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Current schedulers for acyclic regions schedule operations in 
dependence order and never revisit or undo a scheduling decision on 
any operation. In contrast, backtracking schedulers may unschedule 
already scheduled operations, in order to make space for the 
operation currently being scheduled. Backtracking schedulers have 
the potential for generating better schedules, e.g. more effectively 
filling branch delay slots, but are more compile-time intensive and 
therefore, not considered practical for production use. 

In this report, we first describe conventional cycle and list schedulers 
followed by two novel backtracking schedulers. The full-backtracking 
OperBT scheduler enables backtracking for all operations and un-
schedules already scheduled operations to make space for the current 
operation, if, among other situations, there is no available slot that 
satisfies dependence constraints. This scheduler is effective in 
generating high quality schedules that for instance, successfully fill 
branch delay slots but likely backtracks too often. The selective 
backtracking ListBT scheduler enables backtracking only when 
scheduling certain types of operations, for which backtracking is 
likely to be advantageous, e.g. branches. When not scheduling these 
operations (or operations that were displaced through backtracking), 
the scheduler reverts to efficient scheduling in dependence order. The 
ListBT scheduler backtracks less often than the OperBT scheduler. 
Both schedulers successfully fill a large fraction of the branch delay 
slots and improve performance of the scheduled code significantly. 

 
 Copyright Hewlett-Packard Company 2000 

Internal Accession Date Only



 2

1 Introduction 

With the increasing demand for high performance processors for media-intensive applications 

and the improvements in the underlying semiconductor technology, processors support 

increasing levels of instruction-level parallelism (ILP). Compilers that detect, exploit and match 

the available levels of parallelism in these applications to the parallelism supported by the 

processor are an essential component of the overall solution. In particular, scheduling technology 

plays a key role in the effective compilation of applications to ILP processors. Instruction 

scheduling reorders the operations in a scheduling region and packs them into instructions that 

match the available ILP in the processor. 

Superscalar processors have hardware to dynamically pack instructions that can be issued in 

each cycle. In contrast, EPIC (Explicitly Parallel Instruction Computing) [1] and VLIW (Very 

Long Instruction Word) processors rely on the compiler to statically pack operations to be issued 

in each cycle. In many emerging mobile and communication applications where power 

consumption has to be optimized, EPIC processors are often preferred, partly because they do 

not require the additional power-consuming hardware to dynamically schedule instructions. Even 

though superscalar processors are less reliant on compiler technology, superscalar performance 

can also be improved through instruction scheduling. For the rest of this report, we discuss 

instruction scheduling technology for EPIC/VLIW processors, even though we believe that 

similar techniques can be profitably used in superscalar processors as well. 

Following EPIC terminology, operations correspond to RISC-style instructions and 

instructions are a group of operations that issue in a particular cycle. A scheduler schedules 

individual operations to issue in certain cycles and use certain resources. A conventional 

scheduler schedules operations one by one, and does not undo or revisit scheduling decisions that 

were made previously. This report develops and evaluates backtracking schedulers that 

sometimes undo previous scheduling decisions and reschedule operations. We believe major 

trends in processor design highlight the need for such backtracking schedulers. 

The first trend is toward deeper pipelines. Even a simple RISC processor may have five pipe 

stages for instruction fetch, align, decode/register read, execute, and write back respectively. 
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Modern superscalar or VLIW processors may have as many as 15 or 20 stages. In these 

processors, branches are resolved in the register read or execute phases. The true latency of the 

branch is the length of the pipeline to the point where the branch is resolved. Processor designs 

attempt to hide the latency of the branch by predicting the branch. But if the branch prediction is 

wrong, the early stages of the pipeline have to be emptied causing a bubble and a mis-prediction 

penalty of as much as 10 cycles. A supplement and/or alternative to branch prediction are to 

expose all or some of the latency of the branch to the compiler and enable the compiler to fill the 

delay slots of the branch. Consider the latency of an edge from an arithmetic operation 

generating a live-out value to a branch. This edge latency must guarantee that the branch does 

not transfer control to another scheduling region before the arithmetic operation generates its 

live-out value. If the branch latency exceeds the arithmetic operation latency, this edge latency is 

negative, permitting the arithmetic operation to descend below the branch into its delay slots. 

As demonstrated in the example in Figure 1, current schedulers that schedule instructions cycle 

by cycle are not effective in handling such negative latencies and filling delay slots. In the 

example, we assume a single-issue processor with an arithmetic operation latency of one, load 

latency of one and a branch latency of three. On the left hand side, we show the operations in the 

body of a while loop that scans to the end of a linked list. The cmpeq operation sets the 

predicate register pr4 to true if register r2 is 0. The bfalse operation branches to the Loop 

label if the register pr4 is false. The edges between operations are labeled with their 

0: cmpeq pr4 <- r2, 0

1: add r3 <- r1 + r2

2: load r2 <- (r3)

3: bfalse pr4, Loop

4: <empty delay slot>

5: <empty delay slot>

0: cmpeq pr4 <- r2, 0

1: bfalse pr4, Loop

2: add r3 <- r1 + r2

3: load r2 <- (r3)

bfalse pr4, Loop 

load r2 <- (r3) 

add r3 <- r1 + r2 

cmpeq pr4 <- r2, 0 

1
0

1

1-3=
-2

 
 

Figure 1: Conventional scheduler does not fill branch delay slots 
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associated latencies. Certain redundant transitive edges are not shown. Solid arrows indicate true 

(flow) dependences and dashed arrows indicate anti-dependences. The edge from the load to 

the bfalse indicates that the live-out value of r2 must be generated before control is 

transferred to another block. This edge latency is the difference between the load latency of one 

and the bfalse latency of three. The add and load operations can descend below the 

bfalse into the branch’s delay slots. But conventional schedulers schedule instructions cycle 

by cycle and make sure that all predecessors of an operation (e.g. the load and add) are 

scheduled before the bfalse. As a result, the bfalse is scheduled after all other operations 

and consequently, its delay slots are unfilled as shown in the middle column. The example also 

demonstrates a backtracking scheduler. In this example, the bfalse has a higher priority than 

the add and displaces the scheduled add, which displaces the scheduled load in cycle 2, which 

in turn is eventually scheduled in cycle 3. Both the delay slots of the bfalse are now filled. 

The schedule length is reduced from six to four, for a reduction in cycles of 33%. 

The second trend is toward power-sensitive processor designs for mobile applications. 

Effective branch prediction hardware requires large memories/caches to maintain a sufficient 

amount of branch behavior history. The power consumption of large memories that are accessed 

frequently is high and can account for a large fraction of total on-chip power consumption. 

Accordingly, exposing the branch latency and reducing/eliminating prediction hardware may be 

an attractive alternative for mobile processor designs. 

The third trend is toward wide-issue processors. Media-intensive applications have large 

amounts of parallelism that can be effectively exploited by processors that issue many operations 

in each cycle. But, wide-issue processors also require a commensurate increase in the number of 

register read and write ports. Increasing the number of write ports is especially difficult and 

expensive. One alternative is to use a clustered approach with many register files with each 

cluster (group) of functional units using its own set of register files. But, this requires compiler 

techniques to map operations to clusters and may not be effective for some applications because 

of excessive inter-cluster communication. Another alternative is to move away from a dedicated 

write port for each functional unit to shared write ports. The compiler is now responsible for 



 5

scheduling operations so that there is no resource conflict on the write ports, even among 

operations with disparate latencies. 

