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1 Introduction

There are various applications of nonlinear di�usion �ltering [8, 14] in image processing. Such

`�lters' can be used for denoising, gap completion and computer aided quality control among

many other tasks. These kind of applications demand high processing capabilities. The

balance between high accuracy and computational e�ciency is therefore an important issue

in the design of such �lters, that is expected to play an increasing role in future applications.

In this paper, an accurate numerical scheme is proposed which is an extension to Weickert-

Romeny-Viergever's additive operator splitting (AOS) schemes [15]. These schemes are

e�cient and reliable, in the sense that they permit the use of larger time steps, whereas

the straight-forward explicit schemes, that were proposed originally in Perona and Malik's

classical paper [8], are restricted to small time steps in order to ensure stability. However,

the AOS schemes are limited in their accuracy to �rst order in time even for the linear

case. We therefore propose the use of alternating direction implicit (ADI) type schemes[7]

which are second order in time for the linear case, analogous to the use of second-order

splitting schemes in uid-dynamics equations [5, 11]. We show that for certain potential

image processing applications, the gain in accuracy is noticeable and the ADI schemes can

be applied with a single iteration, e�ectively a large time-step, or very few iterations in order

to approximate many iterations with smaller time-steps.

Nonlinear di�usion �ltering is a continuous �lter, formulated as a partial-di�erential-equation

(PDE). The �lter operation is practically performed by solving the nonlinear PDE numeri-

cally. Related approaches can be found in the literature [3, 9], in particular bilateral �lter-

ing [13], which is a noniterative way of smoothing an image while preserving its edges that is

closely related to the geometrical framework in [10]. For illustration, Figure 2 demonstrates

two di�erent ways of performing edge-preserving smoothing on the original image in Figure

1. The result of using nonlinear di�usion �ltering and the result of bilateral �ltering is similar

but not identical. In some applications one would prefer to use a single time-step or very few

number of iterations for nonlinear di�usion �ltering, in the same spirit as in bilateral �ltering.

The outline of the paper is as follows. Section 2 presents the continuous model used through-

out the paper for applying nonlinear di�usion as a �lter. Section 3 illustrates one-dimensional

schemes that are important in forming the basis for splitting higher-dimensional schemes

across dimensions. In section 4, extensions of these one-dimensional schemes to higher di-

mensions are discussed and the motivation for using operator splitting schemes is given.

Section 5 provides the operator splitting schemes which have been proposed by Weickert et

al. in [15], all of which are accurate to �rst order in time for the linear case. Motivation for

advancing a step forward by constructing second order operator splitting schemes is given.

Consequently, in Section 6, two operator splitting schemes that preserve second-order for the

linear case are introduced. The performances of all operator splitting schemes for nonlinear

image di�usion are compared. It is also mentioned that a trial to achieve higher accuracy by
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Figure 1: Original image: Laplace.

Figure 2: Edge-preserving smoothing: anisotropic di�usion with 20 time-steps of � = 1:0 (left) and

Gaussian bilateral �ltering with a 30 � 30 window size, �D = 5:0 and �R = 30:0 (right). �D and

�R are bilateral �ltering parameters, see [13] for details.
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using Richardson's extrapolation [4] fails to produce better results in this context. Section

7 concludes this paper.

2 Nonlinear Di�usion Filtering

Let us �rst provide a model for nonlinear di�usion in image �ltering. We briey describe

the �lter proposed by Catt�e, Lions, Morel and Coll [2]. The CLMC �lter is a version of

the Perona and Malik model [8] for image selective smoothing that was used in [15] as

a benchmark for studying various numerical schemes. The basic equation which governs

nonlinear di�usion �ltering is

@u

@t
= div(g(jru�j

2)ru); (1)

where u(x; t) is a �ltered version of the original image. The original image f(x) is given as

the initial condition

u(x; 0) = f(x); (2)

and reecting boundary conditions are used

@u

@n
= 0 on @
; (3)

where n is the normal to the image boundary @
.

