. Rau and J.A. Fisher, “Instruction level parallel processing: History, overview and perspective,”
J. Supercomputing, vol. 7, no. 1, pp. 9-50, May 1993.

[12] M. Smotherman, et al., “Efficient DAG construction and heuristic calculation for instruction
scheduling,” Proc. Ann. Symp. Microarchitecture, pp. 93-102, 1991.

[13] E.S. Davidson, et al., “Effective control for pipelined computers,” Proc. COMPCON '75, pp. 181-
184, San Francisco, Feb. 1975.

[14] A.E. Eichenberger and E.S. Davidson, “Reduced multipipeline machine description that preserves
scheduling constraints,” Proc. ACM SIGPLAN Symp. Prog. Lang. Des. & Impl. (PLDI), pp. 12-22,
May 1996.

[15] P.B. Gibbons and S.S. Muchnick, “Efficient instruction scheduling for a pipelined architecture,”
Proc. ACM SIGPLAN Symp. Compiler Construction, pp. 11-16, July 1986.

[16] J.L. Hennessy and T. Gross, “Postpass code optimization of pipeline constraints,” ACM Trans. Prog.
Lang. & Sys., vol. 5, no. 3, pp. 422-448, July 1983.

[17] H.S. Warren, “Instruction scheduling for the IBM RISC System 6000 processor,” IBM J. Res. &
Dev., vol. 34, no. 1, pp. 85-92, Jan. 1990.

[18] V. Bala and N. Rubin, “Efficient instruction scheduling using finite state automata,” Int. J. Parallel
Programming, vol. 25, no. 2, pp. 53-82, Apr. 1997.

[19] J.R. Goodman and W.C. Hsu, “Code scheduling and register allocation in large basic blocks,” Proc.
ACM Int. Conf. Supercomputing, pp. 442-452, 1988.

[20] S.S. Pinter, “Register allocation with instruction scheduling: A new approach,” Proc. ACM
SIGPLAN Conf. Prog. Lang. Des. & Impl. (PLDI), pp. 248-257, June 1993.

[21] G. Kondrak and P.v. Beek, “A theoretical evaluation of selected backtracking algorithms,” Artificial
Intelligence, vol. 89, no. 1-2, pp. 365-387, Jan. 1997.

[22] J.A. Fisher, “Trace scheduling: A technique for global microcode compaction,” IEEE Trans.
Computers, vol. C-30, no. 7, pp. 478-490, July 1981.

 33

[23] P.G. Lowney, et al., “The Multiflow trace scheduling compiler,” J. Supercomputing, vol. 7, no. 1,
pp. 51-142, May 1993.

[24] J. Ferrante, K.J. Ottenstein, and J.D. Warren, “The program dependence graph and its use in
optimization,” ACM Trans. Prog. Lang. & Sys., vol. 9, no. 3, pp. 319-349, July 1987.

[25] D. Bernstein and M. Rodeh, “Global instruction scheduling for superscalar processors,” Proc. ACM
SIGPLAN Symp. Prog. Lang. Des. & Impl. (PLDI), pp. 241-255, Toronto, Jun. 1991.

[26] S.M. Moon and K. Ebcioglu, “An efficient resource-constrained global scheduling method for
superscalar and VLIW processors,” Proc. Int. Symp. Microarchitecture (MICRO-25), pp. 55-71,
1992.

[27] P.P. Chang, S.A. Mahlke, and W.M. Hwu, “Using profile information to assist classis code
optimizations,” Software Practice & Experience, vol. 21, no. 12, pp. 1301-1321, Dec. 1991.

[28] W.M. Hwu, et al., “The superblock: An effective technique for VLIW and superscalar compilation,”
J. Supercomputing, vol. 7, no. 1, pp. 229-248, May 1993.

[29] S.A. Mahlke, et al., “Effective compiler support for predicated execution using the hyperblock,”
Proc. Int. Symp. Microarchitecture (MICRO-25), pp. 45-54, 1992.

[30] S.A. Mahlke, et al., “Sentinel scheduling: A model for compiler controlled speculative execution,”
ACM Trans. Comp. Sys., vol. 11, no. 4, pp. 376-408, Nov. 1993.

[31] J. Bharadwaj, K. Menezes, and C. McKinsey, “Wavefront scheduling: Path based data representation
and scheduling of subgraphs,” Proc. Int. Symp. Microarchitecture (MICRO-32), pp. 262-271, Haifa,
Israel, Nov. 1999.

[32] S.G. Abraham, V. Kathail, and B.L. Dietrich, “Meld scheduling: A technique for relaxing scheduling
constraints,” Technical Report HPL-97-39, Hewlett Packard Laboratories,
http://www.hpl.hp.com/techreports/97/HPL-97-39.html Feb. 1997.

[33] S.G. Abraham, V. Kathail, and B.L. Dietrich, “Meld scheduling: A technique for relaxing scheduling
constraints,” Int. J. Parallel Programming, vol. 26, no. 4, pp. 349-381, 1998.

[34] A.E. Charlesworth, “An approach to scientific array processing: The architectural design of the AP-
120B/FPS-164 family,” IEEE Computer, vol. 14, no. 9, pp. 18-27, 1981.

[35] B.R. Rau and C.D. Glaesar, “Some scheduling techniques and an easily schedulable horizontal
architecture for high performance scientific computing,” Proc. 14th Ann. Workshop on
Microprogramming, pp. 183-198, Oct. 1981.

[36] B.R. Rau, et al., “The Cydra 5 deparmental supercomputer: Design philosophies, decisions and
trade-offs,” IEEE Computer, pp. 12-35, Jan 1989.

[37] J.C. Dehnert and R.A. Towle, “Compiling for the Cydra 5,” J. Supercomputing, vol. 7, no. 1, pp.
181-227, May 1993.