The example in Figure 2 demonstrates why conventional scheduling approaches may not 

handle write port conflicts effectively. In this example, we assume a single-issue processor 

where the multiply and add share the same write port and their latencies are two and one 

respectively. The cmpeq operation has the highest priority and is scheduled in cycle 0. A 

conventional scheduler then schedules the multiply and finds that it cannot schedule the add 

in the next cycle due to the resource conflict on the write port. None of the other operations can 

be issued in cycle 1. Thus, the schedule length is 8. A backtracking scheduler also schedules the 

multiply in cycle 1. Since the delay in scheduling the add in cycle 3 extends the entire 

schedule, the add displaces the multiply. The load uses distinct ports and can be issued in 

cycle 3. Finally, as in the example in Figure 1, the branch displaces other scheduled operations 

and is scheduled eventually in cycle 3. The schedule length is reduced by three cycles, two due 

to filling branch delay slots and one due to filling a write port conflict slot.  

Though backtracking schedulers can be more effective than conventional schedulers for a 

variety of reasons, this report focuses on how backtracking schedulers can fill branch delay slots. 

An alternative to backtracking schedulers is to use peephole optimization strategies that work 

locally across a few instructions. For instance, a post-scheduling peephole strategy to fill delay 

slots is to go through the schedule and first identify branches whose delay slots are unfilled. 

0: cmpeq pr6 <- r3, r2

1: mul r3 <- r3 * r5

2: <empty - write port confl>

3: add r2 <- r5 + 1

4: load r5 <- (r4)

5: bfalse pr6, Loop

6: <empty delay slot>

7: <empty delay slot>

load r5 <- (r4)

add r2 <- r5 + 1

mul  r3 <- r3 * r5 

cmpeq pr6 <- r3, r2 

bfalse pr6, Loop 

01

0

1-3=
-2

2-3=
-1

0

Partial Schedule

0: cmpeq pr6 <- r3, r2

1: add r2 <- r5 + 1

2: mul r3 <- r3 * r5

3: load r5 <- (r4)

Complete Schedule

0: cmpeq pr6 <- r3, r2

1: add r2 <- r5 + 1

2: bfalse pr6, Loop

3: mul r3 <- r3 * r5

4: load r5 <- (r4)  
 

Figure 2: Backtracking schedulers can handle resource conflicts 
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Then, we attempt to swap such branches with other regular operations scheduled in earlier cycles 

without violating dependence and resource constraints. 

The first problem with such peephole optimization strategies is that they tend to work well 

only when they are developed specifically for a particular design with its own set of latencies and 

resources. In a world with a multitude of customized designs for different applications, where 

each design is not a big revenue generator, it may not be cost-effective to develop these kinds of 

compiler optimizations. For instance, the objective of the PICO project is to automatically 

develop a customized processor for an application The PICO system walks over a large design 

space[2, 3] generating a machine-description driven compiler for each design point. Any 

compiler optimization must be automatically generated for each design point. It is difficult to 

automatically develop and tune a peephole optimization based on a machine description. The 

second problem is the local scale of peephole optimizations. Consider superblock scheduling 

where the scheduling region is a chain of basic blocks with one entry point. Moving the branch 

up in the first basic block of the superblock may relax the dependences between the branch and 

subsequent operations further down in other basic blocks. It may be possible to move these 

operations up in the schedule too. But such large-scale scheduling changes are difficult to encode 

as peephole optimizations. 

A basic block scheduler may first schedule the single branch exit and schedule all other 

operation in reverse order relative to the branch. This approach is successful in filling branch 

delay slots when there is a single branch exit. Due to the limited amount of instruction-level 

parallelism in a single block, compilers tend to use larger scheduling regions such as 

superblocks, which have several branch exits. Though basic block schedulers are a core 

component of global scheduling approaches, the delay slot filling approach does not extend to 

global schedulers. 

In summary, deeper pipelines and the power requirements of prediction hardware motivate 

exposing all or some of the branch latency to the compiler. Current instruction schedulers do not 

generate schedules that consistently fill delay slots and handle resource conflicts effectively. 

Peephole optimizations are relatively expensive to implement for each processor design under 

consideration and are not effective in performing larger scale code motions that are required. 
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Backtracking schedulers are an attractive alternative and have proven useful in modulo 

scheduling [4, 5]. However, backtracking schedulers for basic block and superblock schedulers 

have not been developed and their efficacy and compile-time complexity have not been studied 

previously. 

In this report, we first describe the overall scheduling model consisting of a processor model, 

scheduler input and output model and the overall objective. Then, we describe the operation of a 

conventional Cycle scheduler that schedules operations cycle by cycle or in VLIW parlance, 

instruction by instruction. The List scheduler schedules ready operations in priority order, not 

necessarily cycle by cycle. We demonstrate that these conventional schedulers, viz. Cycle 

scheduler and List scheduler, cannot fill branch delay slots effectively. The OperBT scheduler is 

a full backtracking scheduler that attempts to schedule operations in priority order. This 

scheduler fills branch delay slots successfully but unschedules operations unnecessarily. The 

ListBT scheduler is a selective backtracking scheduler that schedules operations in dependence 

order and selectively backtracks when it is likely to be profitable. This scheduler is almost as 

effective in filling branch delay slots but has better compile times than the full backtracking 

scheduler. We put all four schedulers into a single software framework, which is amenable to 

experimentation. 

2 Scheduling Model 

2.1 Processor architecture 

We use a family of VLIW processors based on the HPL-PD architecture [6]. Each processor 

has a set of integer, floating-point and memory (load/store) units. A particular processor is 

described concisely as, say, a 312 processor, indicating that it can issue up to three integer 

operations, one floating-point operation and two memory operations in a cycle. Each instruction 

consists of a set of operations, where each machine operation is a RISC-style operation with 

source and destination operands. Each instruction may contain several operations of a certain 

type up to the number of units of that type. Thus, an instruction for a 312 processor may contain 

up to three integer operations and up to a total of six operations. We assume that functional units 

are fully pipelined. Thus, operations from different instructions (necessarily issued in distinct 

cycles) do not compete for resources. 



 8

Additionally, a processor can issue a branch operation on each cycle on one of the integer 

units. The branch latency is varied from 1 through 3 and the concise notation for a particular 

processor design encodes the branch latency as a suffix, e.g. 312L2 denotes a 312 processor with 

a branch latency of two. The latencies of all other operations are fixed as follows: integer ALU 1, 

float add 3, int/float multiply 3, int/float divide 8, load 2, and store 1. Table 1 describes the 

variable parameters of six processors that we will use throughout this report. 

2.2 Scheduler input 

We first use the Impact compiler from the University of Illinois that is part of the Trimaran 

compiler infrastructure [7] to generate an intermediate representation of the application that is in 

aggressively optimized superblock form. A superblock is a linear chain of basic blocks with a 

single entry and exits at each of the individual exits of the basic blocks. The Impact compiler 

performs traditional global optimizations, unrolls loops up to eight times, forms superblocks and 

applies ILP optimizations to each superblock. The memory disambiguation information 

computed by the IMPACT compiler is part of the input. In addition, the input code contains 

profile information; each superblock is annotated with weights indicating how often each 

superblock is executed and how often each exit is taken when the benchmark is run on its data 

set. 

