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The report describes a modeling library for analysis and 
optimization of distributed service systems: enterprise 
computing infrastructures, E-commerce and E-service systems.  
The library uses a small number of basic notions, such as 
service, server, cluster (of servers), clients and message, which 
allow us to describe, analyze and optimize various system 
configurations and deployment of services among servers. The 
service requests and responses are modeled by messages 
traveling in the system and using the system common 
resources, such as network bandwidth and cache space. Clients 
send their requests for services to servers, which either return 
responses or may issue secondary requests for other services.  
The messages can form complex activities such as transactions
(sessions). To find optimal deployments of services among 
servers, different partition policies can be used including 
partitions based on genetic algorithms.  

The Systems of Servers is built on top of the Communicating 
Structures Library (CSL), a basic library for modeling large-
scale distributed systems [1,2]. In its turn, it is a base for more 
specialized libraries that target specific classes of service 
systems. All these libraries are part of the System Factory [4], a 
modeling environment for system integration and 
customization. 
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1 INTRODUCTION 

Distributed services and servers form the backbone of modern computing environments 
based on inter- and intranets: enterprise-computing infrastructures, WWW, E-commerce, 
E-service systems, etc.  

Though the diversity of service types and patterns of interaction between clients and 
servers is quite large, it is possible to extract a relatively small number of basic concepts, 
objects, and "communication templates" that allow us to adequately model the typical 
situations and problems emerging in distributed server environments, to analyze these 
problems, and then to solve them. 

The term E-services is currently used in commercial context mostly to distinguish 
internet-based, end-to-end, customer-facing business services from traditional bricks-and-
mortar operations. In this report, we treat an E-service, or just a service, as a more general 
and more technical notion, namely as an activity in a system that 

• is provided by a server, 

• is requested by clients or by servers that need another service to satisfy the 
original service request (secondary service), 

• consumes some system resources both in servers and in the system infrastructure, 

• competes for these resources against other services. 

 To request a service, a client issues messages that travel in the system and use common 
system resources, such as network bandwidth and cache space. A server may either return 
a response or issue secondary requests for other services that are needed to fulfill the 
primary service. Messages may form more complex activities called transactions or 
sessions. 

One server may host many services. Servers may be grouped into clusters of servers. 
Services also may be grouped forming a hierarchy of services and subservices. One 
service may be partitioned and replicated among many servers and among many clusters 
of servers.  

A service system works successfully if it is able to deliver services in due time, requires 
minimal resources, is highly available, secure, and satisfies other quality of service 
requirements. Competition for resources and traffic bottlenecks may cause significant 
system performance degradation. This requires special attention to the service 
deployment and to the message traffic management.  

With increasing demand on services and their assortment, the variety of the service 
system architectures and their complexity is growing rapidly.  The difficult problem, 
which service system designers face, is the selection of good solutions in this large 
solution space.  The modeling library Systems of Servers described in this report is 
intended to help them to do that.  It defines a generic set of relatively simple high-level 
abstractions. They can be used to conveniently describe various service system 
architectures, different service patterns and to introduce metrics for quality of services 
and arrange quantitative search for optimal solutions. The Systems of Servers library is 
built on top of the Communicating Structures Library (CSL) developed for modeling and 
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design of large-scale, massively distributed systems [1]. In its turn, Systems of Servers is 
a base library for more specialized libraries that target specific classes of E-service 
systems. 

The report starts with two examples of E-service systems (Section 2). The first example 
is a multi-tiered electronic delivery system. The second example is an E-service system 
based on the E-speak paradigm. The main principles and objects of the Communicating 
Structures Library are described in Section 3; basic objects of Systems of Servers are 
introduced in Section 4. To find optimal deployments of services among servers, different 
partition policies can be used. Some of them are described in Section 5. Load balancing 
and caching are briefly addressed in Sections 6 and 7. 