The goal of selective smoothing in edge-preserving applications is to reduce smoothing across

edges. In order to achieve this goal, the di�usivity g is chosen as a rapidly decreasing function
of the gradient magnitude (edge indicator). Speci�cally, the following form for the di�usivity

is suggested in the CLMC �lter

g(s) =

(
1 (s � 0)

1� exp
�
�3:315
(s=�)4)

�
(s > 0);

(4)

where � = 10:0 throughout this paper. In addition, CLMC suggest at each time step a

presmoothing mechanism, in which the image u is convolved with a Gaussian of standard

deviation � to obtain u�. This can be achieved by solving the linear di�usion �ltering (g � 1)

@u�

@t
= div(ru�); (5)

for a very small time step of size T = �2=2. This step is called regularization, or presmooth-

ing, and can be approximated by any of the splitting schemes that will be mentioned in the

paper. For example, a simple locally one-dimensional (LOD) scheme is a convenient choice.

The freedom of choice in selecting any of the splitting schemes occurs because (5) is linear
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and consequently most splitting schemes that will be mentioned in Sections 5,6 degenerate

to the same approximation. In the remaining of this paper, � = 0:25 is chosen for the

presmoothing.

The continuous image f(x) can be considered as a discrete image, in particular a vector

f 2 IRN whose components fi display the grey values at each pixel. Pixel i corresponds to

the location xi and h is the spatial grid spacing. Discrete times tk = k� are considered,

where � is the time step size. uki denotes an approximation to u(xi; tk): Having obtained u�,
which from now on is referred to as uki , the gradient magnitude can be approximated by a

central di�erence scheme

jruki j =
1

2

X
p;q2N (i)

 
ukp � ukq
2h

!2

; (6)

where N (i) is the set of all neighbors of a pixel i. Boundary pixels have only inner pixels as

neighbors, as a result of the boundary conditions. In addition, closely following the notation

used in [15], the di�usivities in their discrete form will be denoted by gki = g(uki ). In the

next sections, numerical schemes are presented for the implementation of nonlinear di�usion

�ltering.

3 One-Dimensional Schemes

This section briey describes the one-dimensional explicit and semi-implicit schemes, before

we explore the Crank-Nicolson scheme. It is mentioned how all these schemes satisfy discrete

nonlinear di�usion scale-spaces criteria, and in particular the accuracy of these schemes

is discussed. For more details and theoretical considerations regarding the framework for

discrete nonlinear di�usion scale-spaces, the reader is referred to [14, 15].

It follows from (1) that the basic equation which governs one-dimensional nonlinear di�usion

�ltering is

@u

@t
=

@

@x

 
g(jru�j

2)
@u

@x

!
: (7)

A simple numerical scheme for solving this equation numerically was suggested by Perona

and Malik [8]. It uses the following discretization

uk+1
i � uki

�
=

X
j2N (i)

gkj + gki
2h2

(ukj � uki ); (8)

where N (i) is the set of two neighbors of i, one neighbor for the boundary pixels. A compact

way of writing this scheme is

uk+1 � uk

�
= A(uk)uk; (9)
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where uk is a signal vector of size N and A(uk) = (aij(u
k)) is an N � N matrix whose

elements are given by

aij(u
k) =

8>><
>>:

gk
i
+gk

j

2h2
j 2 N (i);

�
P

n2N (i)
gki +g

k
n

2h2
j = i;

0 otherwise.

