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An Equal Area Comparison of Embedded DRAM and SRAM 
Memory Architectures for a Chip Multiprocessor 

 
Abstract 

Recent architectures in academia and industry have explored placing multiple processors on a single chip, 
but a consensus has not emerged on the memory architecture.  The recent availability of embedded DRAM 
(EDRAM) has further complicated the formula.  In this investigation, we present a new and comprehensive 
comparison of four very different memory technologies in the same framework: SRAM cache, SRAM 
configured as pageable memory, EDRAM configured as cache, and EDRAM configured as pageable 
memory.  In addition, these experiments investigate tradeoffs between two levels of on-chip memory, given 
constant silicon area: as the level one capacity increases, the level two capacity decreases.  Having four 
processors on a single die, each with its own set of level one caches, helps exaggerate the effective memory 
tradeoffs. 
 
1. Introduction 
Various research projects have compared SRAM versus DRAM caches [Wils99], SRAM cache versus 
SRAM and DRAM as paged memory [Mac99, Yam97] and DRAM caches for Level 2 (L2) on-chip 
memory [Hun94].  Our research is the first to compare all these technologies in the same framework.  We 
have restricted our work to look at the single chip SMP architecture, sometimes called a Chip 
Multiprocessor (CMP).  We have chosen to make each processor simple, with parallelism gained by 
multiple processors, rather than wide issue. We chose the HP PA-RISC-2.0 Instruction Set Architecture 
(ISA) for our studies, although at much less aggressive instruction-level parallelism than current 
implementations. The scope of our research is an equal area comparison of on-chip memory architectures 
of a CMP, not a comparison or justification of the CMP architecture.  Details of our CMP architecture can 
be found in Section 2.  The experiments presented here also investigate tradeoffs between L1 and L2 cache 
sizes for constant silicon area.  This is of special interest in the single chip SMP architecture because with 
four processors on a chip the available area for the L2 memory reduces quickly as the L1 caches increase in 
area. 
 
The single chip SMP consists of four 1GHz processors, each with its own L1 instruction and data caches.  
The processors are connected to a shared L2 memory, which is implemented in either SRAM or on-chip 
embedded DRAM (EDRAM).  The common bus runs at half the processor frequency, or 500MHz.  The 
first level cache is always accessible in a single cycle.  The L2 on-chip memory is one of the following: 

1. SRAM cache, 
2. SRAM as pageable memory (via the OS), 
3. EDRAM cache, with the tags, valid and dirty bits held in EDRAM, or 
4. EDRAM as pageable memory (via the OS). 
 

In comparing the various architectures, the silicon area is held relatively constant.  This means, for 
example, that increasing the L1 cache size reduces the available silicon for the L2 memory.  A smaller L1 
cache means more L2 memory, which might benefit parallel data sharing applications but not SpecRate 
type workloads [SPEC].  In the course of these comparisons, the L1 caches are varied in capacity from 4 
kilobytes to 48 kilobytes.  The target silicon area for the memory (L1 and L2) is 200mm2 in 0.18µ 
technology.  For a four processor system with approximately constant silicon area, we target the design 
points shown below in Table 1. 
 

L1 Cache Size x 8 L2 cache L2 Size Total Size 
4KB direct SRAM 6 mm2 3MB 6-way SRAM 194 mm2 200 mm2 
4KB direct SRAM 6 mm2 20MB 5-way EDRAM 195 mm2 201 mm2 
48KB 12-way SRAM 83 mm2 2MB 4-way SRAM 125 mm2 208 mm2 
48KB 12-way SRAM 83 mm2 12MB 6-way EDRAM 117 mm2 200 mm2 

Table 1: Silicon Configurations (four processors) 
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For the full experiment, each L2 configuration shown in Table 1 expands to behave as cache memory and 
as paged memory, for a total of eight different memory architecture design points for each application.  The 
first level caches are all configured with 4 kilobyte sets.  Thus, the 4 kilobyte L1 caches are direct mapped 
and the 48 kilobyte L1 caches are 12-way set associative.  Similarly, the large SRAM L2 caches have 512 
kilobyte sets and the large embedded DRAM L2 caches have 2 megabyte sets. 
 