 

2 EXAMPLES OF E-SERVICE SYSTEMS 

2.1 Multi-Tier Electronic Delivery Systems 

The use of electronic delivery systems (EDS) has grown tremendously since e-mail and 
the World Wide Web have emerged as common and convenient infrastructures for 
communication of customers with businesses. These developments are transforming the 
market for electronic delivery.  A typical EDS consists of up to 4 tiers (Figure 1): 

• Tier 1: Thin clients. They are external Internet, ATM, and phone/fax clients 
accessing the system for services via transactions. 

• Tier 2: Front-end (Web) services and servers. This tier provides a secure 
foundation for the applications that Internet-enable an enterprise. It connects the 
outside clients to the inside servers via an internal secure boundary.  

• Tier 3: Application services and servers. This tier provides self-service solutions 
deployed at several application and DB servers. Transactions may be packaged 
into modules that access the services.  

• Tier 4: Back-end services and servers. 
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In terms of Systems of Servers, this EDS may be presented as a set of services provided 
by different servers in appropriate tiers that are clusters of servers. Clients from Tier 1 
send requests for specific services. These requests are forwarded to Tier 2 where they 
invoke services of the web servers. These web services issue secondary requests to the 
services provided by the application servers of the Tier 3. An application service may 
either execute the request and send back a response message with the results of the 
execution or generate a new secondary request for a service at the back-end tier. In the 
latter case, the last tier generates the final response. It may happen, that some services 
may generate multiple secondary requests, which, at the end, produce several responses. 
That means that one initial request may, in general case, create a flow of messages in the 
system and activate multiple services. 

This generic EDS architecture may be modified and customized for specific electronic 
delivery services in different business segment, such as banking or retail businesses. 

 

2.2 E-speak Infrastructure 

E-speak is a “computing utility” computation model, in which services are virtualized. 
This means that a client may request a service without knowing where it is provided, how 
actually to access it, or what are implementation details. An E-speak system selects an 

Figure 1 
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actual service (an actual server) for the client or proposes a choice of services to select. 
E-speak is intended to enable ubiquitous services over the network. 

 
Figure 2 

Figure 2 illustrates the main components of a typical E-speak system deployment. An E-
speak system consists of a set of Logical Machines, each including: 

• An E-speak Core that is the E-speak basic control unit, a “daemon” providing the 
distributed mediation layer, 

• A Repository, in which all services managed by the Core are registered, 

• A Service Handler, that processes requests for local services, 

• A Remote Service Handler that handles the inter-machine exchange of service 
requests and responses, 

• Servers that actually provide requested services. 

In order to get a service, a client sends a request message to the local Core. To make a 
(secondary) request for the service residing at the same logical machine, the Core 
accesses the Repository to obtain registration information that identifies the Service 
Handler associated with the requested service. The Core then forwards the requests either 
to the local or to remote Service Handler. In the first case, the Service Handler transfers 
requests to Servers that actually provide services. The results of the services are sent back 
to the Service Handler, the Core and finally to the Client. 
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Figure 3 

In the remote case, the local Remote Service Handler passes the request to the peer 
Remote Service Handler in a remote Logical Machine hosting the requested service.  
That Remote Service Handler contacts the Core at that remote Logical Machine and then 
process continues as if this request is local until a response comes back to the Core.  Then 
the Core sends the response to the “local” Remote Service Handler that returns it to the 
Remote Service Handler and to the Core of the machine at which the request originated.  
Figure 3 shows the itinerary of messages in the case of remote service access. 

In terms of Systems of Servers, the Core, Service Handlers, and Repository all are servers 
providing services. These “internal” system services are not requested by clients but are 
present in the system and are invoked to access the “terminal” service requested by the 
client. 
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3 COMMUNICATING STRUCTURES LIBRARY (CSL) 

The Systems of Systems infrastructure is built in the framework of Communicating 
Structures [1], an abstract system representation that views systems as hierarchical 
distributed structures composed in a uniform and systematic way.  The system 
components are represented simply as nodes. Each node has memory that may contain 
items. Nets are sets of links that connect the nodes. The items are generated at some 
nodes and move from node to node along links, with some delay. Nodes may modify 
items. The item traffic models the data traffic in a system, which is represented as a 
communicating structure.  