The Elcor compiler from HP Laboratories, which is also part of the Trimaran compiler 

infrastructure [7], takes the input in superblock form, performs data-flow analyses and constructs 

dependence graphs. Live-in values at the superblock entry are associated with data merge (DM) 

operations. Live-out values at each superblock exit are associated with data switch (DS) 

Table 1:  Processor configurations: Functional units and branch latencies 
Processor 
configuration 

Integer 
units 

Floating-
point 
units 

Load/store 
units 

Branch 
latency 

Maximum 
issue 
width 

111L1 1 1 1 1 3 
211L1 2 1 1 1 4 
111L2 1 1 1 2 3 
211L2 2 1 1 2 4 
111L3 1 1 1 3 3 
211L3 2 1 1 3 4 
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operations. The first operation of each constituent basic block is a control-merge (CM) operation. 

Control-merge, data-merge and data-switch operations are referred to as pseudo-operations 

because they do not map to actual assembly-level operations. The regular operations that 

ultimately map to assembly-level operations are called real operations. The nodes in the 

dependence graph are composed of all real as well as all pseudo operations. Data-merge 

operations are associated with and assume the schedule times of their corresponding control-

merge operation. Similarly, data switch operations are associated with and assume the schedule 

times of their corresponding branch operation. 

An edge between two operations is annotated with a latency indicating the minimum 

separation in their schedule times and hence their issue times. Data-flow, -anti, and -output 

dependence edges arise from constraints between the production/consumption of values between 

operations. In addition, branch operations are associated with control dependences. Figure 3 

shows a dependence graph and a valid schedule on a 111L3 processor. 

2.3 Scheduler output 

The scheduler assigns a valid issue cycle for each operation in the superblock. The scheduler 

assigns resources to each operation so that there are no resource conflicts between scheduled 

operations. The scheduler encodes the resource assignment for each operation by associating it 

with a machine-specific opcode. In addition, the scheduler orders the operations within each 

cycle so that all zero-cycle dependencies flow from left to right. Finally, the scheduler threads all 

the non data-switch/merge operations in the superblock into a single chain in which operations 

are sorted in increasing order of schedule cycles and further all operations scheduled in the same 

cycle are contiguous and in the prescribed left to right order. 

2.4 Scheduler objectives 

The schedule generated by the scheduler must satisfy the following constraints: 

1. dependence edge constraints are satisfied, i.e. for each dependence edge the issue cycle 

of the destination operation minus the issue cycle of the source operation is not less 

than the edge latency 
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2. resource constraints are satisfied, i.e. in our simplified processors, the number of 

operations of a certain type scheduled in a particular cycle does not exceed the number 

of operations of that type. For instance in a 312L3 processor, no more than two 

memory operations are scheduled in any cycle. Also, at most a single branch is 

scheduled in a cycle and the number of integer operations plus branches does not 

exceed three. 

The scheduler optimizes the profile-weighted execution time of each superblock. The 

execution time of a particular superblock is obtained by summing up the contributions of each of 

its exits. The contribution of a particular exit is the product of the number of times this exit was 

taken during profiling times its exit time. The exit time of a branch is the sum of the 

corresponding branch’s issue cycle and the branch latency. 

The performance measurements we report are based on profiling information and not based on 

actually simulating the scheduled code. This performance measure does not account for stalls 

caused by cache misses, branch mis-predictions, TLB misses, etc. These other factors are 

expected to be similar with or without backtracking schedulers and are not expected to affect 

significantly the accuracy of our evaluation of backtracking schedulers vis-a-vis conventional 

cycle scheduling. Further, we do not use a separate training run using a training data set to 

0: CM; cmp pr4 <- r2, 0

1: branch pr4, Label

2: add r3 <- r1 + r2

3: load r2 <- (r3)

branch pr4, Label DS r2 

load r2 <- (r3) 

add r3 <- r1 + r2 

cmp pr4 <- r2, 0 

1 0

1

1-3=
-2

CM DM r1 DM r2 

0
0

0

 

Figure 3 Internal representation of dependence graph 
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generate profile information and another run on an evaluation data set to evaluate the schedules 

generated. All schedulers evaluated in this report use profiling information in an identical 

manner to generate static priorities for operations. Therefore, we expect that using a single run 

for both training and evaluation will affect the performance of all schedulers in a similar manner.  

3 Conventional schedulers 

In this section, we describe common pre-scheduling steps as well as two conventional 

schedulers that do not backtrack. The Cycle scheduler schedules all the operations to be issued in 

a particular cycle before going on to the next cycle. The List scheduler schedules operations in 

dependence order, ensuring that all predecessors of an operation have been scheduled before an 

operation is considered for scheduling. Secondarily, the List scheduler schedules operations in 

static priority order. 

3.1 Common pre-scheduling steps 

The Cycle scheduler as well as the other schedulers described in this report starts by 

computing early and late times for each operation. The early time of an operation is the earliest 

time that it can be issued on a processor with infinite resources. The start operation is the 

control-merge at the beginning of the superblock on which all operations are dependent. The 

length of a path from operation A to operation B is the sum of the latencies of the edges in the 

path from operation A to operation B. The early time of an operation is the longest path from the 

start operation to the operation under consideration. The dependence graph of a superblock is 

acyclic. We determine the early times of all operations by visiting each operation exactly once in 

topological order, where we visit the ancestors of an operation before visiting an operation. 

When we visit an operation, we already have computed the early times of its predecessors and 

the early time of the operation is the maximum over all incoming edges of the sum of the 

predecessor’s early time and the edge latency. 

The late time of an operation A with respect to an exit E is the latest cycle at which operation 

A can be issued on an infinite resource machine while still issuing exit E at its early time. The 

late time of an operation A is computed as the early time of operation E minus the longest path 

from operation A to exit E. We determine the late times of all operations by starting from the exit 
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E and visiting the operations in the dependence graph of a superblock in reverse topological 

order, where we visit the descendants of an operation before visiting an operation. The late times 

of operations that are not visited in this traversal are set to maxheight, where maxheight is the 

maximum early time among all operations in the superblock. 

The late time of an operation with respect to an exit E represents how low or late an operation 

can be issued while still being able to schedule E at its early time on an infinite resource 

processor. The height of an operation with respect to an exit E is maxheight minus the late time 

of that operation with respect to E. The weighted height of an operation is the sum over all 

superblock exits, E, of the product of the profiled weight of E times the height of the operation 

with respect to E. Though the Elcor compiler supports several priority functions, all the 

evaluations reported here are based on the weighted height priority function [8]. 

3.2 Conventional Cycle Scheduler 

Before we describe the main scheduling loop of the Cycle scheduler, we describe some 

concepts and data structures. 

3.2.1 Concepts and main scheduling loop 

The CurrentCycle is the cycle in which operations are being scheduled currently by the Cycle 

scheduler. The CurrentCycle is initially set to 0 and incremented when no more operations can 

be scheduled in the CurrentCycle because of dependence or resource constraints. The 

CurrentOperation is the operation currently being considered for scheduling. The ScheduleCycle 

is the issue cycle assigned to an operation by the scheduler. 

The EarlyCycle is the earliest cycle that an operation can be scheduled. On entering the main 

scheduling loop, the EarlyCycle of an operation is set to its early time. If an operation is found to 

be not schedulable at its EarlyCycle, then its EarlyCycle is incremented, so that we do not 

repeatedly and unsuccessfully attempt to schedule an operation in a particular cycle. 

A ready operation is an operation whose predecessors have been scheduled and a ReadyList is 

a list of all ready operations. A ready operation for the CurrentCycle is a ready operation whose 

EarlyCycle is not more than the CurrentCycle and whose latency constraint on its incoming 

edges will not be violated by scheduling it in the CurrentCycle, i.e. the difference between the 
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CurrentCycle and its predecessor operations’ ScheduleCycle is not less than the edge latency. 

The CCReadyList is the list of all ready operations for the CurrentCycle. 

