[cickano

An Open, Flexible, and Configurable
System for E-Service Composition

Fabio Casati, Ski Ilnicki, LiJie Jin, Ming-Chien Shan
Software Technology Laboratory

HP Laboratories Palo Alto

HPL-2000-41

March, 2000

service,
composite,
workflow,
events,
flexibility

Internal Accession Date Only

6] Copyright Hewlett-Packard Company 2000

An Open, Flexible, and Configurable System for E-
Service Composition

1 Introduction

The Web is rapidly becoming the platform through which many companies deliver
services to businesses and individual customers. The number and type of on-line services
increases day by day, and this trend is likely to continue at an even faster pace in the
immediate future. Examples of e-services currently available include bill payment,
delivery of customized news, or archiving and sharing of digital documents. Services are
typically delivered point-to-point. However, the e-service environment creates the
opportunity for providing value-added, integrated services, which are delivered by
composing existing e-services, possibly offered by different companies.

In order to enable organizations to pursue this business opportunity we have developed
eFlow, a platform that supports the specification, enactment, and management of
composite e-services. Composite services are modeled as processes that are enacted by
a service process engine.

Service composition has many requirements that are in common with business process
management. For instance, they both need to organize the order of activity execution
(service invocation), to manage data and data transfer between activities, and to
manage activity assignments and resources. In addition, they need to provide high
availability, reliability, and scalability. However, the e-service environment is highly
dynamic, both from a business and from a technical perspective: the type of services
offered over the Internet is growing at a very fast pace, as is the number of service
providers. This requires service process models and systems to be very flexible and to be
able to adapt to changes (possibly without the need of human intervention), in order to
offer the best available service in any given time. In addition, execution of composite
services typically span organizational boundaries, and require the capability of interacting
with applications based on different (and always evolving) standards, technologies, and
ontologies. Finally, the computing resources involved in e-service delivery are
heterogeneous in terms of computing power, ranging from high-end workstations to

palmtops devices or appliances. While powerful machines may support large and complex

applications, devices with limited computing and storage power impose severe limitations
on the size of the application they can execute.

The eFlow model and system aims at addressing these issues by providing a flexible,
configurable, and open approach to service composition. In fact, eFlow provides an
adaptive and dynamic process model, that allows processes to transparently adapt to
changes in the environment, to customize service execution according to the customers’
needs, and to cope with exceptional situations. In addition, the model and the system are
configurable, so that applications running on devices with limited storage space and
computing power can download a version of eFlow that only includes needed features
and that has a smaller footprint with respect to the complete version. Finally, eFlow is an
open system, in that users can replace default components with the one that best suit
their needs, to be able to interact with a given e-service environment. In the following
we present the eFlow model and system and we show how they can achieve the above

mentioned goals.

2 The eFlow service process model

This section presents an overview of the eFlow process model (the reader is referred to
[eFlow10] for a complete description of the model and system). In eFlow, a composite
service is described as a process schema that composes other basic or composite
services. A schema is modeled by a graph (the flow structure), which defines the order of
execution among the nodes in the process. The graph may include service, decision, and
event nodes. Service nodes represent the invocation of a basic or composite service;
decision nodes specify the alternatives and rules controlling the execution flow, while
event nodes enable service processes to send and receive several types of events.

A service process instance is an enactment of a process schema. The same service
process may be instantiated several times, and several instances may be concurrently
running. Service nodes can access and modify data included in a case packet. Each
process instance has a local copy of the case packet, and the eFlow engine controls
access to these data.

Figure 1 shows a sample service process graph, related to a candidate interview service,
offered by a company to its managers to simplify candidate interviewing. The composite

service includes simple services provided by the company itself (such as Interview room

reservation), as well as services provided by partners such as immigration status

analysis, which is offered by a law firm.

2.1 Service nodes

Service nodes represent the invocation of one or more services. eFlow includes three
different types of service node: Basic service nodes, that represent the invocation of a
service, multiservice nodes, that enable the parallel invocation of multiple instances of
the same basic node, and generic service nodes, that enable the instantiation of

different basic nodes. We next detail the three eFlow service node types.