The memory design points of Table 1 were chosen using area models relating memory capacity and 
architecture to silicon size.  The base model for SRAM cache memories was originally presented by Hans 
Mulder et al. in 1991 [Mul91].  Their model accounts for various cache factors including line size, 
associativity and write policy.  The model measures area in terms of register-bit-equivalents, or RBE’s.  We 
compared this model to actual die photos from more than a dozen processors and got fairly consistent 
results, thus further validating the model.  The comparison also helped us translate RBE’s to industry-
equivalent areas in square millimeters.  The comparison adjusts for technology scaling and SRAM cell type 
(that is, whether the SRAM cell consists of four or six transistors). 
 
Using the Mulder model adjusted to actual die photos gives a rough measure of approximately 1000 
register-bit-equivalents per square millimeter when scaled to a 0.18-micron process.  The model works well 
for "typical" cache sizes in the range of zero up to about 64 kilobytes or 128 kilobytes.  Very large caches, 
however, such as the 1.5 megabyte cache on the HP 8500, seem to accomplish much higher densities.  For 
caches in the 1 megabyte-and-up range, we use a figure of 3000 RBE’s/mm2. 
 
The Mulder model, designed specifically to account for on-chip SRAM, will not serve to provide accurate 
numbers for on-chip DRAM.  For this measure, we acquired density numbers from various suppliers of 
embedded DRAM, including Silicon Access [www.siliconaccess.com], IBM [www.ibm.com], DMEL 
[www.dmel.com] and TSMC [www.tsmc.com].  Starting from these numbers, we synthesized a formula 
relating embedded DRAM capacity and layout to its eventual size in 0.18-micron silicon, culminating in 
the silicon areas shown in Table 1. 
 
The rest of this paper is organized as follows: Section 2 outlines the specifics of the CMP architecture in 
these experiments; Section 3 gives an overview of related research, Section 4 presents the applications and 
some characterization of the applications; Section 5 presents the performance analysis of the applications 
on the various memory architectures and finally in Section 6 some conclusions are drawn from the data 
presented in Section 5. 
 
2. Architecture 
A block diagram of the multiprocessor chip is shown in Figure 1.  The processor cores, L1 caches and the 
central bus are described in Section 2.1.  The on chip memory alternatives are described in Section 2.2.  
Section 2.3 describes the external memory. 
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Figure 1: Block Diagram 

 
2.1 Processors Core and the Central Bus 
Many architectures today exploit instruction level parallelism to improve single threaded performance.  To 
improve workload throughput and multi-threaded workloads, some designers are placing multiple cores on 
a chip [Dief99, Ham97, Mur97].  [Olu99] has proposed speculative threading on a CMP to improve single 
threaded performance.  In this paper we are examining architectures to improve multi-threaded and 
throughput workloads.  For this reason, and as described in [Mur97], we chose simple single issue 
processors, such that more processors can be placed on the die compared to larger multi-issue processors.  
Hardware techniques to capture instruction level parallelism are expensive in terms of silicon area and 
cycle time, as well as in time to design and test the chip. 
 
In these experiments all configurations of the L1 cache use the same pipeline and have the same clock 
frequency.  We recognize that a machine with an L1 cache of 48 kilobytes is unlikely to have the same 
pipeline and frequency of a 4 kilobyte L1 cache machine.  By holding this variable constant, however, the 
memory effects stand out more vividly.  The L1 cache misses must contend with each other for the shared 
central bus, running at 500MHz.  The central bus width is equal to a cache line, which is 32 bytes. 
 