(10)

Isolating uk+1 on the left hand side, we obtain

uk+1 = (I + �A(uk))uk: (11)

This scheme is known as an explicit scheme, since uk+1 is obtained explicitly from uk without

a matrix inversion. This scheme is simple, straight-forward, and computationally cheap

because only matrix-vector multiplications are required. However, it is conditionally stable

and therefore limited to small time steps. A rigorous way to analyze numerical schemes

in our context is to verify that they satisfy six criteria in order to create a discrete scale-

space [15]. The matrix on the right hand side (in this case, I + �A(uk)) needs to satisfy

continuity in its argument, symmetry, unit row sum, nonnegativity, positive diagonal, and

irreducibility. It follows that these conditions are satis�ed for (11) if � < 1
2
, assuming h = 1

(see [15] for exact details). This means that implementation of (11) is restricted by small

time steps, and even though each iteration by itself is computationally cheap, as a whole,

the e�ciency for applying the �lter can be improved. The improvement comes by a di�erent

numerical scheme

uk+1 � uk

�
= A(uk)uk+1; (12)

Rearranging terms, so that uk+1 is on the left hand side and uk is on the right hand side, we

obtain

(I � �A(uk))uk+1 = uk: (13)

This scheme is known as a semi-implicit scheme, since uk+1 is obtained implicitly from uk

by inverting a matrix. The use of fully implicit schemes, in which A = A(uk+1), is more

complicated to solve and therefore not considered in our case. Although a matrix inversion is

in general an expensive O(N3) operation, the matrix in Equation (13) is tridiagonal, which

can be inverted e�ciently using the Thomas algorithm which is O(N). Furthermore, the

scheme is unconditionally stable, and in the rigorous framework one can verify that it satis�es

all six criteria. However, both the explicit scheme and the semi-implicit scheme are only �rst

order in time. A scheme which is a combination of (11),(13) and is second order in time for

the linear case is the Crank-Nicolson scheme

(I � �A(uk))uk+1 = (I + �A(uk))uk: (14)
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4 Higher-Dimensional Schemes

This section builds upon the one-dimensional semi-implicit scheme (13) and the Crank-

Nicolson scheme to construct schemes for higher dimensions. It follows from (1) that the

basic equation which governs m-dimensional nonlinear di�usion �lters is

@u

@t
=

mX
l=1

@

@xl

 
g(jru�j

2)
@u

@xl

!
: (15)

And, a straight forward extension to the one-dimensional semi-implicit scheme (13) is

 
I � �

mX
l=1

Al(u
k)

!
uk+1 = uk; (16)

where the matrix Al(u
k) corresponds to the derivatives along the l-th coordinate axis. It

is shown in [15] that the m-dimensional semi-implicit scheme unconditionally satis�es all

the requirements of the discrete scale-space. However, the accuracy of the scheme in (16) is

limited because it is built upon a one-dimensional scheme that is only �rst order in time.

An extension to second-order in the linear case, is built upon the Crank- Nicolson 
I � �

mX
l=1

Al(u
k)

!
uk+1 =

 
I + �

mX
l=1

Al(u
k)

!
uk: (17)

It is worthwhile noticing that the only drawback when moving to higher dimensions is in

the e�ciency of (17): the matrix
Pm

l=1Al(u
k) is no longer tridiagonal and therefore the

matrix inversion at each time step is costly. This occurrence in higher-dimensional di�usion

equations has been known since the early days of numerical solutions to parabolic PDEs.

The work of Peaceman and Rachford [7] is a famous example for overcoming this problem

by splitting methods [5, 6, 18]. For simplicity, let us consider m = 2 (two-dimensions) for

the time being, noting that it is possible to extend splitting methods to three and higher

dimensions. In addition, let us assume the case of a linear di�usion equation, g = �, where

� is constant. We start from the two-dimensional linear di�usion equation

@u

@t
= �

 
@2u

@x21
+

@2u

@x22

!
: (18)

The scheme in (17) now reads

 
I � ��

 
@2u

@x21
+

@2u

@x22

!!
uk+1 =

 
I + ��

 
@2u

@x21
+

@2u

@x22

!!
uk: (19)

However, this scheme amounts to inverting a non-tridiagonal matrix at each time step, which

is ine�cient. The alternating direction implicit (ADI) scheme [7] suggests approximating the
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scheme in (19) the following way

 
I � ��

@2u

@x21

! 
I � ��

@2u

@x22

!
uk+1 =

 
I + ��

@2u

@x21

! 
I + ��

@2u

@x22

!
uk: (20)