2.1.1 Basic service nodes

Basic service nodes are executed by invoking a service (provided by the same or
different organization, and possibly implemented as another eFlow process). The
specification of a service node includes its name, identifier, and a list of case packet
variables that the node is allowed to read or write. In addition, the service node
specification includes a service selection rule, to select the appropriate service (and
service provider), and a deadline to control service execution time. We next detail the
syntax and semantics of these two attributes.

The activity selection rule is a reference to a rule, executed by an eFlow component
called service process broker, that enables the selection of the appropriate service to be
invoked. The rule can have several input parameters, defined by references to workflow
variables. When a service node is started, the eFlow engine invokes a service broker that
will execute the specified rule and return the appropriate service. If no suitable service is
found, an event is raised (see Section 2.3 for events and event nodes). Service selection
rules are defined in a service broker-specific language. eFlow has a default service broker
in which service selection rules are specified by XQL queries [Robie98] executed against
the eFlow service description repository. Services in the repository are described in XML;
eFlow does not impose any constraint about the exact form of XQL queries and XML
service descriptions, but only requires that the rule returns an XML document which
includes the definition of input and output data, the URI used to contact the service and a
priority value used to select a specific service when several services are returned by the
rule (choice among services with the same priority is non deterministic). eFlow includes
several proxy objects that supports a number of protocols, such as Hewlett-Packard's

e''speak [espeak99] or http.

CANDIDATE
INTERVIEW [Data Collection]

Nationality!=US

ationaity=US

Immigration status
analysis

immigration=eligible

immigration=ineligible

Interview schedule
definition

y

v v v

[Interview room] [Interview team] Candidatetravel]

reservation notification arrangement

¢ A4 ¢

wait interview day

Interview results
collection
|Q J
3

N
[Get final

evaluation

notify result
LEGENDA
Arrange @ @
candidate trip
Service node Notify event Request event
node node
And split/join : S
Xor split/join Generic Start node End node

decision node

Figure 1 - Candidate interview service

Input parameters in service selection rules enable the customization of rule execution
according to the specific service process instance data. Mapping between service node
input/output data and the parameters of the invoked service is performed by a mapping
function, specified as a set of string pairs <case packet variable nane, service
vari abl e name>. A mapping function must be defined for a <servi ce node, service
descri pti on> pair before the service can be invoked in the context of the service node.
The Deadline denotes the temporal instant by which the service node should be
completed. Deadlines can be defined as timestamps (either by entering the date and
time or by referring to a case packet variable of type datetime) or as an interval to be
computed starting from a datetime. For instance, we can specify that a service node
should be completed before 2000-3-31 18:00:00, three days before the date and time
specified by case packet variable MyLimit, or one hour after node start. As the deadline
expires, an event is raised. In addition, it is possible to specify that the node should be
terminated upon deadline expiration.

Figure 2 shows a sample specification of a basic work node. Specifications are made in

XML, whose syntax is constrained by a DTD.

<BASIC_NODE id="Candidate_travel_arrangement">
<NAME> Candidate travel arrangement </NAME>
<DESCRIPTION> Arranges the travel and books the hotel for the candidate
</DESCRIPTION>
<READ_LIST> Candiadtelnfo
</READ_LIST>
<WRITE_LIST> TravelReservations
</WRITE_LIST>
<SELECTION_RULE> TravelReservationService(CandiadteInfo.Home, CandiadteInfo.InterviewSite)
</SELECTION_RULE>
<DEADLINE action="raiseEvent”> 3 00:00:00 BEFORE Candidatelnfo.InterviewDate
</DEADLINE>
</BASIC_NODE>

Figure 2 - Sample XML definition of the Candidate Travel Arrangement service node

2.1.2 Multiservice nodes

The multiservice node allows the multiple, parallel activation of the same service node.
Its behavior is mainly characterized by two attributes: the activation, that defines the

number of instances to be started, and the termination, that specifies when the

multiservice node can be considered completed. In the following we describe these

attributes.

