

Optimization of E-Service Solutions
with the Systems of Servers Library

Vadim Kotov, Holger Trinks
Computer Systems and Technology Laboratory
HP Laboratories Palo Alto
HPL-2000-54
April, 2000

E-mail: kotov@hpl.hp.com
 htrinks@hpl.hp.com

e-service
systems, system
integration,
system
modeling,
system analysis
and
optimization,
Communicating
Structures
Library,
services,
servers, service
partitioning,
load balancing,
genetic
algorithms

The report describes a modeling library for analysis and
optimization of distributed service systems: enterprise
computing infrastructures, E-commerce and E-service systems.
The library uses a small number of basic notions, such as
service, server, cluster (of servers), clients and message, which
allow us to describe, analyze and optimize various system
configurations and deployment of services among servers. The
service requests and responses are modeled by messages
traveling in the system and using the system common
resources, such as network bandwidth and cache space. Clients
send their requests for services to servers, which either return
responses or may issue secondary requests for other services.
The messages can form complex activities such as transactions
(sessions). To find optimal deployments of services among
servers, different partition policies can be used including
partitions based on genetic algorithms.

The Systems of Servers is built on top of the Communicating
Structures Library (CSL), a basic library for modeling large-
scale distributed systems [1,2]. In its turn, it is a base for more
specialized libraries that target specific classes of service
systems. All these libraries are part of the System Factory [4], a
modeling environment for system integration and
customization.

 Copyright Hewlett-Packard Company 2000

Internal Accession Date Only

 2

1 INTRODUCTION .. 3

2 EXAMPLES OF E-SERVICE SYSTEMS.. 4

2.1 Multi-Tier Electronic Delivery Systems.. 4

2.2 E-speak Infrastructure ... 5

3 COMMUNICATING STRUCTURES LIBRARY (CSL) 8

4 OBJECTS OF SYSTEMS OF SERVERS... 8

4.1 Services... 9

4.2 Messages... 9

4.3 Clients (Proxies)... 10

4.4 Servers .. 10

4.5 Clusters... 10

4.6 Transactions... 11

5 SERVICE PARTITION.. 11

6 LOAD BALANCING ... 16

7 CACHING ... 17

8 CONCLUSION.. 18

9 REFERENCES ... 19

 3

1 INTRODUCTION

Distributed services and servers form the backbone of modern computing environments
based on inter- and intranets: enterprise-computing infrastructures, WWW, E-commerce,
E-service systems, etc.

Though the diversity of service types and patterns of interaction between clients and
servers is quite large, it is possible to extract a relatively small number of basic concepts,
objects, and "communication templates" that allow us to adequately model the typical
situations and problems emerging in distributed server environments, to analyze these
problems, and then to solve them.

The term E-services is currently used in commercial context mostly to distinguish
internet-based, end-to-end, customer-facing business services from traditional bricks-and-
mortar operations. In this report, we treat an E-service, or just a service, as a more general
and more technical notion, namely as an activity in a system that

• is provided by a server,

• is requested by clients or by servers that need another service to satisfy the
original service request (secondary service),

• consumes some system resources both in servers and in the system infrastructure,

• competes for these resources against other services.

 To request a service, a client issues messages that travel in the system and use common
system resources, such as network bandwidth and cache space. A server may either return
a response or issue secondary requests for other services that are needed to fulfill the
primary service. Messages may form more complex activities called transactions or
sessions.

One server may host many services. Servers may be grouped into clusters of servers.
Services also may be grouped forming a hierarchy of services and subservices. One
service may be partitioned and replicated among many servers and among many clusters
of servers.

A service system works successfully if it is able to deliver services in due time, requires
minimal resources, is highly available, secure, and satisfies other quality of service
requirements. Competition for resources and traffic bottlenecks may cause significant
system performance degradation. This requires special attention to the service
deployment and to the message traffic management.