Items, nodes, memories, and nets may be elementary or may be aggregate and have some 
structure. For example, an item may represent a simple data such as a word, a frame, a 
packet, as well as a complex message with large chunks of data or even a transaction 
consisting of many messages. The nodes may represent “atomic” units or larger 
aggregate system components. Nets may represent simple point-to-point links as well as 
busses, crossbars, interconnects, cascaded switches, LANs, communication lines and 
WANs. 

Communicating Structures are high-level, template-style representations of systems in the 
same sense as template vectors represent vectors of anything. They do not fix behavioral 
or implementation semantics of basic objects, attributes, functions and processes, but 
rather provide default semantics for them.  That makes possible to “emulate” different 
conceptual models, such as simulation models, queuing networks, or Petri nets, in the 
framework of a common abstraction basis. 

 Communicating Structure Library (CSL) [2] is an object-oriented implementation of 
Communicating Structures. The CSL objects may be assigned different attributes 
(numbers, variables, functions, and processes) that serve to refine these objects, 
customize them, supply them with external data, change their behavior and navigate 
among different levels of modeling detail.  

 

4 OBJECTS OF SYSTEMS OF SERVERS 

The main objects of Systems of Servers are: 

• services,  

• servers,  

• clusters of servers (and clusters of clusters),  

• clients (proxies),  

• messages,  

• transactions (or sessions). 
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Servers, clusters and proxies are refined CSL nodes; messages and transactions are 
refined CSL items. 

Examples of problems that can be addressed in Systems of Servers are: 

• comparison of topologies of distributed servers,  

• partitioning of services among servers and clusters of servers,  

• caching strategies,  

• queuing and scheduling policies,  

• load balancing,  

• admission control. 

 

4.1 Services 

A service is an abstraction that enables the description of a client/server relationship. 
Each service is described by its name, its set of subservices (for an aggregate service) and 
some other attributes that characterize specific features of the service. Hence, services 
form a tree structure. An aggregate service1 may be either real or virtual.  Simple 
services are all real. Real services are assigned to (simple) nodes called Servers (see 
section 4.4).  A server may host several (real) services. The same service may be 
provided by different servers. Virtual services are not assigned to servers. They are used 
to group services into classes of services and/or to accumulate statistics for a group of 
services. 

The relation between service and subservice may be treated and used in different ways: 

 For example, a virtual service Transportation could have the (real) subservices Plane, 
Train and Car. Another virtual service Lodging could have the subservices Hotel, Motel 
and Campground. A request for the Transportation service means actually requesting 
some of its subservice (with some probability). 

It is often convenient to treat a subservice as a secondary service of its parent service. For 
example, the subservices “Rent a Car” and “Book a Hotel” could be subservices of the 
service “Vacation Arrangement”. Such an interpretation of the subservice relation is 
chosen as the default one in the Systems of Servers library. 

A Service Matrix summarizes the information about services requesting other services. 
The elements of this matrix show the probability with which a service requests another 
service. The matrix is used to optimize the service deployment and load balancing. 

 

4.2 Messages 

A Message is a CSL item that carries requests and responses between clients and servers. 
Each message has information about a service and a tag that indicates whether it is a 

                                                 

1 a service that is not a leaf in the tree structure 
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request or a response. Messages containing primary requests for services are always 
generated by clients. A response message always returns to the client that generated the 
primary request. Responses to secondary requests return either directly to the client or via 
the server that issued the secondary request. Due to the generation of chains of secondary 
requests it is possible that more than one response is sent to the client. The arrival of the 
last response of a series of responses is the completion of this request. 

 

4.3 Clients (Proxies) 

The Clients are represented by simple CSL nodes that generate primary requests. One of 
these nodes can represent an arbitrary number of real world clients by adjusting the 
interarrive time for the request generation. As responses return to clients, the latter collect 
data for future calculation of statistics. Clients also handle transactions. Messages, 
generated at a client, are routed to servers that are able to provide the requested services.  