It is now possible to perform two half time steps, splitting the two dimensions such that in

each half time step one of the two dimensions is treated implicitly

 
I � ��

@2u

@x21

!
uk� =

 
I + ��

@2u

@x22

!
uk

 
I � ��

@2u

@x22

!
uk+1 =

 
I + ��

@2u

@x21

!
uk�; (21)

where k� is an intermediate time step. The ADI scheme is both e�cient, since at each time

step a tridiagonal matrix inversion is performed, and accurate to second order in time. Our

goal is to seek a splitting scheme for the nonlinear case (16), that will be as good as the

ADI scheme for the linear case. More precisely, it should amount to inverting tridiagonal

matrices, unconditionally satisfy all discrete scale-space requirements, and retain the time

accuracy which was achieved before the splitting by starting from accurate one- dimensional

schemes.

5 Operator Splitting Schemes

Before we introduce second-order accurate splitting schemes for solving (17), let us review

the �rst-order accurate splitting schemes which have been proposed in [15]. The simplest

splitting scheme that might be considered is the locally one-dimensional (LOD) scheme

mY
l=1

�
I � �Al(u

k)
�
uk+1 = uk; (22)

which belongs to the general class of multiplicative operator splitting schemes. It is the

most e�cient and straight-forward for implementation. However, the main drawback of

the LOD scheme is that the system matrix in (23) is non-symmetric, which violates one

of the criterions for discrete di�usion scale-spaces as proposed in [15]. Because of the non-

commutativity of the operators Al, the order of applying these operators can a�ect the

�nal result. For example, the �ltered two-dimensional image will not be the same after a

rotation by 90 degrees. Figure 3 illustrates this disadvantage and motivates the search for

a symmetric splitting which does not su�er from this de�ciency. It is worthwhile noticing

that the splitting suggested in (22), when applied to any of the one-dimensional schemes

discussed in section 3, results in a multi-dimensional scheme that is �rst-order accurate in

time.
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Figure 3: The di�erence between applying �rst the operator which corresponds to the x-axis and

then the operator which corresponds to the y-axis and vice versa, on the original image in Figure

1. The LOD scheme (left) is sensitive to the order, whereas the AOS scheme (right) is independent

of the order. Nonlinear di�usion �ltering was performed with 20 time-steps of � = 1:0

The splitting operator scheme proposed in [15] as the method of choice, the additive operator

splitting (AOS), is

uk+1 =
1

m

mX
l=1

�
I �m�Al(u

k)
�
�1

uk: (23)

Unlike the LOD scheme the AOS scheme is symmetric, see Figure 3, and unconditionally

satis�es all discrete di�usion scale-space requirements. It is almost as e�cient as the LOD

scheme; instead of applying the operators in a pipeline, one calculates the operators inde-

pendently and then sums them up at each time step. It is therefore a reliable and e�cient

scheme. However, similar to the LOD scheme it is �rst-order accurate in time. Moreover, it

is less accurate then the LOD scheme since operators of type (I �m�Al)
�1 that are used in

the AOS scheme, describe one-dimensional di�usions with a step size m� , whereas operators

of the type (I � �Al)
�1 that are used in the LOD scheme possess smaller time steps when

stepping in one dimension.

Let us illustrate how in some potential applications, the better accuracy of the LOD scheme

can be noticeable. We compare the AOS and the LOD schemes' performances on the veneer

image in Figure 4. Figure 7 is the reference image, after applying nonlinear di�usion �ltering

with 256 time steps of � = 0:78 each. We now keep the time constant (T = 200) and decrease

the number of iterations while increasing the duration � of each time step accordingly. In the

reference image, Figure 7, the LOD and the AOS schemes results are practically identical.

As we increase the time steps, the results start to deviate from the reference by a certain

amount which is related to the accuracy of the scheme. Figures 5 and 6 demonstrate nonlinear

di�usion �ltering approximated by two time steps of � = 100 and eventually one time step of

� = 200, the LOD scheme is found to be more accurate than the AOS scheme, as it is closer
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to the reference �ltered image. These results motivate us to look for second-order accurate

schemes, as well as symmetric accurate ones, that will lead to higher accuracy compared to

the AOS schemes.