The central bus is configured to be split transaction or not split transaction on a case by case basis.  
Typically, the central bus is configured as a split transaction bus when the L2 is EDRAM, and is configured 
as a non-split transaction bus when the L2 is SRAM.  Because the SRAM latency is low, we found that the 
overhead of a split transaction bus contributed to lower performance.  However, the EDRAM latency is 
higher, and the split transaction bus allows multiple parallel transactions to a banked EDRAM which 
contributed to higher performance. 
 
Our cache coherency algorithm allows for shared read only copies, exclusive dirty lines, and no cache to 
cache transfers.  To keep data coherent, the L2 memory must be used to share data.  Since the L1 caches 
are write-back, a separate coherency address bus is used to snoop all writes.  The Hydra CMP, in contrast, 
uses write-through L1 caches to simplify coherency on a write-through address and data bus [Ham98]. 
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2.2 Level Two Memory Alternatives 
The four alternative architectures for the L2 memory are SRAM as cache, SRAM as paged memory, 
EDRAM as cache, and EDRAM as paged memory.  As the L1 caches vary from 4 kilobytes to 48 
kilobytes, the available area for the L2 SRAM cache allows for capacities from 3 megabytes to 2 
megabytes.  The SRAM access time is 4ns for all capacities and is not banked.  Reading data from the L2 
SRAM cache thus requires 10ns: 2ns (one bus cycle) to acquire the bus, plus 2ns to address the L2 cache 
across the 500MHz central bus, plus 4ns to read the data out of the L2 cache, plus 2ns to transfer data 
across the central bus to the L1 cache. 
 
Next we consider the two EDRAM alternatives.  As the L1 caches vary from 4 kilobytes to 48 kilobytes the 
EDRAM core (including tags, dirty and valid bits) will vary from 20 megabytes to 12 megabytes.  The 
EDRAM access time is 10ns for all capacities.  Reading data from the L2 EDRAM thus requires 18ns:  2ns 
(one bus cycle) to acquire the bus, plus 2ns to address the L2 cache across the 500MHz central bus, plus 
10ns to get the data out of the L2 cache, plus 2ns to re-acquire the bus (split transaction), plus 2ns back 
across the central bus to the L1 cache.  Both the SRAM and EDRAM paged memory configurations have a 
space advantage over the cache configurations, because they do not need the tags and other bits associated 
with a cache design.  The L2 cache has a 32 byte line, so with 4 bytes of overhead per line for tags and 
other status bits the overhead is 12.5%, thus the L2 as paged memory is 12.5% less than the area shown in 
Table 1. 
 
The paged memory architecture requires the operating system to actively page data to and from the external 
memory.  The page size is fixed at 4 kilobytes.  Demand paging is used without critical word first, meaning 
that on a page miss the requesting processor must wait for the entire 4 kilobytes of data to be brought into 
memory.  Additionally, if a dirty page is selected as the victim, it must be cast out of the EDRAM before 
the external page can be brought into EDRAM memory.  We model a FIFO replacement algorithm for page 
replacement in this paper. 
 
2.3 External Memory 
The external memory does not vary in this study, and is configured to be SDRAM at 100MHz on a 128-bit 
bus.  External memory is accessed on an L2 cache miss (either SRAM or EDRAM), or for an entire 4 
kilobyte page burst in the case of paged memory.  In all architectures the external memory is placed in a 
closed page mode. 
 
3. Related Work 
The scope of our work extends only to comparing various memory hierarchies of a Single Chip Multi-
processor (CMP), not comparing or justifying the CMP architecture versus other architectures, such as 
superscalar, VLIW, SMT, and speculative multithreading [Olu99, Kri99].  For a comparison between 
superscalar and chip-multiprocessing see [Olu96].  Other CMP projects include Hydra [Olu96, Ham98] and 
PPRAM [Mur97] from academia, and recent industry announcements such as the Power-4 [Dief99]. 
 
Recent Hydra work considers a small SRAM write-through L1 cache and an on-chip L2 cache [Ham97, 
Ham98].  The L2 cache acts as a write buffer for the off-chip memory hierarchy in this architecture, as the 
L1 caches are write-through.  They note that the L1 cache tends to capture much of the data locality, so that 
the miss rate of the L2 cache (512 kilobytes in [Ham98]) is high, often 50% to 80%. 
 