 

4.4 Servers 

Servers are simple CSL nodes that host services. Any request, arriving to a server, carries 
information about the service that it is requesting. If this server hosts such a service and 
the server has enough available resources to render this service, it executes the service 
during some service time that depends on the relative service time assigned for this 
service and the “speed” of the server (its node delay).  

It may happen then that a server issues secondary requests. These requests memorize the 
server that issued them and are routed to servers that can provide the correspondent 
services. 

If secondary requests are not generated, the server forms a response that is routed back 
either directly to the client that originated the primary request or to the server that issued 
the last secondary request. 

If a response arrives to a server as to an intermediate destination, it is forwarded either to 
the next server that is in the message’s list of servers that generated secondary requests or 
to the client, if this list is empty. 

 

4.5 Clusters 

A Cluster is an aggregate CSL node that consists of servers and/or clusters of servers. 
Services assigned to servers and subclusters of a cluster are considered to be assigned to 
this cluster. Each cluster can have a Partition that distributes services assigned to it 
among its servers or subclusters. This partition is static and does not change during a 
model run. The cluster can also balance the traffic of messages-requests to its subclusters 
and servers, hence to balance the service load at these subclusters and servers. For this 
purpose it monitors the current load to and from of all its services. 
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4.6 Transactions 

A Transaction represents a group of messages (requests and responses), which serve to 
fulfill some user’s task.  The transactions are generated with some interarrival time and 
each transaction initiates a series of request messages. Some termination condition 
defines when a transaction is completed. To prevent overcrowding at services, an 
admission control  for transactions may be used  in servers. The class AdmissionControl 
defines admission conditions and what to do with the transactions that are not granted 
admission to services. 

 

5 SERVICE PARTITION 

An important factor of the traffic efficiency in a distributed service system is the partition 
of services among servers and clusters of servers. 

Let us assume that there are m services that should be distributed over n server nodes. 
There exist several kinds of restrictions influencing this mapping: 

1. Number of server nodes per service: A service can only reside on one server or a 
service can be distributed (replicated) over several servers. 

2. Number of services per server node: Each server hosts exactly one service (If 
services cannot be replicated over several servers then m = n.) or each server can 
host a maximal number of x services (with x ≤ m). 

3. Restriction on service placement: Some service has to be mapped on a certain 
server or some service has to be offered by a certain cluster. 

 

Figure 4 shows an example that could be described by a user through input files. 

Figure 4 
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The topology consists of some clients and two server clusters with five servers each. The 
services of this example are named A, B, C, D, E and F. Each server can host only one 
service, but services can be replicated over several nodes. Service A must reside on 
Server1 and Server6. Services B and C must be assigned to servers in Cluster1 while 
service D and E are restricted to Cluster2. Service F can be mapped on any server.  

The class Partition defines how services are mapped on servers respecting the given 
restrictions. In the example, the class Partition could create a random mapping of the 
services A, B, C, D, E and F on the ten servers. A possible result is shown in Figure 5.  

 

After the actual mapping is made, each cluster updates its list of services, which consists 
of all services offered by servers in this cluster.  

Of course, a random partition of services is not very helpful and should maybe only serve 
as a default partition behavior. More sophisticated partition schemes could be for 
example: 

• Load distribution: Services should be distributed among servers according to 
their expected load. A service A, which will cause twice as much load as a service 
B, should be mapped on twice as many servers as B. If several services per server 
are allowed then they should not be distributed in such a way that some servers 
are overloaded while others are idle most of the time. 

• Minimal communication costs: Services that communicate with each other (via 
secondary requests) should be placed on servers close to each other, e.g. in the 
same cluster. This reduces the total bandwidth usage and traffic delays of 
secondary requests. 

• Optimal resource utilization: The placement from services on servers could 
depend on some limited resources like main memory or disk space.  