Figure 4: Original image of a veneer, taken from [17] with permission.

Figure 5: Checking accuracy: LOD vs. AOS, nonlinear di�usion �ltering with one time-step of

� = 200:0.

6 Accurate Operator Splitting Schemes

In this section, we propose accurate operator splitting schemes. For simplicity, we will choose

the two dimensional case which corresponds to images, noting that these schemes can easily

be extended to three and higher dimensions. We then compare the performance of the

additive-multiplicative operator splitting (AMOS) schemes and the AOS schemes, and to

bilateral �ltering.
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Figure 6: Checking accuracy: LOD vs. AOS, nonlinear di�usion �ltering with two time-steps of

� = 100:0.

Figure 7: Reference image: LOD vs. AOS, nonlinear di�usion �ltering with 256 time-steps of

� = 0:78.
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Following \Strang Splitting" [5, 11] which is known from the equations of uid dynamics,

our �rst proposal is to use a scheme that belongs to the family of multiplicative operator

splitting schemes in order to increase the order of accuracy achieved by the LOD scheme

(23). The new scheme that is based on Strang splitting is di�erent from the LOD scheme,

and we refer to it as the MOS (Multiplicative Operator Splitting). If we use the semi-implicit

scheme in each one of the dimensions, for simplicity in writing, the MOS scheme is given by�
I �

�

2
A1(u

k)

��
I � �A2(u

k)
��

I �
�

2
A1(u

k)

�
uk+1 = uk: (24)

where we wrote the semi-implicit version of the MOS scheme, without the explicit right-hand-

side that appears in the Crank-Nicolson version of the MOS scheme. The MOS scheme for

the linear case preserves second order accuracy provided the Crank-Nicolson scheme is used

in each one of the dimensions, instead of the semi-implicit scheme as in (24) which is only

�rst-order accurate. This is an advantage over the LOD and AOS schemes, which do not

preserve the second order accuracy of the Crank-Nicolson. However, the splitting is not

symmetric and the non-symmetry which was also a de�ciency in the LOD scheme has not

been recovered. In practice, results after a rotation by 90 degrees as in Figure 3 appear cleaner

with the MOS scheme compared to the LOD scheme, but there is no guarantee the symmetry

criterion in the list of criteria for discrete di�usion scale-spaces will be satis�ed. Therefore,

after several trials in which the rotation by 90 degrees was still noticeable, we abandoned the

MOS scheme. A second order accurate split operator scheme which unconditionally meets

the scale-spaces criteria is desired.

Motivated by ADI [7] which was mentioned in Section 4 as a favorable splitting scheme

for the linear di�usion equation, we wish to combine the merits of the AOS scheme as a

symmetric scheme, together with the family of multiplicative operator splittings (to which

the ADI belongs, as well as the �rst order LOD and the �rst and second order MOS schemes).

Multiplicative operator splittings are known in general to be more accurate than the AOS

schemes. We therefore propose another scheme, also mentioned by Strang in [11, 12], which

is both additive and multiplicative operator splitting (AMOS)

uk+1 =
1

2

��
I � �A1(u

k))�1(I � �A2(u
k)
�
�1

+ (I � �A2(u
k))�1(I � �A1(u

k))�1
�
uk (25)

As in (4), Equation (5) applies the AMOS scheme to the semi-implicit scheme. Such a

combination is known in the literature [4] as the approximate factorization implicit (AFI)

scheme, which is �rst order accurate in time. However, even in the case where it is built upon

the semi-implicit scheme, the AMOS scheme is expected to be more accurate than the AOS

scheme (see discussion on LOD) while preserving symmetry. Furthermore, it is possible to

achieve second order accuracy by applying the AMOS scheme on the Crank-Nicolson scheme.

