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Gamut mapping is a method to modify a representation of a 
color image to fit into a constrained color space of a given 
rendering medium. A laser-jet color printer that attempts to 
reproduce a color image on a regular paper would have to map 
the photographed picture colors in a given color range, also 
known as the image ‘color gamut’, into the given printer/page 
color gamut. Most of the classical gamut mapping methods 
involve a pixel by pixel mapping and ignore the spatial color 
configuration. Recently proposed spatial dependent approaches 
for gamut mapping are either based on heuristic assumptions or 
involve a high computational cost. Note that spatially varying 
gamut mapping is inherently image dependent.  
 
We present a new variational approach for space dependent 
gamut mapping. The approach presents a new measure for the 
problem, and is closely related to a recent variational 
framework for Retinex. We link our method to recent measures 
that attempt to couple spectral and spatial perceptual 
measures. We show that the solution to our formulation of the 
problem is unique if the gamut of the target device is convex. A 
quadratic programming efficient numerical solution is proposed, 
with real -time promising results.  
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1 Introduction

Gamut mapping is a method to modify a representation of a color image to �t into a con-
strained color space of a given rendering medium. A laser-jet color printer that attempts to
reproduce a color image on a regular paper would have to map the photographed picture col-
ors in a given color range, also known as the image `color gamut', into the given printer/page
color gamut. Most of the classical gamut mapping methods involve a pixel by pixel map-
ping (usually a pre-de�ned look-up table) and ignore the spatial color con�guration. Only
recently, spatial dependent approaches where proposed for gamut mapping [6, 7]. However
these solutions are either based on heuristic assumptions or involve a high computational
cost.

We present a new variational approach for space dependent gamut mapping. The approach
presents a new measure for the problem, and is closely related to a recent variational frame-
work for the Retinex [4, 5]. We link our method to recent measures that attempt to couple
spectral and spatial perceptual measures [7, 9]. We show that the solution to our formulation
of the problem is unique if the gamut of the target device is convex. A quadratic program-
ming e�cient numerical solution is proposed, with real-time promising results. Note that
spatially varying gamut mapping is inherently image dependent.

The structure of the paper is as follows. Section 2 reviews recent previous work on space
sensitive gamut mapping and perceptual measures for the spectral-spatial case. Next, Section
3 introduces the proposed framework. We start from the functional de�nition, derive its Euler
Lagrange as a gradient descent process, describe the numerical approximation, comment on
uniqueness and convergence, and the relation to the Retinex problem. We conclude with
experimental results comparing the proposed method to alternative algorithms on a set of
images.

2 Previous Work

In his patent application [6], McCann suggests to preserve spatial gradients in all scales while
applying a gamut mapping procedure. The basic idea is to preserve the magnitude of the
gradients in the original image, while projecting onto the target gamut as a constraint. The
multi-scale property is achieved by sampling the image around each pixel with exponentially
increasing sampling intervals while the sampling is done along the vertical and horizontal
directions. McCann's method preserves image gradients. Nevertheless, a better approach
would be to start from an objective measure (a functional) for gradient preservation and other
imaging goals. A sound mathematical foundation is bound to give a good understanding of
the problem and the inherent trade-o�s, and consequently improve practical solutions.

A simple spatial-spectral measure for human color perception was proposed by Zhang and
Wandell [9]. The `S-CIELAB' de�nes a spatial-spectral measure for human color perception
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by a composition of spatial band-pass linear �lters in the opponent color space followed by
the CIELAB Euclidean perceptual color measure [9]. We latter link between `S-CIELAB'
and our proposed method.

In [7], Nakauchi, Hatanaka, and Usui, modulate an L2 measure for image di�erence by human

contrast sensitivity functions. The authors use a model in which the contrast sensitivity
function is a linear combination of three spatial band-pass �lters H1; H2; H3 given in the
spatial-frequency domain (or h1; h2; h3, as their corresponding spatial �lters), see Figure 1.
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Figure 1: Qualitative description of �lters modeling the human contrast sensitivity functions, in
the spatial frequency domain

For gamut mapping of the image u0 in the CIELAB space, Nakauchi et al. minimize the
functional

E(uL; ua; ub) =
3X

i=1

X
c2fL;a;bg

Z



(hci � (uc � uc0))
2 d
; (1)

subject to fuL; ua; ubg 2 G. Where hci is the �lter corresponding to the spectral channel
c 2 fL; a; bg and the i 2 f1; 2; 3g `contrast sensitivity' mod. 
 is the image domain, and
G the target gamut. Note that a total of nine �lters are involved, three for each spectral
channel and a total of three spectral channels.