Other partition strategies can be imagined as well as combinations of them. Furthermore, 
partition schemes could vary between different clusters. 

Figure 5 
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So far, one additional Partition class has been implemented. It considers the expected 
load situation and the communication cost between services.  

Figure 6 shows another example for a partition of ten services S1, S2,.. , S10 on ten server 
nodes N1, N2, .. , N10 with the following restrictions: 

• Each server can host exactly one service. Services cannot be replicated over 
several nodes. 

• Clients create requests for service S1. Each service Si creates a secondary request 
for the service Si+1. 

• Nodes are connected in a chain where traffic costs between nodes increase 
proportionally to their distance. In this example, traffic costs just consider the 
number of hops between two servers.  

 

Obviously, the partition in Figure 6 is the optimal solution according to minimal 
communication costs in the system, because each secondary request has to travel only 
one hop to get to its destination node. However, automatically finding this solution in the 
set of more than 3.6 Million different mappings can be very time and resource 
consuming. Additionally, if the placement of services onto servers is less restricted (e.g. 
arbitrary number of services per server including replication of services) the number of 
possible mappings rises dramatically. Therefore, an exhaustive search is not a good idea, 
especially if one deals with systems of systems with hundreds or thousands of nodes. In 
the implemented partition class, it is tried to find a reasonable good partition by applying 
a genetic algorithm (GA) [3].  

A genetic algorithm is an algorithm that incorporates aspects of natural selection or 
survival of the fittest. It maintains a population of chromosomes that evolve according to 
rules of selection, recombination and mutation. A chromosome represents a usually 
binary encoded solution to the problem being solved. In our context, it is one possible 
mapping of services onto server nodes. Figure 7 shows how the mapping of three services 
A, B and C on four server nodes can be binary encoded. Each bit represents a service 
mapping of one service to a certain node. The first bit (starting from left) codes that 
service A is mapped on Server0; the second bit shows that service B is not available on 
Server0 etc. 

Figure 7 

1 Hop 
... N1 N2 N3 N4 N9 N10 

S1 S2 S3 S4 S9 S10 

3 Hops Secondar
y Request Figure 6 

Server0 Server1 Server2 Server3 

AA C   BC 
ABC 101 100 011 111 
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How good or bad a chromosome (which means one certain mapping) is can be evaluated 
by a cost function. With each new generation, the genetic algorithm builds new 
chromosomes whose cost values should be smaller, meaning that they represent a better 
service mapping. The cost value of a chromosome is calculated in the following way: 

 

                                 ( ) commCostloadCostt ⋅−+⋅= αα 1cos  

• loadCost is a value that represents how well the load is balanced among the 
servers. It is the standard deviation of the mean utilization2 of all nodes. The 
smaller it is the better the load is balanced. 

• commCost is a value that reflects the communication costs between server 
nodes caused by secondary requests. It is calculated with the following 
formula: 

                          
DistallMess

proxmess

commCost

n

i
ji

n

j
ji

max

,,

⋅

⋅
=

∑∑
 

 

o n is the number of server nodes. 

o messi,j is the number of messages exchanged between server node i and 
j in a time unit.  

o proxi,j is the distance (in hops) between node i and j. 

o allMess is the total number of messages transferred between all nodes 
in a time unit. 

o maxDist is the maximum distance between two server nodes in the 
system. 

commCost is a value between zero and one. A value of one represents the 
worst-case scenario with a maximum number of messages transferred over 
the maximum distance. A value of zero means that there are no messages 
exchanged between servers. 

• The weight factor α is used to prioritize one of the two cost values. 

The genetic algorithm starts with a number of randomly selected chromosomes that fulfill 
the given restrictions. For example, if service A has to be mapped on Server3 then the 
corresponding bit will be set in all chromosomes of the population. In the opposite case, 
if a cluster should only host the services A, B, C and not D, E then all bits representing D 
and E on the servers of this cluster will be unset in all chromosomes. These predefined 
bits of the chromosome will be referred to as restricted bits. 