The main scheduling loop iterates until all operations have been scheduled. In each iteration of 

the main scheduling loop, we recompute the CCReadyList, the list of all ready operations for the 

current cycle. We discuss below how to incrementally recompute ReadyList and CCReadyList. If 

the CCReadyList is empty, there are no more operations that can be scheduled in the 

CurrentCycle. Therefore, we increment CurrentCycle and continue on to the next iteration of the 

main scheduling loop. If the CCReadyList has one or more operations, we remove the highest 

priority operation from the CCReadyList. If this operation has no resource conflicts with already 

scheduled operations, we schedule the operation in the CurrentCycle. Otherwise, this operation 

cannot be scheduled in the CurrentCycle because of resource conflicts. We increment the 

operation’s EarlyCycle to ensure that we do not consider it for scheduling again in the 

CurrentCycle. This completes the description of the main scheduling loop. 

3.2.2 Incremental recomputation of ReadyList and CCReadyList 

The initial and any non-incremental computation of the ReadyList requires visiting all the 

operations in the scheduling region and retaining those operations that are not themselves 

scheduled but whose predecessors are all scheduled. The CCReadyList computation requires 

iterating through the ReadyList and selecting those operations whose EarlyCycle is not less than 

the CurrentCycle and whose predecessors are scheduled sufficiently in advance that all 

dependence edge constraints will be satisfied if the operation is scheduled in the CurrentCycle. 

We now discuss how we can incrementally recompute ReadyList and CCReadyList. The above 

algorithm requires computing the CCReadyList after each scheduling iteration, which: 

1. finds that CCReadyList is empty and increments CurrentCycle, 

2. removes an operation from CCReadyList and  schedules it for CurrentCycle,  

3. removes an operation from CCReadyList and increments its EarlyCycle. 

In case 1, the ReadyList is up to date, but since the CurrentCycle is incremented, we recompute 

CCReadyList by iterating through all the operations in ReadyList. In case 2, the scheduling of an 
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operation may create other ready operations and CurrentCycle ready operations. We find all 

these operations by iterating through the successors of the scheduled operation. In case 3, no 

additional ready operations are created, so the ReadyList and CCReadyList are up to date. Note 

that case 2 above is the most time-consuming of the three cases. We have to examine all the 

successors of the scheduled operation and further iterate over all the predecessors of this 

successor to determine if the successor has become ready. 

By maintaining a count of unscheduled incoming edges (NumUnsched) for each operation, we 

obtain a further improvement in incremental recomputation of ReadyList and CCReadyList in 

case 2. An unscheduled incoming edge is an incoming dependence edge from an operation that is 

currently not scheduled. Before entering the main scheduling loop, we initialize each operation’s 

NumUnsched with the total number of incoming edges from predecessors. When an operation is 

scheduled, we visit each of its successors and decrement their NumUnsched and update their 

EarlyCycle. If NumUnsched is 0, then this successor operation is now a ready operation and is 

moved to the ReadyList and possibly to the CCReadyList. When we maintain NumSched, we do 

not need to iterate through the predecessors of a successor operation. 

Consider the example in Figure 1, where the Cycle scheduler generates the inefficient schedule 

of length six. Initially, the only ready operation, CM, for cycle 0 is scheduled in cycle 0. This 

operation does not use issue resources and makes the cmpeq and add ready for cycle 0. The 

priority of cmpeq is higher because its height is one above the branch versus –1 for the add. 

Therefore, the cmpeq is first scheduled in cycle 0 followed by the add in cycle 1. Scheduling 

the add in cycle 1, makes the load ready for cycle 2. Scheduling the load in cycle 2, makes 

the bfalse ready for cycle 1. Because CurrentCycle is now at cycle 2, the bfalse is only 

considered for scheduling in cycle 2. But, in a single-issue processor, the bfalse resource 

conflicts with the load. So, its EarlyCycle is incremented to 3 and the bfalse is scheduled in 

cycle 3. 

3.2.3 Cycle scheduling and peep-hole optimizations 

An alternative is to use a post-scheduling peephole optimization strategy to improve the quality 

of the schedule while retaining the simplicity of the cycle scheduler. A peephole optimization 
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recognizes common inefficient patterns of operations and replaces them with a more efficient 

pattern. In the context of branch scheduling, one can recognize branches whose delay slots are 

unfilled and consider the validity of a swap with another operation within a neighborhood of the 

unfilled delay slots of the branch. In the example in Figure 1, the branch has two unfilled delay 

slots. We first consider swapping the schedules for the bfalse and the add, but this violates 

the dependence edge from the add to the load. We then consider swapping the schedules for 

the branch and the load, which is valid. The resulting peephole optimized schedule fills one 

delay slot. Of course, a more comprehensive peephole optimization strategy can consider three-

way swaps of operations and perhaps fill both delay slots. 

Figure 4(a) shows the dependence graph for a superblock consisting of two unrolled blocks 

from the example in Figure 1. Figure 4(b) show the 12 cycle long schedule generated by the 

Cycle scheduler. A peephole optimizer that does a three-way swap may reorganize the schedule 

and shorten it to 10 cycles as shown in Figure 4(c). But, there are still two empty delay slots, 

which can be filled only by moving up all the operations in cycles 6 through 9 as in Figure 4(d). 

In this case, all the operations in cycles 6 through 9 move up as a group, but in general that may 

not be the case. Therefore, we may not be able to generate the optimum schedule of 8 cycles 

shown in Figure 4(d). 

Though a peephole optimization strategy may be effective in filling some of the delay slots, it 

may not produce the same quality of schedules that a more sophisticated backtracking scheduler 

can generate and it may require expensive manual fine-tuning for each processor model. One 

drawback of peephole optimization techniques is that they have to be specifically developed and 

tuned for a particular machine with its set of resources and latencies. For instance, one may 

develop a simple and effective two-way swap for a processor model with a branch latency of 

two. But one may be forced to develop a more complex three-way swap when the branch latency 

changes to three. Another drawback of peephole optimizers is that they do not work well when 

the scope of the optimization is enlarged. 
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3.3 List scheduler 

Like the Cycle scheduler, the List scheduler also maintains ReadyList, a list of operations 

whose predecessors have already been scheduled. In each iteration of the main scheduling loop, 

it selects the highest static priority operation from the ReadyList and schedules it in the earliest 

cycle possible that satisfies all resource constraints, starting with the EarlyCycle of the operation. 

In the List scheduler, EarlyCycle is the earliest cycle that an operation can be scheduled without 

violating any dependence constraints with its scheduled predecessors. 

Once an operation is scheduled, the ReadyList is updated. As described in Section 3.2.2, each 

operation has an associated NumUnsched count, indicating the number of incoming dependence 

edges whose source operations have not been scheduled. After an operation is scheduled, we 

iterate through all its outgoing edges and decrement the NumUnsched count and update the 

(b)

0: CM; cmp pr4 <- r12, 0
1: add r3 <- r1 + r12
2: load r2 <- (r3)
3: branch pr4, SideExit
4: <empty delay slot>
5: <empty delay slot>
6: cmp pr14 <- r2, 0
7: add r13 <- r1 + r2
8: load r12 <- (r13)
9: branch pr14, Loop
10: <empty delay slot>
11: <empty delay slot>

0: CM; cmp pr4 <- r12, 0
1: branch pr4, SideExit
2: add r3 <- r1 + r12
3: load r2 <- (r3)
4: <empty delay slot>
5: <empty delay slot>
6: cmp pr14 <- r2, 0
7: branch pr14, Loop
8: add r13 <- r1 + r2
9: load r12 <- (r13)

(c)

0: CM; cmp pr4 <- r12, 0
1: branch pr4, SideExit
2: add r3 <- r1 + r12
3: load r2 <- (r3)
4: cmp pr14 <- r2, 0
5: branch pr14, Loop
6: add r13 <- r1 + r2
7: load r12 <- (r13)

(d)

branch pr4, SideExit   DS r13 DS r2  

load r2 <- (r3)  

add r3 <- r1 + r12 

cmp pr4 <- r12, 0  

1

1

1-3=
-2

CM DM r1    DM r12  

0

0

branch pr14, Loop   DS r12  

load r12 <- (r13)  

add r13 <- r1 + r2 

cmp pr14 <- r2, 0  

1

1

1-3=
-2

(a)

0

0

1

10

 

Figure 4: Peephole optimizations 
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EarlyCycle of the successor operations. We move any operation whose NumUnsched count 

reaches zero to the ReadyList. 