Activation identifies the number of node instances to be activated; this number can be
determined (at run time) as follows:

1. It can be determined by the number of service providers able to provide a given
service (for instance, we may want a candidate to be interviewed by all available
members of a team - seen as “service provider” in this example)

2. It can be equal to the number of elements in a case packet variable of type
vector. In this case each service node instance receives one and only one of the
list items as input parameter. The value of such items will affect service selection
and execution. For instance, a list may include a set of customers of different
nationalities for which we want to check their credit history. The number of
service nodes that will be instantiated within the multiservice node will be equal to
the number of customers, and each node will focus on one customer. A service
selection rule will be executed for each service node to be activated; the rule can
have the customer's data as input parameter, in order to select the appropriate
credit check service for each customer, for instance depending on the customer's
nationality.

Termination: An important part of a multiservice is the specification of when the
multiservice can be considered completed and the flow can proceed with the successor
service node. In most cases, the flow can proceed only when all invoked services have
been completed. However, in other cases, there is no need to wait for all service
instances to be completed, since the multiservice goal may have already been achieved
before. For instance, suppose that we want to verify a customer's credit with several
agencies: if our acceptance criteria is that all agencies must give a positive judgment for
the customer to be accepted, then as soon as one agency gives a negative opinion we
can proceed with service execution, without waiting for the completion of the other
services, which may be canceled. Termination is a Boolean condition, checked every time
one of the multiservice node instances terminates, that defines when the multiservice
node is completed and the flow can proceed. If the condition holds, then the successor of
the multiservice is activated and services in execution are canceled. An example of

termination condition for the credit check example could be Rejections.|ength>0,

where Rejections is a variable of type ListO(String), and length is an attribute
common to every list variable that contains the number of elements in the list. Figure 3

shows a sample specification of a multiservice node in eFlow.

<MULTISERVICE_NODE id="check_customers_credit">
<NAME> Check Customers' credit </NAME>
<SERVICE_NODE id="check_single_customer_credit" />
<DESCRIPTION> Multiservice node that checks the credit history of
several customers in parallel
</DESCRIPTION>
<ACTIVATION mode="by_variable" varref="customers_list" />
<TERMINATION> rejections.length>0 </TERMINATION>
</MULTISERVICE_NODE>

Figure 3 - Specification of a multiservice node

2.1.3 Generic nodes

While multiservice nodes enable the activation of multiple instances of the same basic
node, generic nodes allow the instantiation of different basic nodes. Generic nodes are
not statically bound or limited to a specific set of services: instead, they include a
configuration parameter that can be set with a list of actual service nodes either at
process instantiation time (through the process instance input parameters) or at runtime.
The specified services will be executed in parallel or sequentially depending on an
execution mode attribute of the generic service node.

Generic nodes are useful when it is not possible to predetermine the type of services that
need to be invoked. For instance, a moving service could be composed of car rental,
truck rental, storage space rental, and airline reservation services. The services to be
invoked may depend on the preferences of each specific customer (some customers may
only requires a truck rental service, for instance), and without the generic node a process
designer would have to hardcode all the possible different options by drawing spaghetti-
like process graphs and complex routing conditions. In addition, if a new service type is
made available, the process definition must be changed to include the new node.

The generic node is characterized by the following attributes, that enables the definition

of the nodes to be instantiated and their execution order:

Service node pool: identifies a group of service nodes. Only nodes belonging to the pool

can be instantiated within this generic node.

Service selection variable: a reference to a case packet variable of type list that contains
the identifiers of the service nodes to be instantiated. The variable can be set at process
instantiation time or by a previously executed node.

Execution mode: defines whether the nodes should be instantiated in sequence (in the
order defined by the list) or in parallel.

Termination: it is analogous to the correspondent multiservice node attribute.