                                                 
2 A utilization of 1.0 means that a server is busy 100% of the time. 
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If pop_size is the number of chromosomes in a population then pop_size/2 randomly 
selected pairs of chromosomes produce new chromosomes for the next generation. A pair 
of chromosomes creates an offspring by joining segments chosen alternately from one of 
the two parents’ chromosomes. Which segment is taken from which parent is defined by a 
randomly created crossover bit set. If the corresponding bit in the crossover bit set is one 
then it is taken from the first parent chromosome, otherwise from the second. Figure 8 
shows an example of the crossing of two chromosomes. If the cost value of the offspring 
is better (lower) than the value of the worse parent, then the offspring replaces this parent 
in the population. This guaranties that the mean cost value of the population decreases 
from generation to generation resulting in better chromosomes.   

The second way of altering chromosomes is mutation. Mutations increase the search 
space of solutions by slightly changing chromosomes of the population. A mutation rate 
defines the probability with which each bit of the chromosome is flipped. Restricted bits 
cannot be changed by mutation. 

Sometimes it can happen that a created offspring or a mutated chromosome breaks some 
basic rules of the underlying mapping. The following cases can occur: 

• There could be a server without any services. This is corrected by mapping a 
random service on that empty server. This service must be one, which is 
allowed on this server.  

• The number of services per server node can be restricted in a range from one 
to m services. If there are too many services on a server, some randomly 
chosen services will be deleted from this server. (This could lead to the next 
case.) 

• There could be a service that is not mapped on any server. This service will be 
mapped on a randomly chosen server. This server must be allowed to host the 
service. If adding the service exceeds the maximal number of services per 
server, then the service is only added to this node if another service is found, 
which is also mapped on some other node and can therefore be replaced on 
this node. 

The genetic algorithm can be tuned by adjusting the following parameter: 

• Population size, 

Figure 8 

Server0 Server1 Server2 Server3 

A C             A                 BC            ABC    Chromosome 1    
101             100              011            111 

 BC              B               A C            A C    Chromosome 2 
011             010              101            101 

A C             AB               A C            ABC    Offspring 
101             100              011            111 

111             100              000            011    Crossover 
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• Number of generations, 

• Cross-over ratio (number of cross-over points in the cross-over bit set), 

• Mutation ratio, 

• Weight factor for cost function (to prioritize load balancing or minimal 
traffic). 

After the genetic algorithm has finished, the best chromosome of the population will 
serve as the actual service partition of the model. 

Returning to the example of figure 4, let us assume that there are three times more 
requests for service B than for C and that the services D and E call service F. The genetic 
partition algorithm could create a mapping like in figure 9 where service B is replicated 
over three servers and service F is only mapped into Cluster2. 

 

6 LOAD BALANCING 

Load balancing is usually applied when service requests should be distributed among 
several servers in a cluster. One common example is a load-balancing device, which is 
placed in front of a cluster of Web servers. The load balancer forwards incoming requests 
according to a certain policy, which could be, for example: 

• a random distribution, 

• a round-robin distribution, 

• sending the request to the server with the least number of open TCP connections, 

Figure 6 
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• sending the request to the server, which has the lowest load according to some 
metrics, received from the server, e.g. CPU and memory utilization or number of 
running processes. 

Such load balancing policies can be expressed in a Systems of Servers model. A class 
LoadBalancer exists which enables a cluster node to distribute service requests among 
the servers in the cluster according to some chosen load balancing policy. The policy, 
which considers the number of open TCP connections, is modeled by counting the 
number of requests sent to a server without receiving responses yet. Information from a 
server node, which can be used to make a load balance decision, is, for example, the 
queue length of the waiting requests. Other load balancing policies can be easily applied 
by deriving a new class from LoadBalancer that implements the desired behavior. 