With increasing demand on services and their assortment, the variety of the service
system architectures and their complexity is growing rapidly. The difficult problem,
which service system designers face, is the selection of good solutions in this large
solution space. The modeling library Systems of Servers described in this report is
intended to help them to do that. It defines a generic set of relatively simple high-level
abstractions. They can be used to conveniently describe various service system
architectures, different service patterns and to introduce metrics for quality of services
and arrange quantitative search for optimal solutions. The Systems of Servers library is
built on top of the Communicating Structures Library (CSL) developed for modeling and

 4

design of large-scale, massively distributed systems [1]. In its turn, Systems of Servers is
a base library for more specialized libraries that target specific classes of E-service
systems.

The report starts with two examples of E-service systems (Section 2). The first example
is a multi-tiered electronic delivery system. The second example is an E-service system
based on the E-speak paradigm. The main principles and objects of the Communicating
Structures Library are described in Section 3; basic objects of Systems of Servers are
introduced in Section 4. To find optimal deployments of services among servers, different
partition policies can be used. Some of them are described in Section 5. Load balancing
and caching are briefly addressed in Sections 6 and 7.

2 EXAMPLES OF E-SERVICE SYSTEMS

2.1 Multi-Tier Electronic Delivery Systems

The use of electronic delivery systems (EDS) has grown tremendously since e-mail and
the World Wide Web have emerged as common and convenient infrastructures for
communication of customers with businesses. These developments are transforming the
market for electronic delivery. A typical EDS consists of up to 4 tiers (Figure 1):

• Tier 1: Thin clients. They are external Internet, ATM, and phone/fax clients
accessing the system for services via transactions.

• Tier 2: Front-end (Web) services and servers. This tier provides a secure
foundation for the applications that Internet-enable an enterprise. It connects the
outside clients to the inside servers via an internal secure boundary.

• Tier 3: Application services and servers. This tier provides self-service solutions
deployed at several application and DB servers. Transactions may be packaged
into modules that access the services.

• Tier 4: Back-end services and servers.

 5

In terms of Systems of Servers, this EDS may be presented as a set of services provided
by different servers in appropriate tiers that are clusters of servers. Clients from Tier 1
send requests for specific services. These requests are forwarded to Tier 2 where they
invoke services of the web servers. These web services issue secondary requests to the
services provided by the application servers of the Tier 3. An application service may
either execute the request and send back a response message with the results of the
execution or generate a new secondary request for a service at the back-end tier. In the
latter case, the last tier generates the final response. It may happen, that some services
may generate multiple secondary requests, which, at the end, produce several responses.
That means that one initial request may, in general case, create a flow of messages in the
system and activate multiple services.

This generic EDS architecture may be modified and customized for specific electronic
delivery services in different business segment, such as banking or retail businesses.

2.2 E-speak Infrastructure

E-speak is a “computing utility” computation model, in which services are virtualized.
This means that a client may request a service without knowing where it is provided, how
actually to access it, or what are implementation details. An E-speak system selects an

Figure 1

 6

actual service (an actual server) for the client or proposes a choice of services to select.
E-speak is intended to enable ubiquitous services over the network.

Figure 2

Figure 2 illustrates the main components of a typical E-speak system deployment. An E-
speak system consists of a set of Logical Machines, each including:

• An E-speak Core that is the E-speak basic control unit, a “daemon” providing the
distributed mediation layer,

• A Repository, in which all services managed by the Core are registered,

• A Service Handler, that processes requests for local services,

• A Remote Service Handler that handles the inter-machine exchange of service
requests and responses,

• Servers that actually provide requested services.

In order to get a service, a client sends a request message to the local Core. To make a
(secondary) request for the service residing at the same logical machine, the Core
accesses the Repository to obtain registration information that identifies the Service
Handler associated with the requested service. The Core then forwards the requests either
to the local or to remote Service Handler. In the first case, the Service Handler transfers
requests to Servers that actually provide services. The results of the services are sent back
to the Service Handler, the Core and finally to the Client.

 7

Figure 3

In the remote case, the local Remote Service Handler passes the request to the peer
Remote Service Handler in a remote Logical Machine hosting the requested service.
That Remote Service Handler contacts the Core at that remote Logical Machine and then
process continues as if this request is local until a response comes back to the Core. Then
the Core sends the response to the “local” Remote Service Handler that returns it to the
Remote Service Handler and to the Core of the machine at which the request originated.
Figure 3 shows the itinerary of messages in the case of remote service access.