Yamauchi [Yam97] proposes using embedded DRAM for the Hydra CMP, and compares an equivalent 
area EDRAM as paged memory solution with SRAM cache.  Data movement between the EDRAM and 
external memory is controlled by the operating system.  However, the applications in their performance 
study all fit in the 32MB of EDRAM.  Three architectures are compared, 1MB and 2MB SRAM caches, 
and EDRAM as paged memory.  Our work expands on [Yam97] by extending the architecture space to 
EDRAM as cache, and the constant silicon exploration of two L1 and L2 memory capacities.  Some of the 
applications we use do not fit in the on-chip memory and we accurately model paging behavior to and from 
the off-chip memory. 
 
Nayfeh [Nay94] and Wilson [Wils99] explore several other architectural spaces for on-chip cache 
organizations.  Nayfeh compares  three architectures which are shared primary cache, shared secondary 
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cache, and shared memory.  Nayfeh et al. characterize application and application workloads according to 
which architecture is best suited for that workload.  Our work is a more in depth analysis of the second 
architecture (shared secondary cache) in terms of the memory technologies, architectures, and area 
tradeoffs.  Nayfeh concludes that the higher latency of EDRAM compared to SRAM may be tolerable 
when used for the L2 memory, as the access is not frequent.  The work in [Nay94] and [Wils99] lends 
weight to our architectural choices. [Wils99, Wils97, Hun94] and many others have compared tradeoffs in 
L1 cache sizes verses L2 cache sizes with constant silicon area for uni-processor architectures.  In the 
multiprocessor context however, n first level caches increase in size as their capacity is increased, thus 
rapidly decreasing the silicon area for the L2 memory.  Our work expands on [Wils99] in two ways.  First 
we explore not just SRAM and EDRAM as cache, but also both memory types as paged by the OS.  
Second, our research is a multiprocessor study of L1 versus L2 size tradeoffs. 
 
The “RAMpage” memory architecture written about by Machanick [Mac99] is very similar to our pageable 
memory architecture in that it requires the OS to page data between a faster memory and a slower memory.  
In our case the faster memory is on-chip SRAM or on-chip EDRAM, and the slower memory is off-chip 
SDRAM.  The RAMpage study compares an off-chip SRAM paged memory (faster memory) with an off-
chip SRAM cache, both having equal area, and using RDRAM [Cri97] as a paging device.  Additionally, 
Machanick looks at variable page sizes, while we use fixed 4 kilobyte pages.  Both studies compare equal 
area paged memory with cache, although there are a few differences.  Our study is both multi-processor, 
multi-technology (SRAM and EDRAM) and multi-area (variable L1 caches).  Machanick notes that 
RAMpage simplifies hardware, and requires additional software support.  We too find simpler hardware 
appealing.  However, in their comparison with caches, they only employ two way set associative caches.  
Although this is comparable hardware complexity, it is not typical.  We compare paged SRAM and 
EDRAM with four to six way set associative caches. 
 
Embedded DRAM can enable other architectural choices, as considered in [Ino99] (see also [Joh97]).  In 
our architecture, as in others, the bus width connecting the L2 to the L1 is one L1 line width or 32 bytes.  
Inoue et al. [Ino97, Ino99] proposed to make the L1 cache line size variable, and make use of the large data 
bandwidth available with EDRAM.  In their architecture the L1 line size is configurable, from 32 bytes to 
128 bytes.  Some applications exhibit more locality than others, and this is one mechanism to exploit data 
locality.  We model fixed line sizes. 
 