In the List scheduler, operations are not necessarily scheduled cycle by cycle. We may 

schedule an operation in cycle 4 and then schedule the next operation in cycle 2. However, since 

we schedule an operation’s predecessors prior to scheduling an operation, we are guaranteed that 

we can always make forward progress and backtracking is not needed. Further, List scheduling 

is very efficient in compile time because once an operation is selected for scheduling it is always 

scheduled. 

For the example in Figure 1, the List scheduler generates the same inefficient schedule of 

length six as the Cycle scheduler. As in the Cycle scheduler, the cmpeq, add and load are 

scheduled in cycles 0, 1, 2 respectively. Scheduling the load in cycle 2, makes the bfalse 

ready for cycle 1. Therefore, unlike the Cycle scheduler, the List scheduler attempts to schedule 

the bfalse starting at cycle 1. We fail to schedule the bfalse in cycles 1 and 2 due to 

resource conflicts with the already scheduled add and load. The bfalse is eventually 

scheduled in cycle 3. If there were no resource conflicts in the earlier cycles, the List scheduler 

would have scheduled the bfalse earlier, filling some of the delay slots. But, in this example, 

the List scheduler does not fill branch delay slots. 

4 Backtracking schedulers 

In this section, we describe two novel backtracking schedulers; OperBT and ListBT. The full-

backtracking OperBT scheduler enables backtracking for all operations and unschedules already 

scheduled operations to make space for the current operation. The selective backtracking 

scheduler ListBT enables backtracking only when scheduling certain types of operations, for 

which backtracking is likely to be advantageous, e.g. branches. When not scheduling these 

operations (or operations that were displaced through backtracking), the scheduler reverts to 

efficient scheduling in dependence order like the List scheduler 

4.1 Common concepts 

As in the conventional scheduler, we compute early times, late times and priorities for each 

operation before entering the main scheduling loop. Unlike the conventional scheduler, not all 
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predecessors of an operation may be scheduled at the time when an operation is considered for 

scheduling. Therefore, the EarlyCycle of an operation is the maximum of its early time and the 

earliest time that an operation can be issued while satisfying all dependence edges from 

predecessor scheduled operations. Also, unlike the conventional scheduler, there are bounds on 

how late an operation can be scheduled. The LateCycle of an operation is the latest time that an 

operation can be issued while satisfying all the dependence edges to successor scheduled 

operations. 

A resource conflict prevents the scheduling of CurrentOperation in CurrentCycle if the 

scheduled operations have reserved resources that are required by the CurrentOperation. The 

CurrentOperation has a resource conflict with a particular scheduled operation if that operation 

has reserved some resources that are required by CurrentOperation and there are no other free 

resources of that type available. A dependence conflict indicates that a dependence edge latency 

from a scheduled operation to the CurrentOperation is not satisfied if the CurrentOperation is 

scheduled at CurrentCycle. The set of conflicting operations is the set of all operations that either 

have resource or dependence conflicts with CurrentOperation. 

Since the backtracking schedulers do not always schedule operations in dependence order, it is 

possible that an operation’s predecessor(s) and successor(s) may already be scheduled. As a 

result, there may only be a limited (or even null) range of cycles in which the CurrentOperation 

may be scheduled without violating dependencies with already scheduled operations. Even when 

a range of cycles is available, the operation may have resource conflicts that prevent it from 

being scheduled in these cycles.  

In such situations, we need a mechanism to make forward progress. The backtracking 

schedulers may unschedule other conflicting operations in order to schedule CurrentOperation in 

a particular cycle. A scheduled operation is unscheduled by removing its association with a 

particular issue cycle, releasing resources that it may have reserved, putting it back among the 

pool of operations to be scheduled and in general, undoing any steps that were performed when 

the operation was last scheduled. While iterating through the cycles ranging from EarlyCycle 

through LateCycle, the backtracking scheduler may displace schedule by first unscheduling 

lower priority conflicting operations and then scheduling CurrentOperation. If the scheduler is 
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unable to normal or displace schedule CurrentOperation in the cycles ranging from EarlyCycle 

through LateCycle, the backtracking scheduler forcibly schedules by first removing operations 

that conflict with CurrentOperation at a chosen ForceCycle and then scheduling 

CurrentOperation in ForceCycle. The forcible scheduling mechanism ensures that once we 

select a CurrentOperation, we are always able to successfully schedule CurrentOperation, even 

if that requires unscheduling other operations.  

The next problem that we may encounter is that the scheduler gets into an infinite loop in 

which it, say, unschedules operation A to schedule B and later unschedules operation B to 

schedule operation A in the same cycle. In order to avoid such termination problems, we 

maintain AttemptedCycle with each operation. AttemptedCycle is the last attempted cycle that we 

forcibly scheduled that operation. When we first unschedule a particular operation, we set its 

AttemptedCycle to ScheduleCycle-1, where ScheduleCycle is the cycle in which the operation 

was scheduled. ForceCycle is the cycle in which we forcibly schedule CurrentOperation and we 

choose ForceCycle to be the maximum of EarlyCycle and AttemptedCycle+1 and set 

AttemptedCycle to the updated ForceCycle. Thus, the ForceCycle in which a particular operation 

is forcibly scheduled is guaranteed to increase monotonically. 

4.2 OperBT scheduler 

The OperBT scheduler maintains an UnschedList, a sorted list of operations that have not been 

scheduled in priority order, where the priority is as computed for instance by the weighted 

priority algorithm. The main scheduling loop iterates until UnschedList is empty. In each 

iteration, we remove the highest priority operation from the UnschedList and set it to 

CurrentOperation. We compute the EarlyCycle, LateCycle and ForceCycle of 

CurrentOperation. We iterate through the cycles from EarlyCycle through LateCycle attempting 

to schedule an operation. We normal schedule the operation at CurrentCycle, if resources are 

available. Otherwise, we displace schedule CurrentOperation at CurrentCycle if CurrentCycle is 

not less than ForceCycle and if the conflicting operation(s) occupying the required resources 

have lower priority. In the latter case, we unschedule the conflicting operations. If we do not 

schedule the operation after iterating through the cycles ranging from EarlyCycle through 

LateCycle, we force schedule CurrentOperation at ForceCycle. Regardless of the relative 
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priority of the resource and dependence conflicting operations, we unschedule all the conflicting 

operations and forcibly schedule the CurrentOperation in the ForceCycle. The pseudo-code for 

the OperBT scheduling algorithm is shown in Figure 5. 

Lemma 1 

The OperBT scheduler does not deadlock and does terminate. 