In terms of Systems of Servers, the Core, Service Handlers, and Repository all are servers
providing services. These “internal” system services are not requested by clients but are
present in the system and are invoked to access the “terminal” service requested by the
client.

 8

3 COMMUNICATING STRUCTURES LIBRARY (CSL)

The Systems of Systems infrastructure is built in the framework of Communicating
Structures [1], an abstract system representation that views systems as hierarchical
distributed structures composed in a uniform and systematic way. The system
components are represented simply as nodes. Each node has memory that may contain
items. Nets are sets of links that connect the nodes. The items are generated at some
nodes and move from node to node along links, with some delay. Nodes may modify
items. The item traffic models the data traffic in a system, which is represented as a
communicating structure.

Items, nodes, memories, and nets may be elementary or may be aggregate and have some
structure. For example, an item may represent a simple data such as a word, a frame, a
packet, as well as a complex message with large chunks of data or even a transaction
consisting of many messages. The nodes may represent “atomic” units or larger
aggregate system components. Nets may represent simple point-to-point links as well as
busses, crossbars, interconnects, cascaded switches, LANs, communication lines and
WANs.

Communicating Structures are high-level, template-style representations of systems in the
same sense as template vectors represent vectors of anything. They do not fix behavioral
or implementation semantics of basic objects, attributes, functions and processes, but
rather provide default semantics for them. That makes possible to “emulate” different
conceptual models, such as simulation models, queuing networks, or Petri nets, in the
framework of a common abstraction basis.

 Communicating Structure Library (CSL) [2] is an object-oriented implementation of
Communicating Structures. The CSL objects may be assigned different attributes
(numbers, variables, functions, and processes) that serve to refine these objects,
customize them, supply them with external data, change their behavior and navigate
among different levels of modeling detail.

4 OBJECTS OF SYSTEMS OF SERVERS

The main objects of Systems of Servers are:

• services,

• servers,

• clusters of servers (and clusters of clusters),

• clients (proxies),

• messages,

• transactions (or sessions).

 9

Servers, clusters and proxies are refined CSL nodes; messages and transactions are
refined CSL items.

Examples of problems that can be addressed in Systems of Servers are:

• comparison of topologies of distributed servers,

• partitioning of services among servers and clusters of servers,

• caching strategies,

• queuing and scheduling policies,

• load balancing,

• admission control.

4.1 Services

A service is an abstraction that enables the description of a client/server relationship.
Each service is described by its name, its set of subservices (for an aggregate service) and
some other attributes that characterize specific features of the service. Hence, services
form a tree structure. An aggregate service1 may be either real or virtual. Simple
services are all real. Real services are assigned to (simple) nodes called Servers (see
section 4.4). A server may host several (real) services. The same service may be
provided by different servers. Virtual services are not assigned to servers. They are used
to group services into classes of services and/or to accumulate statistics for a group of
services.

The relation between service and subservice may be treated and used in different ways:

 For example, a virtual service Transportation could have the (real) subservices Plane,
Train and Car. Another virtual service Lodging could have the subservices Hotel, Motel
and Campground. A request for the Transportation service means actually requesting
some of its subservice (with some probability).

It is often convenient to treat a subservice as a secondary service of its parent service. For
example, the subservices “Rent a Car” and “Book a Hotel” could be subservices of the
service “Vacation Arrangement”. Such an interpretation of the subservice relation is
chosen as the default one in the Systems of Servers library.

A Service Matrix summarizes the information about services requesting other services.
The elements of this matrix show the probability with which a service requests another
service. The matrix is used to optimize the service deployment and load balancing.

4.2 Messages

A Message is a CSL item that carries requests and responses between clients and servers.
Each message has information about a service and a tag that indicates whether it is a

1 a service that is not a leaf in the tree structure

 10

request or a response. Messages containing primary requests for services are always
generated by clients. A response message always returns to the client that generated the
primary request. Responses to secondary requests return either directly to the client or via
the server that issued the secondary request. Due to the generation of chains of secondary
requests it is possible that more than one response is sent to the client. The arrival of the
last response of a series of responses is the completion of this request.