At each time step, two calculations are performed�
I � �A1(u

k)u
�
uk� =

�
I + �A1(u

k)u
�

uk�
I � �A2(u

k)u
�
uk+1 =

�
I + �A2(u

k)u
�

uk�; (26)
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and

�
I � �A2(u

k)
�
uk� =

�
I + �A2(u

k)
�

uk�
I � �A1(u

k)
�
uk+1 =

�
I + �A1(u

k)
�

uk�: (27)

After the time step is completed, the two results are averaged together which ensures a

symmetric splitting. Although the directions are not alternating in each of the two calcu-

lations, i.e. the forward and backward Euler are performed on the same direction, in e�ect

this scheme belongs to the family of alternating direction implicit (ADI) type methods. In

our experiments, alternating the directions as in the classical ADI that works well on linear

parabolic PDEs, produced some artifacts when applied to nonlinear di�usion. Therefore,

we refer to (26),(27) as ADI, whereas (25) is AFI. The ADI scheme in (26),(27) leads to

visually more accurate results as can be seen in Figures 8,9,10. We take 512 time steps of

0.05 as a reference, then decrease the number of iterations to check the deviation from the

reference. First, we observe that the ADI scheme acts as a slightly better �lter than the AOS

scheme already in the reference image calculation, Figure 8. As we decrease the number of

iterations, we observe that the deviation from the converged result is smaller with the ADI

scheme than with the AOS scheme. Filtering e�ect becomes stonger in the ADI scheme,

while preserving �ne details, which is an indication that the ADI scheme is visually more

accurate than the AOS scheme, Figures 9,10.

Figure 8: Reference: AOS vs. ADI, nonlinear di�usion �ltering with 512 time steps of � = 0:05.

Quantitative examination of the deviations from the reference is calculated as follows. Start-

ing from the original image in Figure 11, which is a texture image taken from a neutron

di�raction experiment, we �rst observe in Figure 12 that simple normalized bilateral �lter-

ing can not reach the same degree of �ltering as in nonlinear di�usion, since the choice of

time propagation is exible in the PDE approach, whereas it is �xed by the normalization

factor of the bilateral �lter. Figures 13,14,15 show the comparison in terms of accuracy

between the AOS, AFI and ADI schemes, which are discussed next. In terms of speed, the

AOS and AFI schemes in actual simulations indicate that the AFI scheme takes roughly 1:5
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Figure 9: Reference: AOS vs. ADI, nonlinear di�usion �ltering with 32 time steps of � = 0:875.

Figure 10: Reference: AOS vs. ADI, nonlinear di�usion �ltering with one time step of � = 28:0.
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the time it takes the AOS scheme to perform the �ltering. The ADI scheme is roughly a

factor of 2 to 3 longer in processing the images in Figures 4,11, relative to the AOS scheme.

We note that simply increasing the time step with the AOS scheme by this ratio does not

produce the �ne �ltering that is achieved with the ADI scheme.

Figure 11: Original texture image.

Figure 12: Reference: AOS, 2000 time steps of � = 0:1 (left) and Gaussian bilateral �ltering with a

60�60 window size, �D = 10:0 and �R = 80:0 (right). �D and �R are bilateral �ltering parameters,

see [13] for details.
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Figure 13: Reference: ADI vs. AOS, nonlinear di�usion �ltering with 2000 time steps of � = 0:1.

Figure 14: AFI vs. AOS, nonlinear di�usion �ltering with four time step of � = 50:0.