Another merged Logic/DRAM chip-multiprocessor project is PPRAM [Mur97].  PPRAM differs from 
Hydra and our work in that each processor on the die has its own local DRAM memory.  The processors 
that are on the same chip share a communication bus, and for inter-chip communication a custom 
“PPRAM-Link” is used.  The target granularity is coarse, leading to a design of multiple simple processors, 
not larger high-ILP super scalar processors.  More simple processors can be placed in a given silicon area, 
compared to complex processors.  Other advantages listed in [Mur97] not already mentioned for multiple 
processors on a chip with EDRAM are lower power consumption (less off chip accesses) and enhancing 
yield and reliability of chips by exploiting redundant processors. 
 
The IBM Power-4 “processor” [Dief99] is a recently announced hierarchical system with multiple 
processors per chip and multiple chips per multi-chip module. Two 1GHz processors on a chip share an L2 
cache, estimated to be 1.5 megabytes.  Four chips are placed on a MCM for an eight processor package.  
The 32 megabyte L3 cache is off-chip, but the tags are on chip.  IBM’s embedded DRAM process may find 
a use in this architecture as hypothesized by [Dief99], but this is not yet known. 
 
4. Applications 
For this experiment, we have chosen two applications from the SPLASH benchmark suite [Sing92, 
Woo95], namely Ocean and Raytrace, along with a snapshot of TPCC [TPCC98], and some multi-user 
workload type applications drawn from the SPECint 2000 suite, referred to as “SPECsubset” throughout 
the remainder of this paper.  Table 2 shows a summary of our characterization of the applications. 
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4KB L1 miss 
rates 

48KB 12w L1 
miss rates 

Application Args Millions of 
Instructions 

Millions of 
Data Refs. 

Inst Data Inst Data 

Total 
4KB 

Pages 
Ocean -n258 550 180 0.1% 7.4% 0.01% 3.7% 3,800 
RayTrace teapot 340 130 5.7% 4.3% 0.01% 0.3% 1,800 
TPCC -- 540 

(snapshot) 
74 8.9% 5.2% 3.1% 0.7% 30,400 

SPECsubset Test 16,000 5,700 5.3%1 4.5% 0.00% 0.7% 7,100 
Table 2: Application Characteristics 

 
A metric which we find useful for identifying how an application will perform when using paged memory 
systems is the number of times the application touches each page at the L2 memory (for a given L1 cache 
organization), divided by the number of instructions in millions (column 3).  The last column in Table 2 
only shows the number of pages touched.  If a page is brought in and used heavily, then the penalty of 
waiting for the entire 4 kilobyte burst is minimized.  However, if the page is touched only a few times, then 
the penalty is high.  Table 3 shows this page touch metric as seen by the L2 memory for the applications in 
this study given a 48 kilobyte L1 cache.  It would appear from Table 3 that Ocean may be more suited to a 
paged memory architecture than TPCC and SPECsubset.  Section 5 (Performance Analysis) will attempt to 
show the usefulness of this metric. 
 

Application Page touch metric 
Ocean 6.9 
RayTrace 2.1 
TPCC 1.0 
SPECsubset 0.8 

Table 3: Page touch metric 
  
5. Performance Analysis 
An execution-driven simulator generates multi-processor traces for each application.  A trace driven 
simulator consumes these traces and collects statistics.  Operating system execution is not included in the 
simulation trace file.  The trace-driven simulator runs on multiple host types (HPUX and Linux), and the 
job queue is managed by Condor [Ram98].  All graphs are generated using auto-generated Matlab [MAT] 
scripts.  In this section each application will be analyzed with conclusions to follow in Section 6. 
 
The performance criteria is execution time, broken down into the following seven components.  Each 
component is represented by a bar in the performance graphs to follow. 

• Instruction execute time.  This is the time spent executing instructions and time spent waiting 
on pipeline stalls. 

• Bus stall.  Each resource has both stall and contention components.  Stall is the latency of the 
resource.  It is how long the processor must wait to acquire and use the resource.  In this case, 
it is the time acquire the bus and to transfer one cache line of data on the bus. 

• Bus contention.  Contention is time spent by a CPU waiting on another device to free up the 
resource. 