4.3 Clients (Proxies)

The Clients are represented by simple CSL nodes that generate primary requests. One of
these nodes can represent an arbitrary number of real world clients by adjusting the
interarrive time for the request generation. As responses return to clients, the latter collect
data for future calculation of statistics. Clients also handle transactions. Messages,
generated at a client, are routed to servers that are able to provide the requested services.

4.4 Servers

Servers are simple CSL nodes that host services. Any request, arriving to a server, carries
information about the service that it is requesting. If this server hosts such a service and
the server has enough available resources to render this service, it executes the service
during some service time that depends on the relative service time assigned for this
service and the “speed” of the server (its node delay).

It may happen then that a server issues secondary requests. These requests memorize the
server that issued them and are routed to servers that can provide the correspondent
services.

If secondary requests are not generated, the server forms a response that is routed back
either directly to the client that originated the primary request or to the server that issued
the last secondary request.

If a response arrives to a server as to an intermediate destination, it is forwarded either to
the next server that is in the message’s list of servers that generated secondary requests or
to the client, if this list is empty.

4.5 Clusters

A Cluster is an aggregate CSL node that consists of servers and/or clusters of servers.
Services assigned to servers and subclusters of a cluster are considered to be assigned to
this cluster. Each cluster can have a Partition that distributes services assigned to it
among its servers or subclusters. This partition is static and does not change during a
model run. The cluster can also balance the traffic of messages-requests to its subclusters
and servers, hence to balance the service load at these subclusters and servers. For this
purpose it monitors the current load to and from of all its services.

 11

4.6 Transactions

A Transaction represents a group of messages (requests and responses), which serve to
fulfill some user’s task. The transactions are generated with some interarrival time and
each transaction initiates a series of request messages. Some termination condition
defines when a transaction is completed. To prevent overcrowding at services, an
admission control for transactions may be used in servers. The class AdmissionControl
defines admission conditions and what to do with the transactions that are not granted
admission to services.

5 SERVICE PARTITION

An important factor of the traffic efficiency in a distributed service system is the partition
of services among servers and clusters of servers.

Let us assume that there are m services that should be distributed over n server nodes.
There exist several kinds of restrictions influencing this mapping:

1. Number of server nodes per service: A service can only reside on one server or a
service can be distributed (replicated) over several servers.

2. Number of services per server node: Each server hosts exactly one service (If
services cannot be replicated over several servers then m = n.) or each server can
host a maximal number of x services (with x ≤ m).

3. Restriction on service placement: Some service has to be mapped on a certain
server or some service has to be offered by a certain cluster.

Figure 4 shows an example that could be described by a user through input files.

Figure 4

Cluster1 Cluster2 Clients

TOP

Server1

Server2

Server3

Server4

Server5 Server6

Server7

Server8 Server10

Server9

Client1 Client2

A A

 B C D E

F

 12

The topology consists of some clients and two server clusters with five servers each. The
services of this example are named A, B, C, D, E and F. Each server can host only one
service, but services can be replicated over several nodes. Service A must reside on
Server1 and Server6. Services B and C must be assigned to servers in Cluster1 while
service D and E are restricted to Cluster2. Service F can be mapped on any server.

The class Partition defines how services are mapped on servers respecting the given
restrictions. In the example, the class Partition could create a random mapping of the
services A, B, C, D, E and F on the ten servers. A possible result is shown in Figure 5.

After the actual mapping is made, each cluster updates its list of services, which consists
of all services offered by servers in this cluster.

Of course, a random partition of services is not very helpful and should maybe only serve
as a default partition behavior. More sophisticated partition schemes could be for
example:

• Load distribution: Services should be distributed among servers according to
their expected load. A service A, which will cause twice as much load as a service
B, should be mapped on twice as many servers as B. If several services per server
are allowed then they should not be distributed in such a way that some servers
are overloaded while others are idle most of the time.

• Minimal communication costs: Services that communicate with each other (via
secondary requests) should be placed on servers close to each other, e.g. in the
same cluster. This reduces the total bandwidth usage and traffic delays of
secondary requests.

• Optimal resource utilization: The placement from services on servers could
depend on some limited resources like main memory or disk space.