The �lters Hc
i are modeled by shifted Gaussians. Hc

1 is not shifted, and thus, hc1 is also
Gaussians, while hc2, and hc3 are a Gaussian modulated by two sinus functions with di�erent
periods. A graphical analysis of hc2, and hc3, as in Figure 2, argues that they approximate the
derivative operator at di�erent scales. Denote these two gradient approximation operators
by rc

�1
and rc

�2
. Note that any band pass �lter can be considered as a version of a derivative

operator. Furthermore, one possible extension of the 1D derivative to 2D is the gradient.

Thus, we maintain that minimization of Nakauchi's functional (1) is similar to minimizing
the following functional for each channel separately

Z



jhc1 � (u� u0)j2 + jrc
�1
(u� u0)j2 + jrc

�2
(u� u0)j2d
: (2)
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Figure 2: Shifted Gaussian is roughly a derivative operation

Roughly speaking, the �rst term corresponds to the S-CIELAB perceptual measure, while
the next two terms capture the need for matching the image variations at two selected scales
that were determined by human perception models. One technical di�culty of the spatial
�lters corresponding to (1) is their large numerical support, which is probably the reason for
the slow implementation reported in [7]. Next, we show an alternative view of the problem
with an e�cient numerical solution.

3 The Proposed Variational Model

A good measure of image deviation captures the perceptual di�erence between the initial,
u0, and �nal, u, images. This is modeled by

D = g � (u� u0): (3)

where g is, say, a normalized Gaussian kernel with zero mean and a small variance �. This
model is good for small deviations. However, for large deviations it should be elaborated to
account for possible perceptual feature di�erences, which may be modeled by the di�erence
of gradients, which due to linearity, turns out to be the gradient of (3)

rD = r [g � (u� u0)] = g � (ru�ru0): (4)

The proposed measure yields the functional

E(u) =
Z



�
D2 + �jrDj2

�
d
: (5)

which should be minimized subject to u 2 G. Note the similarity between the above and
(2), which is a propper measure for image procesing. Note also that the above is a Sobolev
space norm.
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Taking the �rst variation of (5) w.r.t. u we get the EL equation

�E(u)

�u
= g � (�div (rg � (u� u0))� g � (u� u0)) = 0; (6)

see Appendix A for this derivation. Reformulating the EL as a gradient descent ow for u,
we get the following minimization scheme(

du
dt
= �g ��D � g � D;

s.t. u 2 G (7)

3.1 Properties of the Model

The proposed functional and the resulting minimization scheme are both Euclidean invariant
in the image plane. They are thus both translation and rotation invariant. As the param-
eter � goes to zero we approximate the S-CIELAB model, while for e�ective � we have
a proper extension to the perceptual measures proposed in [7], with an e�cient numerical
implementation.

3.2 Numerical Implementation

Recall, that we added an arti�cial time parameter t to the image u(x; y), that now reads
u(x; y; t). Let us discretize the EL gradient descent equation, by �rst taking a simple forward
explicit approximation for the t derivative,

un+1 � un

�
= �g ��D � g � D;

where � = dt and un(x; y) � u(x; y;n�).

Next, we deal with the space derivatives. Let uni;j � u(ih; jh;n�), where we assume uniform
spatial spacings in the x and y directions of size h. We use central derivatives in space,

uxx � Dxxu � ui+1 � 2ui + ui�1
h2

ux � Dxu � ui+1 � ui�1
2h

;

and the same for the y direction. We also use the relation g � Dxx(g � u) = gx � gx � u,
and compute the kernels D2 = gx � gx + gy � gy = Dxg � Dxg + Dyg � Dyg. The explicit
approximation reads

~Dn = g � g � (un � u0)
Ln = D2 � (un � u0)

un+1ij = unij + �
�
�Ln

ij � ~Dn
ij

�
:
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subject to the constraint unij 2 G.
In order to speed up convergence, we used a standard coarse to �ne pyramidal approach. A
full multi-grid method is another possibility, in which the joint projection introduces some
interesting problems, that will be explored elsewhere.