 

7 CACHING 

Modeling caches can be done at different abstraction levels: 

1. A cache can be considered as a service that is characterized by its hit ratio hr and 
a certain delay d. A client’s service request will be fulfilled by the cache with the 
probability hr and the delay d. With the probability (1-hr), the cache cannot 
satisfy the request itself and will create a secondary request to the origin server. 
Characteristics like cache size or cache replacement polices are not modeled.  
An example is shown in Figure 10. A number of Web clients are connected to a 
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two level hierarchy of proxy caches. If a client’s request cannot be served from 
the first level proxy, a secondary request is created to the second level proxy. 
Only if this one also cannot fulfill the request, the request is sent to a Web server. 
The miss ratios of the proxy caches are represented by the secondary request 
probabilities of the proxy cache service. 

2. If the goal of a planned simulation is the observation of the cache behavior itself 
the above abstraction level is probably not detailed enough, especially if the 
cache’s hit ratio is not known and should maybe obtained through the simulation. 
In this case a cache should be characterized by  

• a set of distinguishable objects, which can be cached,  

• the cache size, 

• a replacement policy if the cache is full and new arriving objects should be 
cached.   

This caching behavior has not been implemented in the Systems of Servers 
domain itself, but in a new domain library, which is derived from Systems of 
Servers. It is an example how Systems of Servers can be easily extended to model 
specific system behavior. 

A service request now includes an identifier (number) that allows distinguishing 
cacheable objects. The behavior of a server changes in the following way: 

• The creation of secondary requests now only depends on the fact whether 
the requested object is in the cache. The probability values from the 
service matrix used before are ignored in this case. 

• If a service request arrives at a server, it looks up whether the object with 
the given identifier is cached. 

• If it is cached, a response is sent back to the origin of this request and the 
cache is updated according to the replacement policy, e.g. changing 
priorities or the order of objects that will be replaced next.  

• Otherwise, a secondary service request will be created and sent to the next 
server according to the service matrix. If the response from this server 
returns the object will be cached, and a response will be sent back to the 
origin of the request. While caching this object, other objects may be 
removed from the cache according to the cache’s replacement policy. 

Several classes of caches were implemented differing in their replacement 
policies, e.g. LFU, LRU, SIZE and GDS (Greedy Dual Size). 

 

8 CONCLUSION 

Systems of Servers is focused on the quantitative analysis and optimization of global 
system solutions. These solutions primarily influence the performance and cost of large 
distributed service systems. The library has been successfully used to validate global 
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architectural solutions in enterprise computing infrastructures, multi-tier electronic 
delivery systems, and open distributed E-services. 

Communicating Structures Library (CSL), Systems of Servers and specialized libraries 
built on the top of them, form System Factory [4], an open modeling environment for 
integration and customization of distributed system. 

 

9 REFERENCES 

1. Kotov,V.E. Communicating Structures for Modeling Large-Scale Systems. In 
Proceedings of the 1998 Winter Simulation Conference, Washington, D.C., ed. 
D.J.Medeiros, E.F.Watson, J.S.Carson, and M.S.Manivannan, 1998, pp.1571-1578. 

2. Kotov,V.E., Rokicki,T.M., and CherkasovaL.A. CSL: Communicating Structures 
Library for System Modeling and Analysis. HP Labs Technical Report HPL-98-118, Palo 
Alto, CA, 1998. 

3. Haupt,R.L. andHaupt, S.E. Practical Genetic Algorithms. John Wiley & Sons, 1998, 
177 p. 

4. Kotov,V.E. System Factory: Integrating Tools for System Integration. HP Labs 
Technical  Report HPL-99-118, Palo Alto, CA, 1999. 

 


	INTRODUCTION
	EXAMPLES OF E-SERVICE SYSTEMS
	Multi-Tier Electronic Delivery Systems
	E-speak Infrastructure

	COMMUNICATING STRUCTURES LIBRARY (CSL)
	OBJECTS OF SYSTEMS OF SERVERS
	Services
	Messages
	Clients (Proxies)
	Servers
	Clusters
	Transactions

	SERVICE PARTITION
	LOAD BALANCING
	CACHING
	CONCLUSION
	REFERENCES