Other partition strategies can be imagined as well as combinations of them. Furthermore,
partition schemes could vary between different clusters.

Figure 5

Cluster1 Cluster2 Clients

TOP

Server1

Server2

Server3

Server4

Server5 Server6

Server7

Server8 Server10

Server9

Client1 Client2

A A

 A B C F A D E F

A B C D E F

B

F

F

C

F D

D E

 13

So far, one additional Partition class has been implemented. It considers the expected
load situation and the communication cost between services.

Figure 6 shows another example for a partition of ten services S1, S2,.. , S10 on ten server
nodes N1, N2, .. , N10 with the following restrictions:

• Each server can host exactly one service. Services cannot be replicated over
several nodes.

• Clients create requests for service S1. Each service Si creates a secondary request
for the service Si+1.

• Nodes are connected in a chain where traffic costs between nodes increase
proportionally to their distance. In this example, traffic costs just consider the
number of hops between two servers.

Obviously, the partition in Figure 6 is the optimal solution according to minimal
communication costs in the system, because each secondary request has to travel only
one hop to get to its destination node. However, automatically finding this solution in the
set of more than 3.6 Million different mappings can be very time and resource
consuming. Additionally, if the placement of services onto servers is less restricted (e.g.
arbitrary number of services per server including replication of services) the number of
possible mappings rises dramatically. Therefore, an exhaustive search is not a good idea,
especially if one deals with systems of systems with hundreds or thousands of nodes. In
the implemented partition class, it is tried to find a reasonable good partition by applying
a genetic algorithm (GA) [3].

A genetic algorithm is an algorithm that incorporates aspects of natural selection or
survival of the fittest. It maintains a population of chromosomes that evolve according to
rules of selection, recombination and mutation. A chromosome represents a usually
binary encoded solution to the problem being solved. In our context, it is one possible
mapping of services onto server nodes. Figure 7 shows how the mapping of three services
A, B and C on four server nodes can be binary encoded. Each bit represents a service
mapping of one service to a certain node. The first bit (starting from left) codes that
service A is mapped on Server0; the second bit shows that service B is not available on
Server0 etc.

Figure 7

1 Hop
... N1 N2 N3 N4 N9 N10

S1 S2 S3 S4 S9 S10

3 Hops Secondar
y Request Figure 6

Server0 Server1 Server2 Server3

AA C BC
ABC 101 100 011 111

 14

How good or bad a chromosome (which means one certain mapping) is can be evaluated
by a cost function. With each new generation, the genetic algorithm builds new
chromosomes whose cost values should be smaller, meaning that they represent a better
service mapping. The cost value of a chromosome is calculated in the following way:

 () commCostloadCostt ⋅−+⋅= αα 1cos

• loadCost is a value that represents how well the load is balanced among the
servers. It is the standard deviation of the mean utilization2 of all nodes. The
smaller it is the better the load is balanced.

• commCost is a value that reflects the communication costs between server
nodes caused by secondary requests. It is calculated with the following
formula:

DistallMess

proxmess

commCost

n

i
ji

n

j
ji

max

,,

⋅

⋅
=

∑∑

o n is the number of server nodes.

o messi,j is the number of messages exchanged between server node i and
j in a time unit.

o proxi,j is the distance (in hops) between node i and j.

o allMess is the total number of messages transferred between all nodes
in a time unit.

o maxDist is the maximum distance between two server nodes in the
system.

commCost is a value between zero and one. A value of one represents the
worst-case scenario with a maximum number of messages transferred over
the maximum distance. A value of zero means that there are no messages
exchanged between servers.

• The weight factor α is used to prioritize one of the two cost values.

The genetic algorithm starts with a number of randomly selected chromosomes that fulfill
the given restrictions. For example, if service A has to be mapped on Server3 then the
corresponding bit will be set in all chromosomes of the population. In the opposite case,
if a cluster should only host the services A, B, C and not D, E then all bits representing D
and E on the servers of this cluster will be unset in all chromosomes. These predefined
bits of the chromosome will be referred to as restricted bits.