<GENERIC_NODE id="moving_services">
<NAME> Moving Services </NAME>
<SERVICE_NODE_POOL> Rentals and Reservations </SERVICE_NODE_POOL>
<SERVICE_SELECTION_VAR> SelectedRentalServices
</SERVICE_SELECTION_VAR>
<EXECUTION_MODE mode="parallel" />

</GENERIC_NODE>

Figure 4 - XML description of the generic nhode Moving Services

2.2 Decision nodes

eFlow offers three types of decision nodes: split nodes can split the flow of work along
parallel or conditional branches; join nodes synchronize two or more branches; generic
nodes can specify arbitrary routing behaviors by means of a routing language, and are
used when routing requirements are very complex and cannot be handled by the eFlow
split and join nodes.

Split nodes have one input arc and two or more output arcs. There are two types of split
nodes: and-split nodes fire all the output arcs as the input arc is fired; xor-split nodes
allow instead the conditional activation of output arcs: as the input arc is fired, the
routing rules associated to the xor-split are executed. Rule execution returns the
identifiers of the arcs to be fired. If rule execution results in zero or in more then one
output arc to be fired, then instance execution is stopped (along that path) and an event
is raised.

Routing rules are of the form IF <condition> then FIRE <arc_list>. Conditions are
Boolean predicates defined over the value of case packet data, such as (make="Ferrari"
and cost > 100.000). If the condition evaluates to TRUE, the action is executed. The
action causes the firing of one or more arcs, and hence the activation of the nodes
connected in output to those arcs.

Join nodes synchronize branches of the process flow. Like split nodes, join nodes are also

divided into and-join and xor-join nodes. Both have two or more input arcs and one

output arc. and-join nodes fire the output arc as all input arcs have been fired; xor-join
nodes fire the output arc as one input arc is fired. When other input arcs will be fired, no
action will be performed, i.e., the output arc will not be fired once again (unless it is

reset when loops are defined - see below).

Split and join nodes enable the definition of most routing behaviors. However, sometimes
there is the need of specifying more complex semantics, such as activating n out of m
output arcs, or joining the flow after a given number of input arcs have been fired and
certain conditions hold. Sophisticate routing requirements are supported in eFlow by the
generic routing node.

Generic routing nodes can be of arbitrary complexity. They can have any number of input
and output arcs. Like the xor-split, the routing semantics is specified by means of one or
more routing rules. As any input arc is fired, all the route rules are executed (in parallel).
Route rules will define which output arcs should be fired. Notice that it is the
responsibility of the process designer to make sure that all possible cases are covered by
routing rules. If a situation occurs that is not handled by the rules in the node, the
execution of the process instance (along that path) will stop at that point, and an
exception will be raised. Unlike the xor-node, a generic route node can fire more than

one output arc.

Loops.

In eFlow each node can be executed only once per instance and each arc can be fired
once per instance, unless it is reset by a reset arc (also called loop arc, since by resetting
nodes and arcs it enables the definition of loops).

A reset arc can only connect two routing nodes. Every reset arc defines a scope, which is
defined as the set of all work nodes and all arcs that are in the path between the
destination node and the source node of the reset arc.

Figure 5 shows a typical looping structure, where the loop part is included between a xor-
join and a xor-split. The Figure also shows with a thick border all service nodes and arcs
that are in the scope of the reset arc. eFlow has two types of reset arcs:

+ The cancel reset arc causes a cancel message to be sent to every running activity

(service) executed within nodes that are in the scope of the reset arc. Then, after

running activities have been canceled, all nodes and arcs in the scope of the arc are
reset so that they can run again when they are reached by the control flow.

 With the delay reset arc, no cancel message is sent: eFlow first waits for the
completion of every running activity in the scope of the reset arc; then, it resets all
nodes and arcs in the scope of the reset arc and resumes flow execution starting from

the reset arc destination node.

This is the reset arc

~

t >1000
amount <=1000 amoun

Figure 5 - A reset arc and its scope

2.3 Event nodes

eFlow has a very powerful event model that allows processes to send and receive events
of several different types, to specify events of interest with a fine granularity, and to
capture event parameters into case packet variables. All events, regardless of their type,
are specified in a uniform fashion, using the same formalism and the same underlying
basic concepts, so that the process designer does not need to learn different languages
to specify different kinds of events. We next present the different event types managed
by eFlow, and then we show how events can be notified or received by means of event

nodes.