Proof: 

Once we select a CurrentOperation from UnschedList, we always schedule it, either in the 

cycles ranging from EarlyCycle through LateCycle or at ForceCycle. Therefore, the scheduler 

does not deadlock. 

  Initialize EarlyCycle, LateCycle and compute priorities of operations 
  while (CurrentOperation = UnschedList.pop()) 
    Compute EarlyCycle and LateCycle for CurrentOperation 
    ForceCycle = max (AttemptedCycle+1, EarlyCycle) 
    success = FALSE 
    for (CurrentCycle ranging from EarlyCycle through LateCycle) 
      if (resources required by CurrentOperation available) 
 Schedule CurrentOperation in CurrentCycle 
 success = TRUE 
 break 
      elsif ( ( CurrentCycle >= ForceCycle) AND 
     (HasHigherPriority (CurrentOperation, CurrentCycle))) 
 Unschedule conflicting operations and push them back into UnschedList 
 Schedule CurrentOperation in CurrentCycle 
 success = TRUE 
 break 
      endif 
    endfor 
    if (success = FALSE) 
      Unschedule conflicting operations at ForceCycle 
  and push them back into UnschedList 
      Schedule CurrentOperation in ForceCycle 
      Set AttemptedCycle to ForceCycle for CurrentOperation 
    endif 
  endwhile 

Figure 5: OperBT scheduler 
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For our purposes, operation latency is the maximum number of cycles for which an operation 

uses resources in the processor. Since register writes (or forwarding) also use resources, the 

operation latency also limits the latency of outgoing edges. Let MaxLatency be the maximum of 

the operation latency of any operation and the edge latency between any two operations. Let SL 

be the sum of the absolute values of the dependence edge latencies and the operation latencies. 

Let SLB be SL times the number of operations in the dependence graph. 

In each scheduling step, the scheduler may (1) schedule an operation without unscheduling 

(normal), (2) unschedule lower priority operations and schedule an operation at CurrentCycle 

(displace), (3) unschedule high priority operations and schedule an operation at ForceCycle 

(force). Normal scheduling reduces the size of UnschedList that contains operations that are not 

currently scheduled. Displace and force scheduling may increase the size of UnschedList. Let PR 

be the priority of the highest priority operation in UnschedList. 

Assume that the scheduler does not terminate. The scheduler must intersperse force scheduling 

that may increase PR with normal and displace scheduling that never increases PR. Otherwise, 

PR decreases indefinitely and the UnschedList becomes empty terminating the scheduler. 

Therefore it must forcibly schedule at least one operation A more than SLB times. Since the 

AttemptedCycle is at least advanced by 1 on each forcible schedule, the ScheduleCycle of A must 

advance past SLB. 

Consider a partial schedule, PS, in which A has a ScheduleCycle more than SLB. The slack of a 

dependence edge is defined when both its source and destination operations are scheduled in the 

partial schedule and is equal to the difference between the destination operation’s ScheduleCycle 

and the sum of the source operation’s ScheduleCycle and the edge latency. Obviously, the slack 

of some dependence edges in PS in a path from the start operation to A have a slack more than 

SL. 

Consider the set C of scheduled operations in PS that are connected to the Start operation by 

dependence edges with slack less than SL. This set does not contain A because A’s ScheduleCycle 

is more than SLB and at least one edge along a path from the Start operation to A must have a 
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slack more than SL. Consider the non-empty set D of the remaining scheduled operations in PS, 

which includes A. 

Consider the subgraph of the dependence graph induced by the operations in D. This subgraph 

is acyclic because the entire dependence graph is acyclic. Choose a root, R, of this subgraph, SG 

(an operation with no incoming edges from operations in D). When R was last scheduled, it must 

have had a scheduled predecessor P scheduled within MaxLatency of R’s current ScheduleCycle 

(if R did not have resource conflicts with other operations) or within SL of R’s current 

ScheduleCycle (if R had resource conflicts with potentially all the operations). Otherwise, the 

EarlyCycle of R would at most be MaxLatency more than the maximum ScheduleCycle of the 

operations in C and the operation R would have been scheduled with less than a slack of SL on 

its incoming edges. 

This scheduled predecessor P is currently unscheduled because otherwise R would not be a 

root of the subgraph SG. We now consider the partial schedule PS’, in which P was last 

scheduled. We recursively apply the argument we used for R in PS to P in PS’. Since the number 

of such currently unscheduled predecessors is finite, we conclude that some ancestor of R 

currently unscheduled in PS, did not have any scheduled predecessors when it was last scheduled 

within SL of its last ScheduleCycle and yet it was scheduled with a slack of more than SL with 

respect to the operations in C, something the OperBT scheduler would not do. This leads to a 

contradiction and the OperBT scheduler does terminate.� 

Experimental results indicate that the OperBT scheduler is very effective in filling the delay 

slots of branches. Further, the OperBT scheduler is guaranteed to terminate with a complete 

schedule. However, the number of unscheduling steps might be excessive. In the next section, we 

develop a modified backtracking algorithm that normally schedules operations in dependence 

order to reduce the number of backtracking (unscheduling) steps. 

4.3 ListBT Scheduler 

The ListBT scheduler normally schedules operations in dependence order. Only ready 

operations, those whose predecessors are scheduled, are considered for scheduling. Among the 

ready operations, the ListBT scheduler selects operations based on priority, as computed prior to 
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entering the main scheduling loop. Finally, the ListBT scheduler backtracks by enabling certain 

operations to unschedule lower priority scheduled operations. 

Prior to entering the main scheduling loop, the ListBT scheduler calculates early and late times 

and priorities for each operation. Additionally, only certain operations are permitted initially to 

unschedule other operations and the AttemptedCycle of these operations are set to early time 

minus unity. The ReadyList, the set of operations whose predecessors are scheduled, is initially 

set to the start operation of the superblock.  

The ListBT scheduler selectively enables forcible scheduling to control the amount of 

unscheduling, while still maintaining the quality of the overall schedule. Given the objective of 

successfully filling branch delay slots, only operations with negative incoming latencies are 

allowed to unschedule other operations. For our machine models, only branches have negative 

incoming edge latencies. If the objective is, say, to handle write port resource conflicts between 

high-latency and low-latency operations, we allow the low-latency operations to unschedule 

operations.  

Initially, operations are scheduled in dependence order. Therefore the LateCycle of an 

operation is infinity and the operation can always be successfully scheduled in some cycle. Once 

an operation is unscheduled, it may have a finite range of valid cycles between its EarlyCycle 

and LateCycle. If unscheduling is disabled for this operation, it may not be possible to 

successfully schedule this operation, leading to a deadlock. Therefore, unscheduling is enabled 

for any operation that is unscheduled for the first time and its AttemptedCycle is set to the 

ScheduleCycle-1. The ForceCycle of an operation is the minimum cycle in which an operation 

may be forcibly scheduled by unscheduling other operations. The ForceCycle of an operation is 

the maximum of its EarlyCycle and AttemptedCycle+1. 

The main scheduling loop iterates until the ReadyList is empty. In each iteration, we remove 

the highest priority operation from the ReadyList and set it to be the CurrentOperation. We find 

EarlyCycle and LateCycle for this operation; LateCycle is infinity unless this operation has been 

unscheduled. We iterate through the range from EarlyCycle and LateCycle. If resources are 

available for the CurrentCycle, we schedule the operation for the CurrentCycle. Otherwise, if 
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unscheduling is enabled for CurrentOperation and the CurrentCycle is not less than the 

ForceCycle of the operation, and the conflicting operations are lower in priority than 

CurrentOperation, we first unschedule all conflicting operations and then forcibly schedule the 

operation for the CurrentCycle. If we do not schedule the operation in the range EarlyCycle 

through LateCycle then the operation must be an unscheduled operation (because only such 

operations have LateCycle less than infinity) and unscheduling must be enabled for this 

operation. We forcibly schedule the operation at ForceCycle, unscheduling operations that have 

dependence or resource conflicts with CurrentOperaton being scheduled at ForceCycle. When 

an operation is forcibly scheduled, its AttemptedCycle is set to the ForceCycle. The pseudo-code 

for the ListBT scheduling algorithm is shown in Figure 6. 