2 A utilization of 1.0 means that a server is busy 100% of the time.

 15

If pop_size is the number of chromosomes in a population then pop_size/2 randomly
selected pairs of chromosomes produce new chromosomes for the next generation. A pair
of chromosomes creates an offspring by joining segments chosen alternately from one of
the two parents’ chromosomes. Which segment is taken from which parent is defined by a
randomly created crossover bit set. If the corresponding bit in the crossover bit set is one
then it is taken from the first parent chromosome, otherwise from the second. Figure 8
shows an example of the crossing of two chromosomes. If the cost value of the offspring
is better (lower) than the value of the worse parent, then the offspring replaces this parent
in the population. This guaranties that the mean cost value of the population decreases
from generation to generation resulting in better chromosomes.

The second way of altering chromosomes is mutation. Mutations increase the search
space of solutions by slightly changing chromosomes of the population. A mutation rate
defines the probability with which each bit of the chromosome is flipped. Restricted bits
cannot be changed by mutation.

Sometimes it can happen that a created offspring or a mutated chromosome breaks some
basic rules of the underlying mapping. The following cases can occur:

• There could be a server without any services. This is corrected by mapping a
random service on that empty server. This service must be one, which is
allowed on this server.

• The number of services per server node can be restricted in a range from one
to m services. If there are too many services on a server, some randomly
chosen services will be deleted from this server. (This could lead to the next
case.)

• There could be a service that is not mapped on any server. This service will be
mapped on a randomly chosen server. This server must be allowed to host the
service. If adding the service exceeds the maximal number of services per
server, then the service is only added to this node if another service is found,
which is also mapped on some other node and can therefore be replaced on
this node.

The genetic algorithm can be tuned by adjusting the following parameter:

• Population size,

Figure 8

Server0 Server1 Server2 Server3

A C A BC ABC Chromosome 1
101 100 011 111

 BC B A C A C Chromosome 2
011 010 101 101

A C AB A C ABC Offspring
101 100 011 111

111 100 000 011 Crossover

 16

• Number of generations,

• Cross-over ratio (number of cross-over points in the cross-over bit set),

• Mutation ratio,

• Weight factor for cost function (to prioritize load balancing or minimal
traffic).

After the genetic algorithm has finished, the best chromosome of the population will
serve as the actual service partition of the model.

Returning to the example of figure 4, let us assume that there are three times more
requests for service B than for C and that the services D and E call service F. The genetic
partition algorithm could create a mapping like in figure 9 where service B is replicated
over three servers and service F is only mapped into Cluster2.

6 LOAD BALANCING

Load balancing is usually applied when service requests should be distributed among
several servers in a cluster. One common example is a load-balancing device, which is
placed in front of a cluster of Web servers. The load balancer forwards incoming requests
according to a certain policy, which could be, for example:

• a random distribution,

• a round-robin distribution,

• sending the request to the server with the least number of open TCP connections,

Figure 6

Cluster1 Cluster2 Clients

TOP

Server1

Server2

Server3

Server4

Server5 Server6

Server7

Server8 Server10

Server9

Client1 Client2

A A

 A B C A D E F

A B C D E F

B

B

B

C

F F

D E

 17

• sending the request to the server, which has the lowest load according to some
metrics, received from the server, e.g. CPU and memory utilization or number of
running processes.

Such load balancing policies can be expressed in a Systems of Servers model. A class
LoadBalancer exists which enables a cluster node to distribute service requests among
the servers in the cluster according to some chosen load balancing policy. The policy,
which considers the number of open TCP connections, is modeled by counting the
number of requests sent to a server without receiving responses yet. Information from a
server node, which can be used to make a load balance decision, is, for example, the
queue length of the waiting requests. Other load balancing policies can be easily applied
by deriving a new class from LoadBalancer that implements the desired behavior.