2.3.1 eFlow event types

eFlow can capture and manage the following event types:

9

- Workflow events: They are events generated by the eFlow engine when processing

a process instance, such as instance or node state changes (e.g., activation or

completion of nodes and process instances or expiration of deadlines), or error-

handling events (e.g., a xor-splits trying to activate several output arcs). All workflow

events have the following parameters:

(o]

event type: every type of event has an event type parameter. For all workflow
events, its value is set to “workflow”.

old state: the state of the node or process prior to the state change (if
applicable)

new state: the state of the node or process after the state change (if
applicable)

node name: the name of the node to which the event is related. If the state
change (or the error) is related to a process instance rather than to a node,
this parameter is omitted.

process name: the name of the process definition to which the affected node
or process belongs.

process instance Id: the id of the process instance to which the event is
related

error cause: for error-handling events, the type of error

occurrence time: the date and time of the event occurrence.

- Data events are raised upon modification of case packet variables. They have the

following parameters:

(o]

(o]

(o]

event type: For all data events, its value is set to “data”.

variable name: the name of the variable that changed value

old value: the value of the variable prior to its modification

new value: the value of the variable after its modification

process name: the name of the process definition to which the variable
belongs to.

process instance Id: the id of the process instance in which the value change
occurred

occurrence time: the date and time of the event occurrence.

10

« Application-specific events are qualified by their name and are explicitly raised by
a process (through an event node) or by an external application. Application-specific
events may carry an arbitrary number of parameters, whose type must be one of the
eFlow data type. The only event parameters common to all application-specific events
(besides the name) are the occurrence time and the event type, with the same

semantics as above.

« Temporal events are raised at specified points in time. eFlow can detect and raise
three types of temporal events:

o Instant: the event is raised only once, at a specified date and time. Usually,
the date and time are specified by providing the time of the day, plus the day,
month, and year. eFlow also allows the definition of symbolic dates such as
Christmas, Easter, or Thanksgiving.

o Interval: interval events are raised as a given interval has elapsed since a
reference event (e.g., 20 minutes after the activation of the task, or 2 days
after the car accident). The reference event in eFlow can be a workflow, data,
or application-specific event.

0 Periodic: these events are raised periodically. The eFlow periodic event
language allows the specification of simple periodic intervals (e.g., “every 3
hours”) as well as the definition of expressions that have knowledge of the
calendar, such as “every Monday at 2pm”, “every US election day at noon”, or
“on the 28™ day of each month”.

All temporal events have parameters occurrence time and event type. The event type for
instant, interval, and periodic events is set to temporal/instant, temporal/interval, and

temporal/periodic respectively.

2.3.2 Notify and request nodes

In eFlow, points in process instance execution where events should be sent or received
are specified by means of event nodes. There are two types of event nodes: Notify and
Request. Notify nodes raise an event, which can be notified to other process instances or
to other, external applications. Notify nodes are non-blocking: as the event is notified,

process execution proceeds immediately by activating the subsequent node.

11

Request nodes correspond instead to requests of workflow, data, temporal, or
application-specific events. They are blocking: as a request node is reached in the control
flow of a given process instance, the flow (along the path where the request node is
defined) stops until an event with the specified characteristics is delivered to that node.

Event nodes can be defined in a workflow graph just like any other work node: both
notify and receive nodes can have only one input and one output arc, and they can be
executed only once (i.e., can only send or receive one event) unless they are reset. In

the following we describe notify and request event nodes in more detail.

Notify nodes

Notify nodes denote points in the flow where a process notifies an application-specific
event to the eFlow engine'. The specification of a notify node includes the definition of
the event to be generated, described by a set of <name,value> pairs that constitute its
parameters. Values may be defined by constants or may refer to the name of a case
packet variable, meaning that the actual value of the parameter is set to the value of the
case packet variable at the time the event node is executed.