• L2 Stall.  The stall (latency) time of the level 2 memory depends on the architecture, either 
4ns for SRAM or 10ns for EDRAM.  Since the EDRAM is operated in closed page mode stall 
calculation is trivial. 

• L2 Contention.  The on-chip EDRAM memories are multi-way banked, however with four 
processors conflicts can still occur.  Contention will show when a processor is waiting on a 
read from the L2, and the requested bank is in use.  The bank could be in use from another 
processor performing a read or write, or even from a previous write from the issuing 
processor. 

• External memory stall.  The external memory is accessed on an L2 read miss. 

                                                        
1 The 4 kilobyte numbers for SPECsubset are not correct and will be fixed in the final paper. 
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• External memory contention.  External memory is multi-banked according to typical SDRAM 
memory part specifications.  An application with a large memory footprint will have more 
SDRAM banks. 

 
The performance analysis primarily concerns runtime, as presented by the sum of the components just 
described.  In terms of the application characterization described in the previous section, the impact of L1 
miss rate can be seen in bus and L2 stall and contention times, and the impact of the L2 miss rate can be 
seen in the external memory stall and contention times.  The miss rates by themselves do not tell the whole 
performance picture, however.  A cache line L1 castout (dirty victim) will not show up as latency in these 
graphs, nor is it reflected in the miss rates.  The castout must be written back to memory, and makes its way 
through the memory hierarchy, possibly causing misses, page faults, and external memory accesses.  A read  
(L1 miss) may encounter contention from the castout, which would be reported since the CPU must wait 
for the read to complete. 
 
Figure 2 shows the results for Ocean.  The y axis measures execution time in seconds.  Along the x axis are 
eight bars.  The first four bars are the SRAM configurations, and the last four bars are the EDRAM 
configurations.  Within each group of four, the first two configurations are L2 as cache, and the last two are 
L2 as pageable memory.  Lastly, 4 kilobyte L1 caches are given before 48 kilobyte 12-way L1 caches.  The 
individual bars contain each of the performance criteria mention earlier: Instruction execution time, bus 
stall, bus contention, L2 stall, L2 contention, external memory stall and external memory contention. 
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Figure 2: Ocean 

 
The high level points to be taken from Figure 2 are (1) paged memory architectures perform better than 
cached memory architectures; (2) the best performing solution is bar 8, a 48 kilobyte L1 cache with a 12 
megabyte EDRAM L2 cache; (3) large L1 caches are good but not great, even at the expense of L2 
capacity.  The following text elaborates and explains these high level conclusions. 
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The Instruction component is constant across all memory architectures.  It represents the longest execution 
path among the four processors.  The bus stall and contention are the first component that varies with the 
memory architecture.  The smaller L1 has more misses, hence more accesses to the bus, hence more bus 
stall and contention.  The second group of bars, L2 stall and contention, varies more depending on the 
specifics of the memory architecture.  Most remarkable is the large contention component of bars 1 and 2, 
where the L2 is SRAM cache.  This is due to (1) the single bank SRAM, (2) frequent L2 accesses from L1, 
and (3) frequent L2 misses causing L2 transfers to off-chip memory.  The lower capacity of the SRAM 
cache results in the larger off-chip components, which are external memory stall and contention.  If 
architectural changes were made to reduce the L2 contention, such as increasing the number of banks, the 
contention would shift to the bus (parallel accesses would contend for the bus), and to external memory 
contention. 
 
An interesting comparison is the component breakdown comparing paged memory and cache memory for 
equivalent capacities.  Bars 6 and 8 have the same technology and capacity, yet the paged organization 
gives better performance.  The Instruction, Bus stall and Bus contention all have the same values, as 
expected.  However L2 stall time is larger for bar 8, which is not immediately expected.  If the L1 
organization is the same, would the two not have the same number of access to the L2, and hence the same 
stall time?  The paged memory system has more accesses because of the paging behavior.  As mentioned in 
section 2.2 the processor must wait for data to be burst on and off chip, which will show up as L2 stall time.  
The external memory access is hidden (or vice-versa, if the external memory is faster), but the resource is 
still consumed and another parallel access to external memory may encounter contention. 
 