7 CACHING

Modeling caches can be done at different abstraction levels:

1. A cache can be considered as a service that is characterized by its hit ratio hr and
a certain delay d. A client’s service request will be fulfilled by the cache with the
probability hr and the delay d. With the probability (1-hr), the cache cannot
satisfy the request itself and will create a secondary request to the origin server.
Characteristics like cache size or cache replacement polices are not modeled.
An example is shown in Figure 10. A number of Web clients are connected to a

Web Clients
(Browser)

Client

Client

Client

Client

Proxy

Proxy

Proxy

Web
Server

Web
Server

REQ C1

RESP C1

REQ C2

RESP C2

First Level Web
Proxy Caches
(Hit Ratio 0.3)

Second Level Web
Proxy Cache

(Hit Ratio 0.5)

Web Servers

Services:

First level cache: C1
Second level cache: C2
Web server: W

Secondary services probabilities:

C1 (C2 0.7)

C2 (W 0.5)

Figure 6

 18

two level hierarchy of proxy caches. If a client’s request cannot be served from
the first level proxy, a secondary request is created to the second level proxy.
Only if this one also cannot fulfill the request, the request is sent to a Web server.
The miss ratios of the proxy caches are represented by the secondary request
probabilities of the proxy cache service.

2. If the goal of a planned simulation is the observation of the cache behavior itself
the above abstraction level is probably not detailed enough, especially if the
cache’s hit ratio is not known and should maybe obtained through the simulation.
In this case a cache should be characterized by

• a set of distinguishable objects, which can be cached,

• the cache size,

• a replacement policy if the cache is full and new arriving objects should be
cached.

This caching behavior has not been implemented in the Systems of Servers
domain itself, but in a new domain library, which is derived from Systems of
Servers. It is an example how Systems of Servers can be easily extended to model
specific system behavior.

A service request now includes an identifier (number) that allows distinguishing
cacheable objects. The behavior of a server changes in the following way:

• The creation of secondary requests now only depends on the fact whether
the requested object is in the cache. The probability values from the
service matrix used before are ignored in this case.

• If a service request arrives at a server, it looks up whether the object with
the given identifier is cached.

• If it is cached, a response is sent back to the origin of this request and the
cache is updated according to the replacement policy, e.g. changing
priorities or the order of objects that will be replaced next.

• Otherwise, a secondary service request will be created and sent to the next
server according to the service matrix. If the response from this server
returns the object will be cached, and a response will be sent back to the
origin of the request. While caching this object, other objects may be
removed from the cache according to the cache’s replacement policy.

Several classes of caches were implemented differing in their replacement
policies, e.g. LFU, LRU, SIZE and GDS (Greedy Dual Size).

8 CONCLUSION

Systems of Servers is focused on the quantitative analysis and optimization of global
system solutions. These solutions primarily influence the performance and cost of large
distributed service systems. The library has been successfully used to validate global

 19

architectural solutions in enterprise computing infrastructures, multi-tier electronic
delivery systems, and open distributed E-services.

Communicating Structures Library (CSL), Systems of Servers and specialized libraries
built on the top of them, form System Factory [4], an open modeling environment for
integration and customization of distributed system.

9 REFERENCES

1. Kotov,V.E. Communicating Structures for Modeling Large-Scale Systems. In
Proceedings of the 1998 Winter Simulation Conference, Washington, D.C., ed.
D.J.Medeiros, E.F.Watson, J.S.Carson, and M.S.Manivannan, 1998, pp.1571-1578.

2. Kotov,V.E., Rokicki,T.M., and CherkasovaL.A. CSL: Communicating Structures
Library for System Modeling and Analysis. HP Labs Technical Report HPL-98-118, Palo
Alto, CA, 1998.

3. Haupt,R.L. andHaupt, S.E. Practical Genetic Algorithms. John Wiley & Sons, 1998,
177 p.

4. Kotov,V.E. System Factory: Integrating Tools for System Integration. HP Labs
Technical Report HPL-99-118, Palo Alto, CA, 1999.

	INTRODUCTION
	EXAMPLES OF E-SERVICE SYSTEMS
	Multi-Tier Electronic Delivery Systems
	E-speak Infrastructure

	COMMUNICATING STRUCTURES LIBRARY (CSL)
	OBJECTS OF SYSTEMS OF SERVERS
	Services
	Messages
	Clients (Proxies)
	Servers
	Clusters
	Transactions

	SERVICE PARTITION
	LOAD BALANCING
	CACHING
	CONCLUSION
	REFERENCES