For instance, the candidate interview service process sends an event notifying the
interview result (to be captured by all other defined eFlow services interested in this
event and authorized to receive it?). Assume also that the event must indicate the name
of the candidate, the evaluation result, and the interview date. Such an event could be

specified as follows?:

event Nane="Interrvi ewResul t”

candi dat eNane=%andi dat el nf 0. Nane
resul t =% andi dat el nf 0. Resul t

dat e=%andi dat el nf o. | nt er vi ewDat e

In the above example, event parameters candi dat eNane, result, and date are set by

means of case packet variables.

1 Temporal, data, and workflow events are detected by eFlow, and cannot be explicitly
raised.

2 Security issues are not discussed here due to space limitations. The interested reader
is referred to [eFlow10] for details

3 eFlow does not require events to have a name. If defined, event names such as
IntrviewResult are handled like any other parameter.

12

Request nodes

Request nodes denote points in a process where the execution is suspended (along the
path where the event node is defined), waiting for an event (with some specified
properties) to be delivered. As the event is delivered to the request node, process
instance execution proceeds with the activation of the node connected in output to the
request node.

For each request node, the workflow designer specifies a request rule that defines the
kind of events the node is interested in (specified by a filtering rule) and the event data
that should be captured within case packet variables (specified by a capturing rule). The
syntax of the request expression is the following:

<recei ve expression> := <filtering rule> ["CAPTURE" <capturing rule>];

We next describe these components in detail.

Filtering rule

The filtering rule defines the characteristics of the events that the request node is
interested in receiving. Request nodes can request workflow, data, temporal, or
application-specific events. All event types are specified using the same formalism: the
event of interest is simply defined by a Boolean condition over event parameters and
case packet variables. Typically, the condition compares event parameters with the value
of case packet variables to check if these values match.

When a request node is reached by the control flow (i.e., it is activated), a request for
the event will be issued. eFlow will deliver to the node the first event that satisfies the
condition and that occurred after the request node activation.

As an example, assume that, in a car rental process, the designher wants to specify an
event node that receives an event when work node car scheduling (in the same instance)

is suspended. This semantics can be achieved by the following rule:

event _t ype="wor kf | ow’ and
new st at e=" suspend” and
node="car schedul i ng” and

process_i nstance_i d=% d

As another example, suppose that in a bank account management process, a request
node monitors variable balance in order to check when it turns from a positive to a

negative value. This event can be specified as follows:

13

event _type="data” and
vari abl e_nanme="bal ance” and
ol d val ue >0 and
new val ue <0

Finally, we present an example related to temporal events. Conceptually, eFlow raises a
temporal event every second. This allows temporal events to be specified by a filter on
the occurrence time parameter, by using a simple language that enables the definition of
datetime, interval, and periodic times. For instance, filters for Periodic events can be
specified by providing the base time that defines when the first of the (potentially
infinite) series of periodic event should occur, and the time period that should elapse
between two successive occurrences of the periodic event. The time period (preceded by
keyword every) is expressed in terms of days, hours, minutes, and seconds (just like a
temporal interval). For instance, in order to specify an event that should be raised every
20 minutes, starting from 12:00am on Dec 24, 1999, the designer defines the following

rule:

event _type="tenporal/periodic” and
period= every 20:00 from 1999-12-24 00: 00: 00

A frequent need in process design is the specification of periodic events that are related
to symbolic periods, such as “every Easter at noon” or “on the 27" of each month”.
These periodic events cannot be expressed with the base+period notation, since the
interval between two successive Easters and two successive 27" day of the month are
variable. To enable the specification of this important class of periodic events, eFlow
allows the time period to be specified as: “every” <symbolic date> “at” [day] hh:mm:ss
from <timestamp> [to <timestamp>]. For instance, the periodic event “every Easter at
noon” can be specified as:

Type=t enpor al / peri odi c
peri od= every Easter at 12:00:00 from 1999

The eFlow administrator can create new symbolic dates in order to customize the system

for the specific needs of the organization in which it is used (for instance, to include local

14

holidays or company holidays). We refer the interested reader to [eFlow1l0] for a

complete description of events and specifically for the temporal event language.