As in OperBT, the previous backtracking scheduler, we never forcibly schedule an operation 

in the same cycle twice. Using this property and other aspects of the scheduling algorithm, we 

can show that ListBT always terminates. 

5 Framework for scheduling algorithms 

Though we have discussed four schedulers that differ substantially in their behavior, they 

require a fair amount of shared functionality. This common part is a substantial fraction of the 

software code base for the scheduler. There are the common pre-scheduling steps such as early 

and late time calculation and priority calculation. There are also some common utilities that are 

required in the main scheduling loop such as calculating the EarlyCycle and LateCycle, finding 

the conflicting operations, determining if an operation has higher priority than its conflicting 

operations, forcibly scheduling an operation in a cycle, scheduling and unscheduling operations. 

This common part also includes various post-scheduling steps such as reordering/rethreading the 

operations in schedule order, marking operations that have speculated, treating branches for 

different machine models and compiling models and checking the schedule for correctness. 

This section puts all the schedulers that we discussed in the same software framework. This 

framework helps us to understand the different components of a scheduling algorithm and also 

enables us to factor the code base effectively, so that the common parts of the scheduler are 

leveraged across all schedulers. In our framework, there are three distinguishing characteristics 
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about a particular scheduler, viz. which operation is chosen next for scheduling, which cycles do 

we attempt to normally schedule an operation, and which cycle, if any, can we forcibly schedule 

an operation by unscheduling other operations. 

The Priority class is responsible for choosing the next operation for scheduling. Before 

entering the main scheduling loop, the Priority class is initialized with a new scheduling 

region. In the main scheduling loop, the Priority.pop() function delivers the next 

operation to be scheduled, accounting for dependence, priority and other constraints. If an 

  Initialize EarlyCycle, LateCycle and compute priorities of operations 
  ReadyList = Start operation 
  while (CurrentOperation = ReadyList.pop()) 
    Compute EarlyCycle and LateCycle for CurrentOperation 
    ForceCycle = max (AttemptedCycle+1, EarlyCycle) 
    success = FALSE 
    for (CurrentCycle ranging from EarlyCycle through LateCycle) 
      if (resources required by CurrentOperation available) 
 Schedule CurrentOperation in CurrentCycle 
 Update ReadyList with ready successors of CurrentOperation 
 success = TRUE; 
 break 
      elsif ((unscheduling enabled for CurrentOperation) AND 
    (CurrentCycle >= ForceCycle) AND 
    (HasHigherPriority (CurrentOperation, CurrentCycle))) 
 Unschedule conflicting operations and update ReadyList 
 Enable unscheduling for conflicting operations 
 Schedule CurrentOperation in CurrentCycle and update ReadyList 
 success = TRUE 
 break 
      endif 
    endfor 
    if (success = FALSE) 
      Unschedule conflicting operations at ForceCycle and update ReadyList 
      Enable unscheduling for conflicting operations 
      Schedule CurrentOperation in ForceCycle and update ReadyList 
      Set AttemptedCycle to ForceCycle for CurrentOperation 
    endif 
  endwhile 

Figure 6: ListBT scheduler 
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operation is unscheduled or is not successfully scheduled, the Priority.push() function 

puts the operation back on the unscheduled list of operations. 

There are several derived classes (specializations) of the Priority class that are used with 

the specific schedulers discussed earlier. The PriorityCycle class maintains the ReadyList, 

a list of ready operations and MinCycle, the minimum cycle that any of these ready operations 

can be scheduled without violating dependence constraints with predecessor scheduled 

operations. The PriorityCycle also maintains CCReadyList, the list of ready operations that 

can be issued at MinCycle. The PriorityCycle.pop() function delivers the ready 

operation with the highest priority among the operations in CCReadyList. The 

PriorityCycle.push() function increments the EarlyCycle of an operation and puts the 

operation back on the ReadyList. 

The PriorityDependence.pop() delivers highest priority operation among all ready 

operations (not necessarily those schedulable at MinCycle). The PriorityDependence. 

push() updates the AttemptedCycle of an operation to its current ScheduleCycle-1, if it is the 

first time that the operation is being unscheduled and puts the operation back on the unscheduled 

set of operations. 

The PriorityStatic.pop() function delivers the highest priority operation among all 

operations (not necessarily among the ready operations). The PriorityStatic.push() 

puts the operation back on the unscheduled list of operations with an AttemptedCycle of 

ScheduleCycle-1, if it has not been scheduled previously. 

The Cycle class is responsible for deciding the CurrentCycle in which CurrentOperation 

should be scheduled. At the beginning of each iteration of the scheduling loop, the Cycle class 

is initialized with the CurrentOperation and its EarlyCycle and LateCycle. The main scheduling 

loop then repeatedly invokes Cycle.nextCycle() to obtain CurrentCycle till this 

function returns NULL. The CycleEtime.nextCycle() returns EarlyCycle on the first 

invocation and NULL thereafter. The CycleSequential.nextCycle() returns the value 

of an internal counter that is initially set to EarlyCycle and that increments following each 
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invocation. After the counter advances past LateCycle, CycleSequential.nextCycle() 

returns NULL. 

The Unschedule class is responsible for deciding if the scheduler should forcibly schedule 

CurrentOperation. At the beginning of each iteration of the scheduling loop, the Unschedule 

class is initialized with CurrentOperation, EarlyCycle and LateCycle. The 

Unschedule.getForceCycle() either returns a ForceCycle or returns NULL to indicate 

that the scheduler should not forcibly schedule the CurrentOperation. The 

UnscheduleNever.getForceCycle() always returns NULL and never permits forcible 

scheduling. The UnscheduleSometimes.getForceCycle() returns NULL if the 

CurrentOperation has an un-initialized value for AttemptedCycle, otherwise it returns the 

maximum of EarlyCycle and (AttemptedCycle+1). The UnscheduleAlways. -

getForceCycle() returns the maximum of EarlyCycle and (AttemptedCycle+1) always. 

The Scheduler class constructs specialized versions of the Priority, Cycle and 

Unschedule classes. Prior to scheduling each region, the Scheduler initializes the 

Priority class. In the main scheduling loop, the Scheduler repeatedly pops an operation 

from the Priority class and sets it to the CurrentOperation. When there are no more 

operations to be scheduled, the Priority class returns NULL and the scheduling loop 

terminates. The Scheduler calculates the EarlyCycle and LateCycle of CurrentOperation based 

on scheduled predecessors and successors of CurrentOperation respectively. The Scheduler 

initializes the Cycle and Unschedule classes. Then, it relies on the Cycle class to iterate 

over all the valid cycles for CurrentOperation, until CurrentOperation is successfully scheduled 

or all the valid cycles are exhausted. In each valid CurrentCycle, the Scheduler first checks to 

see if sufficient resources are available to schedule CurrentOperation. If so, it schedules 

CurrentOperation in CurrentCycle. Otherwise, it next checks to see if 

Unschedule.getForceCycle() returns a non-NULL ForceCycle and if this ForceCycle is 

not more than CurrentCycle, and if the conflicting operations (UnscheduleSet) with 

CurrentOperation are of lower priority relative to CurrentOperation. If so, it forcibly schedules 

CurrentOperation in CurrentCycle and removes the operation in UnscheduleSet from the 
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partially generated schedule. If an operation cannot be scheduled in any of the valid cycles, and 

if Unschedule.getForceCycle() returns a non-NULL ForceCycle, the scheduler 

removes all conflicting operations from the partial schedule and forcibly schedules 

CurrentOperation in ForceCycle. Otherwise (if Unschedule.getForceCycle() returns 

NULL), the Scheduler invokes Priority.push() to push the CurrentOperation back into the 

unscheduled set of operations. 