The L2 contention, external stall and external contention times are all lower for the paged memory 
architecture for this application.  All accesses to off-chip memory are 4 kilobyte transfers which are burst 
transfers.  If the application makes good use of the data that is burst on-chip, and no longer needs the data 
burst off-chip, then the paged architecture offers superior performance.  Similar comparisons can be done 
for the other architectures. 
 
Figure 2 leads to several conclusions about this application.  For Ocean, paged memory systems always 
outperform the equivalent capacity cached memory system.  Ocean has a high “average touches per page” 
value at 3,800, meaning that for each page brought into the chip is going to have good usage.  The best 
performing configuration is with a 48 kilobyte L1 cache with paged EDRAM (bar 8).  Also, it is noted that 
EDRAM solutions outperform SRAM solutions, except for bar 7.  This would indicate that L2 capacity is 
more important than latency.  Finally, a larger L1 cache always outperforms a smaller L1 cache. 
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Figure 3: Raytrace 

 
The next SPLASH application is Raytrace, shown in Figure 3.  After some experimentation, the best 
performance was achieved by simulating cases 1 and 3 with a non-split transaction bus, and cases 4 and 6 
with a split transaction bus.  This application presents a much easier analysis than Ocean.  Essentially, 
Raytrace requires a moderate L1 capacity.  With a 48 kilobyte 12-way L1 cache, Raytrace is compute 
bound. 
 
Looking more at the details, in comparing 4 kilobyte and 48 kilobyte L1 caches with equivalent L2 
memory architectures, we see Raytrace showing no preference between paged and cached memory.  Bars 2 
and 4 have the same L2 capacity, and the cache organization has better performance.  Yet, looking at bars 1 
and 3, 4 and 6, and 5 and 7, the paged memory system is marginally better. 
 
Among the architectures with 4 kilobyte L1 caches, those with faster SRAM L2 memory outperform those 
with slower EDRAM L2.  The results strongly indicate a working set larger than 4 kilobytes yet smaller 
than 48 kilobytes for Raytrace.  Minimizing the latency for this small working set maximizes the 
application’s performance. 
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Figure 4: TPCC 

 
TPCC, shown in Figure 4, presents a different picture.  The high level observations from Figure 4 is that (1) 
cached memory is better than paged, and paged can be very bad; (2) Large L1 is better than small.  Two 
architectures are clearly worse than the others, bars 3 and 4, which are the SRAM paged memory solutions.  
Looking at these two bars, they have more instruction execution time, more L2 contention, and more 
external stall and contention than the other memory organizations.  The reason for the extra instruction 
execution time is the increased paging activity, which requires more instructions to find the replacement 
page and start the transfer2.  The larger L1 cache of bar 4 (48 kilobytes) results in fewer cache misses, as 
seen in the lower bus stall numbers.  However, the larger L1 means less L2, and the architecture 
represented in bar 3 can hold more pages.  Bar 3 shows less L2 contention and less external memory usage; 
a result of less paging activity. 
 
The two other paged memory solutions (bars 7 and 8) are worse than all other cache solutions as well.  This 
is in contrast to Ocean, where the paged memory systems outperformed the cached memory systems.  The 
“average number of touches per page” for TPCC is very low compared to Ocean, at 560.  The best 
performing solution is bar 6, a large L1 cache with an EDRAM L2 cache.  Given equal L1 capacities and 
equal memory technologies (SRAM vs. EDRAM), cache is substantially better.   
 
Bars 5 and 7 have the same L2 capacity (20 megabytes) and technology (EDRAM), and have similar 
performance.  The primary difference in performance between these two architectures is the extra external 
stall and contention of the paged memory system.  The L2 stall numbers are slightly larger for the paged 
memory system, the same as for Ocean.  Whereas Ocean made good use of memory bandwidth in 
transferring 4 kilobyte blocks at a time, TPCC makes better use of many smaller transactions. 
 