Figure 15: ADI vs. AOS, nonlinear di�usion �ltering with four time step of � = 50:0.
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Figure 16: Comparison of error estimation for di�erent time steps: AOS, AFI, ADI

Table I: l2 norm error estimation

� AOS AFI ADI

0.25 0.09 0.06 % 0.08 %

0.5 0.13 0.1 % 0.11 %

1.0 0.17 0.14 % 0.13 %

2.0 0.22 0.17 % 0.17 %

5.0 0.29 0.24 % 0.19 %

10 0.36 % 0.27 % 0.21 %

20 0.47 % 0.32 % 0.23 %

50 0.79 % 0.41 % 0.47 %

100 1.3 % 0.54 % 1.25 %

200 2.07 % 0.81 % 3.14 %

In Table I, the relative l2 norm errors are calculated for the example in Figures 13,14,15

as follows. Let v denote the reference solution: AOS, � = 0:1, in the case of the AOS

and AFI schemes, and ADI, � = 0:1, in the case of the ADI scheme. Let u denote the

approximate solution in each of the schemes. The relative error percentages are calculated

by

error =
ku� vk2
kvk2

: (28)

Note that the small relative error percentage values do not reect the strength of the de-

viations and accuracies, since the large propagation time (T=200) produces very smooth

images, where the di�erences between the schemes appear only in small regions near promi-

nent features within the original image. Also the comparison with the ADI scheme is done
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for a separate reference frame, since even with a small time step the ADI scheme acts as

a better �lter, see Figures 8,13, and hence its reference to measure deviations should be

di�erent. From Table I and the plot in Figure 16 it can be observed that up to a time step

of � = 50:0, the ADI scheme is the most accurate, which is expected because the Crank-

Nicolson is used as its building block. With very large time steps of more than � = 50:0,
the AFI scheme is the most accurate scheme, probably because the higher order error terms

a�ect the accuracy of the ADI scheme. The Crank-Nicolson scheme stops acting as the most

accurate one-dimensional scheme, and among the schemes which are based on the semi-

implicit scheme as their building block, the AFI scheme will produce more accurate results

than the AOS scheme since the AMOS scheme is a more accurate splitting scheme than the

AOS scheme at the expense of some increase in computations. Finally, we tried to obtain

better accuracy out of the results in Figure 15 by using Richardson's extrapolation [4] for

our case

RI(�=2) =
4R(�=2)� R(�)

3
; (29)

where RI(�=2) denotes an improved result, using a time grid with a spacing of �=2 or coarser.
R(�=2) and R(�) are the results of applying nonlinear di�usion �ltering for time steps �=2

and � , respectively. Our trials (with � = 50) failed to show an improvement of RI(�=2)

relative to R(�=2). An improvement is not guaranteed to begin with, since our equation is

nonlinear and the solution is non-smooth.

7 Conclusions

In this paper, accurate splitting operator schemes were proposed for performing nonlinear

di�usion �ltering. They are gradually constructed by reviewing other schemes which are

relevant and have been suggested in this context. Comparing two proposed schemes which

satisfy all scale-space criteria of Weickert et al's [15] LOD and AOS schemes, it is found that

higher order of accuracy can be visually inspected and might become a desirable feature in

some future applications.

The two splitting methods which unconditionally satisfy all discrete scale-space criteria are

Weickert et al's AOS scheme and our proposed scheme, the AMOS scheme. Both are reli-

able, simple and parallalizable [16] splittings for implementation. The AOS scheme is more

e�cient than the AMOS scheme in its �rst-order form, the AFI scheme, by approximately a

factor of 1.5, and the AMOS scheme in its second-order form, the ADI scheme, by a factor

of 2 to 3, depending on the e�ciency of the implementation. Although the AOS remains the

simplest and most e�cient choice for implementation, in the arsenal of numerical schemes

for performing nonlinear di�usion �ltering the AMOS scheme can be considered as an ex-

tension for applications that require high accuracy. Multiplicative operator schemes are in
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general more accurate than their additive counterparts, and the combination of the two in

the AMOS schemes ensures both symmetry and better accuracy at the expense of an increase

in execution time.

In addition, it is interesting to note that nonlinear di�usion �ltering can produce a convinc-

ing edge-preserving smoothing, as in Figure 10, with a single large time step. The close

relationship between nonlinear di�usion and bilateral �ltering was described in [1], and in

this paper an attempt to use nonlinear di�usion noniteratively, by using accurate operator

splitting schemes, produced some more insights.
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