3.3 Uniqueness and Convergence

The proposed functional has a Quadratic Programming (QP) form, since the penalty term
is quadratic and the constraint is linear. If the set G is convex, the overall problem is convex
if and only if the Hessian of the functional is positive de�nite [2]. In such a case, there is
a unique local minimum which is obviously also the global solution to the problem. In our
case, the Hessian is given by g � (1� ��) � g, which is indeed positive de�nite for all � > 0.
Thus, for a convex target gamut G, there exists a unique solution.

3.4 Relation to Retinex

The gamut mapping problem is related to the Retinex problem of illumination compensation
and dynamic range compression. The basic Retinex problem is: How to estimate the re-
ectance image from the given acquired image ? A reasonable optical model of the acquired
image S asserts that it is a multiplication of the reectance R and the illumination L im-
agesr. Where the reectance image is a hypothetic image that would have been measured if
every visible surface would have been illuminated by a unit valued white illumination source,
and the illumination image is the actual illumination shaded on surfaces in the scene. In the
log domain we get

s = r + l

where s, r, and l are the respective logarithms of S, R, and L. Since we know that the
surface patches can not reect more light than has been shaded on them R < 1 =) r < 0.
Thus, we want an image r < 0, which is perceptually similar to s. For the Retinex we have
an additional physically motivated constraint, namely, that the illumination image l = s� r
is smooth, i.e. the gradient jrlj = jr(r � s)j is small. But this is just another way to say
that the features of r are similar to those of s, since we do not assume that the illumination
created perceptual features in s. In the gamut mapping problem we have an image u0, and
we want to estimate an image u 2 G which is not only perceptually similar to u0, but also
has similar perceptual features as u0.

3.5 Robust Version of the Proposed Algorithm

The proposed penalty function as shown in Equation 5 tends to create halows in the resulting
image. Figure 3 explains the origin of those halows through a one dimensional example. In
Figure 3 we see a signal which is outside of the gamut (marked by dotted lines). Projecting
the signal onto the gamut will result in a constant value and loss of all detail. The dashed
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line represents the result of scaling the signal into the allowed range. All the details are
preserved, but with a smaller contrast. As opposed to these point operations, our space
dependent approach yields a signal which preserves the details with high contrast (the solid
line). However, near the strong edges we get halows, which means that near the edge there
is a slow transition from low to high values.

Original signal

Low

High

Gray Value

Figure 3: A 1D example of the algorithm's behavior and the creation of halows

In order to avoid this phenomena, we have to modify our penalty term, and use robust
estimation tools. The original penalty term in (5) should be replaced by

E(u) =
Z



�1(D) + ��2(jrDj)d
: (8)

which for �1(x) = �2(x) = x2 coincides with (5). If the function �(x) grows slower than x2

as x ! 1, we get an improved behavior near strong edges. Good candidates for �(x) are
�(x) = jxj or �(x) = p1 + x2.

A di�erent simpler (linear) approach with similar robust behavior is to solve the original
problem (5) twice, with two di�erent values of �. We denote the solution with a small �
as usmall and the one which corresponds to the high value of � as uhigh. The solution usmall

has smaller contrast at areas with small details, yet has almost no halows. On the other
hand, uhigh preserves the small details, but at the expense of strong halow e�ects. Therefore,
by averaging these two results in a spatially adaptive way, we can enjoy both worlds. The

7



proposed solution is therefore

ufinal[k; j] = w[k; j]usmall[k; j] + (1� w[k; j])uhigh[k; j]

The weight w[k; j] should be close to one near strong edges, and close to zero in relatively
smooth regions. In our experiments we used

w[k; j] =
1

1 + �jrg � u0j2

and achieved resemblance to robust estimation.

Halow problems have been recently dealt with in relation to Dynamic Range Compression.
Solutions proposed included anisotropic di�usion [8] and robust �ltering [3] (refer to [1]
for connection between these two approaches). The solutions proposed in this section are
solutions to the same halow problem, and have been proven e�cient also for the variational
Retinex [5].