The three schedulers that we discussed before, the CycleScheduler, ListScheduler, 

OperBTScheduler, and ListBTScheduler are all implemented using the same 

Schedule class and surrounding infrastructure. The only difference is that when we construct 

each of the Schedulers, we use certain combinations of specialized versions of the 

Priority, Cycle and Unschedule classes. Table 2 shows the specialized classes that are 

used to implement a particular scheduler. We emphasize that the main scheduling loop that 

implements all four schedulers is identical. 

6 Experimental evaluation 

The schedulers were evaluated on a set of Unix benchmarks, viz. grep, cmp, eqn, qsort, tbl, wc, 

yacc, cccp. A 111L3 processor configuration with a branch latency of three and one each of 

integer, floating and memory units was used. The OperBT scheduler schedules each operation 

almost twice (1.95) compared to once for the Cycle scheduler, each operation on the average 

being scheduled 1.32 times normally and 0.63 times otherwise (displace or force). On 

approximately half the forcible scheduling steps, only one operation is unscheduled though in a 

few cases seven operations are unscheduled. Due to the fairly large number of unscheduling 

Table 2: Schedulers and associated specialized Priority, Cycle and Unschedule classes 

Scheduler Priority Cycle Unschedule 
CycleScheduler PriorityCycle CycleEtimeOnly UnscheduleNever 

ListScheduler PriorityDependence CycleSequential UnscheduleNever 

OperBTScheduler PriorityStatic CycleSequential UnscheduleAlways 

ListBTScheduler PriorityDependence CycleSequential UnscheduleSometimes 
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steps, the OperBT scheduler is substantially slower than the non-backtracking Cycle and List 

schedulers. The ListBT scheduler backtracks less often and runs almost as fast as the List 

scheduler. The ListBT scheduler runs even faster than the Cycle scheduler, because the ListBT 

scheduler always schedules the CurrentOperation it selects, whereas the Cycle scheduler 

may repeatedly push the CurrentOperation back to the ReadyList if resources are not 

available in the CurrentCycle. 

Both backtracking schedulers generate similar quality schedules, with the OperBT scheduler 

only slightly better than the List scheduler. The improvement in estimated dynamic cycles using 

the backtracking schedulers averages around 2.2%. The percentage improvements in overall 

dynamic cycles are limited by the fact that empty delay slots account for a small fraction of 

overall cycles and the backtracking schedulers are targeted at filling these delay slots. A more 

comprehensive evaluation of the schedulers is currently underway in collaboration with 

Professor Waleed Meleis and graduate student, Ivan Baev, from Northeastern University, 

Boston. 

7 Related Work 

The early work on parallel instruction scheduling for processors was carried out in the context 

of microcode compaction [9-11]. The pre-scheduling steps such as the construction of 

dependence graphs are also examined in [12]. A reservation table, which was originally 

developed in the context of designing hardware pipelines [13], represents resource constraints 

during scheduling. Each row of a reservation table represents a particular cycle and each column 

a particular resource. A cell in a reservation table records the usage of the corresponding 

resource in a particular cycle. Eichenberger and Davidson describe efficient methods for 

representing resource constraints during scheduling [14]. 

Heuristics for scheduling instructions in a basic block for pipelined processors [15, 16] and 

superscalar processors [17] typically rely on ordering the operations in a block based on priority 

functions and scheduling the operations one by one as in Cycle or List scheduling. Approaches 

for basic block scheduling using optimization techniques such as finite state automata have been 

studied [18]. The joint optimization of scheduling and register allocation is addressed by [19] 
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and [20]. General backtracking algorithms for constraint satisfaction problems have been 

evaluated [21]. 

The amount of parallelism within a basic block is limited and not sufficient for modern EPIC 

processors. Global schedulers use a larger scheduling region and perform code motion between 

basic blocks. The trace scheduler constructs a trace consisting of a linear chain of basic blocks 

with multiple entries and exits [8, 22, 23]. A major concern is the complexity of inserting 

compensation code in the side entries/exits due to code motion between basic blocks in the 

global scheduling region. Global schedulers restrict the scheduling regions to reduce this 

complexity [24-26]. The schedulers described in this report use the superblock [27] [28] and 

hyperblock [29, 30] as the global scheduling region. Wavefront scheduling uses a region 

consisting of a tree of basic blocks [31]. 

Meld scheduling extends the scope of the optimization without increasing the complexity 

associated with code motion [32, 33]. Latency constraints are allowed to propagate outside the 

scheduling region, thereby giving some of the benefits of increasing the scheduling regions size 

Programs spend a significant fraction of the total execution time in loops and special 

scheduling techniques have been developed for loops [34] [35]. The Cydrome Cydra 5 compiler 

uses modulo scheduling to schedule loops [36] [37]. Rau developed the iterative modulo 

scheduler, which backtracks in a manner similar to the ListBT scheduler [4, 5]. Modulo 

schedulers attempt to schedule for a particular iteration interval (II) and typically increase the II, 

if it is unable to generate a schedule within the prescribed compile time budget. Any schedule 

that meets a particular II are equivalent to the first order. These unique characteristics of modulo 

scheduling give rise to a different set of algorithmic choices. Firstly, the iterative modulo 

scheduler may occasionally get locked in a repetitive orbit. However, once the compile time 

budget is exhausted, the iterative modulo scheduler attempts to schedule using a different II. The 

OperBT and ListBT are guaranteed to never revisit the same partial schedule and never get into 

a repetitive orbit. This guarantee is essential because there is no option similar to increasing the 

II and trying to schedule again. Secondly, the iterative modulo scheduler must account for a 

cyclic dependence graph, which may constrain LateCycle even when no successor from the same 

loop iteration has been scheduled. The OperBT and ListBT scheduler does not face such 
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constraints. Thirdly, the schedule length is the primary optimization metric in acyclic scheduling 

as opposed to a secondary metric in modulo scheduling. In order to optimize schedule lengths, 

ListBT and OperBT are allowed to unschedule operations in any cycle ranging from EarlyCycle 

through LateCycle (not necessarily at the ForceCycle), provided the operation has higher priority 

than the operations in UnscheduleSet. 

8 Conclusions 

This report motivates the need for backtracking schedulers by presenting processor features 

such as branch delay slots and resource conflicts that cannot be addressed adequately by non-

backtracking schedulers. We present the familiar Cycle and List schedulers and describe the 

scheduling infrastructure. We then present two backtracking schedulers that fill branch delay 

slots. The OperBT full backtracking scheduler picks operations in priority order and permits any 

operation to unschedule already scheduled operations. The ListBT selective backtracking 

scheduler picks operations primarily in dependence order and therefore greatly reduces the need 

for backtracking. Preliminary experiments demonstrate that both backtracking schedulers 

successfully fill a significant fraction of branch delay slots, providing an increase in schedule 

quality of between 1-3%. 
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