                                                        
2 We add 50 instructions to the instruction count on a page transfer. 
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Of the architectures evaluated in this study, TPCC prefers high capacity with small granularity.  With a 
better paging algorithm (we use FIFO for simplicity), the paged memory solutions may be more 
competitive with cache solutions for TPCC. 
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Figure 5: SPECsubset 

 
The last application, or application suite, is made up of four applications from SPECINT2000, which are 
164.gzip, 175.vpr, 186.crafty and 197.link with two instances of 164.gzip and 175.vpr.  For this application 
suite, individual single processor traces were scheduled to completion using First Come First Serve to four 
processors.  The performance data is shown in Figure 5.  The conclusions here mirror Raytrace, that the 
SPECsubset suite is very dependent on the L1 cache.  The behavior the L2 memory architectures when the 
L1 cache is 4 kilobytes is very similar to Raytrace.  Bars 2, 6 and 8 have the same performance, and bar 4 
shows slightly worse performance.  For the 48 kilobyte 12-way L1 cache we see the same behavior as 
Raytrace.  The two compute bound applications in this study (Raytrace and SPECsubset) prefer a fast L2 
when given an insufficient L1. 
 
Table 4 summarizes the high level points for each application. 
 

 Favored Configuration (strong results in bold) 
Application Paged vs. 

Cached 
L1 working set Large L1 or Large 

L2 
SRAM vs. 
EDRAM 

Ocean Paged > 48 kilobytes Large L1 Don’t care 
Raytrace Don’t care < 48 kilobytes Large L1 SRAM 
TPCC Cached >> 48 kilobytes Large L1 Don’t care 
SPECsubset Don’t care < 48 kilobytes Large L1 Don’t care 

Table 4: Application Summary 
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6. Conclusions 
We have compared eight different memory architectures in the CMP context: SRAM and EDRAM L2 
configured as cache and pageable memory, all with two different L1 configurations.  All of the evaluated 
architectures have approximately the same area.  These experiments point up the difficulty in producing a 
single configuration for a general purpose microprocessor.  The same machine is asked to perform 
optimally on a wide variety of different application, ranging from scientific and technical workloads, such 
as Ocean and Raytrace, to commercially crucial functions like TPCC. 
 
The strongest result coming out of the experiment seems to be that larger L1 caches provide better 
performance.  Unfortunately, the L1 cache tends to be a cycle-time limiter in modern processor designs.  
Thus, a larger L1 leads to more time spent on instruction execution, an effect that was not modeled in the 
experiments presented here. 
 
Results comparing paged to cached memory show a strong preference for cached memory.  The one 
exception, Ocean, is the only benchmark that emphasizes a dense regular data access pattern.  Interestingly, 
this is the most likely access pattern for next-generation streaming multimedia applications.  A natural 
extension of the work presented here would be to include such applications in the benchmark suite.  We 
presented a new metric to help explain when paged memory systems outperform cached memory systems, 
the “average number of touches per page” as seen by the pageable level of memory, which in this case is 
the L2 memory.  Applications with a higher “touches per page” metric had better performance on an L2 
paged architecture compared to an L2 cache architecture. 
 
Finally, we see little difference in overall performance when comparing smaller, faster SRAM L2 caches to 
much larger, somewhat slower embedded DRAM caches.  The results here are at least consistent.  Though 
the difference may be small, the larger EDRAM caches always perform better than the smaller SRAM 
caches.  Offsetting the performance gain, of course, is the increased die cost for adding DRAM capability 
to what would otherwise be a straight CMOS process. 
 
The final recommendation to be made, considering the outcome of this study, would be 

1. Include the largest L1 cache that can fit in the processor cycle time, even at the expense of L2 
capacity. 

2. Larger, slower L2 memories outperform smaller, faster L2 memories, but not by much. 
3. Tradeoffs between cached and paged memories are application dependent, although cached 

memory seems to perform better in the general case. 
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