4 Results

Figures 4 and 5 present the result of the proposed measure compared to the regular L2
norm. In this example we used two resolution levels with four iterations at each resolution,
� = 10; dt = 0:0011, � = 1:1, and the support of the Gaussian kernel is set to 15� 15 pixels.
The minimization in this example was applied in the RGB, space. We de�ned the target
gamut such that the RGB channels are restricted to the range [40; 100] instead of the gamut
range [0; 255] of the original image. We also tested the e�ect of the SCIELAB measure in
the opponent color space, without any dramatic e�ect on the �nal result.

We turn now to present the robust gamut mapping results. The applied algorithm is the
shortcut method of adaptive weighting two regular results, obtained with di�erent values
of �. Figure 6 presents an original image, and the two solutions obtained by the regular
variational penalty function with � = 1 and � = 40. The limited gamut in this case is as
before, namely, R, G and B values in the range [40; 100]. Figure 7 show the weight image as
computed by the proposed formula with � = 0:005, and the weighted average result. As can
be seen, halows are suppressed in the �nal result, while preserving the details of the input
image.

5 Concluding Remarks

We presented a variational formulation for the gamut mapping as a QP problem. A simple
functional that measures both the image di�erence and its derivatives was shown to be ana-
log to perceptual di�erence measures. Actually, this is a similarity measure in Sobolev space
in which the proximity of the derivatives capture the small scale and the detailed information
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Figure 4: Left to right: Original image, gamut mapping by truncation (minimization of the L2
norm), and the result of the proposed scheme.
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Figure 5: Left to right: Original image, gamut mapping by truncation (minimization of the L2
norm), and the result of the proposed scheme.
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Figure 6: Left to right: Original lighthouse image, gamut mapping by the original penalty function
with � = 1, and the same with � = 40.

Figure 7: Left to right: the weight image (white=1, black=0), and the �nal weighted average image.
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of the di�erence between the images. We linked our results to previous methods including
solutions to the Retinex problem, and presented an e�cient numerical multi-resolution algo-
rithm for its solution, which can be used for image reproduction subject to convex constraints
with a unique solution.
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Appendix A

Let us explore the e�ect of a convolution operation within the functional on the Euler
Lagrange equation.

First, by linearity, it is simple to show that for a symmetric kernel g we have d
dx
(g � u) =

( d
dx
g) � u = g � ( d

dx
u), or in short hand notations, d

dx
(g � u) = gx � u. Next, given the general

functional of the form

E(u) =
Z
F

 
d

dx
(g � u)

!
dx;

we set ~u(x) = u(x) + ��(x), and calculate

dE(~u)

d�
=

d

d�

Z
F

 
d

dx
(g � ~u)

!
dx

=
Z d

d�
F

 
d

dx

Z
g(x� x̂)~u(x̂)dx̂

!
dx

=
Z
F 0

 
d

dx
(g � ~u)

!
d

d�

 
d

dx

Z
g(x� x̂)~u(x̂)dx̂

!
dx

=
Z
F 0(gx � ~u) d

dx

 Z
g(x� x̂)

d

d�
~u(x̂)dx̂

!
dx

Using integration by parts and vanishing boundary values, i.e.
R
uv0 = � R vu0, we get

dE(~u)

d�
= �

Z
(g � �) d

dx
F 0(gx � ~u)dx

= �
Z Z

g(x� x̂)�(x̂)dx̂
d

dx
F 0(gx � ~u)dx

= �
Z
�(x̂)

Z
g(x� x̂)

d

dx
F 0(gx � ~u)dxdx̂

= �
Z
�

"
g �

 
d

dx
F 0(gx � ~u)

!#
dx̂:

12



The extremum condition is checked in the limit, as �! 0, such that dE=d� = 0 for all �(x).
It is given by the Euler Lagrange equation

g � d

dx
F 0(gx � u) = 0;

or equivalently gx � F 0(gx � u) = 0.

For example, for the functional

E(u) =
Z  

d

dx
(g � (u� u0))

!2
dx;

the EL is given by

g � d

dx

 
d

dx
(g � (u� u0))

!
= 0:

or equivalently g � gxx � (u� u0) = 0.
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