Capturing rule

Besides defining the event of interest by means of the filtering rule, a request node may
also capture the value of message attributes into local workflow variables. For this
purpose, the filtering rule is coupled with a capturing rule.

For instance, assume that in the candidate interview process, the desigher also wants to
capture, from interviewCancel events (whose parameters are the candidate’s name, the
position code, and the reason for cancellation), the reason why the candidate canceled
the job application.

When filtering this event in the event request, an interview process instance is not
interested in the reason of the cancellation: events of interest are all interviewCancel
events that are related to the person and the position for which the process is scheduling
the interview, regardless of the cancellation reason.

However, when the event is received, the process needs to capture the cancellation
reason for bookkeeping purposes (or possibly to propose higher compensations if the
reason was that the candidate has received another offer).

Event parameters can be captured into case packet variables by specifying a set of pairs
<case packet variable nhame, event parameter name>, meaning that the specified case
packet variable takes the value of the specified event parameter as the event is delivered
to the request node.

The capturing rule for the above described example can be defined as follows:

%andi dat e_cancel | ati on_reason=r eason

2.3.3 Event-based process activation

Some processes may need to be activated periodically, or as a given event occur. For
instance, a service process that sends monthly paychecks to employee must be activated
every month (periodic event), while one that handles electronic employee
reimbursements must be activated as a reimbursement request is notified (application-

specific event).

eFlow supports these needs by allowing the definition of a process activation rule, which

has exactly the same syntax of event rules defined in request nodes. In particular, the

15

process activation rule has a filtering component that defines when a new instance of the
process should be created, and a capturing rule that captures the parameters of the
activating event and uses them as initialization data for the newly created instance.
For instance, the activation condition for the electronic employee reimbursement process
could be as follows:

event _type="application-specific” and

event _nane="r el nbur senent _r equest”
CAPTURE %enpNane=enpl oyee_nane;

2.4 Transactions

The eFlow model includes the notion of transactional regions [Krishnamo0O0]. A
transactional region identifies a portion of the process graph that should be executed in
an atomic fashion. If for any reason the part of the process identified by the transactional
region cannot be successfully completed, then all running services in the region are
aborted and completed ones are compensated, by executing a service-specific
compensating action. Compensating actions may be defined for each service or may be
defined at the region level. For instance, by enclosing the Interview room reservation,
Interview team notification, and Candidate travel arrangement services within a
transactional region, and by providing compensating actions for each of these services
(or one compensating action at the region level), we are guaranteed that either all of the
services are executed, or none is.

The purpose of a compensating action is to semantically undo the work performed by a
completed service. If a service node cannot be compensated (or anyway if the
compensating node has not been specified), then it cannot be inserted in a transactional

region, unless the compensating action is defined at the region level.

2.5 Dynamic service process modifications

Adaptive features such as generic and multiservice nodes, service selection rules, and
event-based error handling, allows for very flexible process definitions and enable
dynamic process configuration and binding of services with service nodes, thereby

minimizing the need for human intervention in maintaining process definitions.

However, there may still be cases in which process schemas need to be modified, or in
which actions need to be taken on running process instances to modify their course.

Process modifications may be needed to handle unexpected exceptional situations, to

16

incorporate new laws or new business policies, to improve the process, or to correct

errors or deficiencies in the current definition [Joeris99, Reichert97]. eFlow allows two

types of service process modifications:

Ad-hoc changes: eFlow allows authorized users to modify the schema followed by a
given service process instance. The modifications are applied by first defining a new
schema (usually by modifying the current one) and by then migrating the instance
from its current schema (called source schema) to the newly defined one (called
destination schema). eFlow allows maximum flexibility in the kind of changes allowed
to the schema followed by a given instance. Authorized users can modify every
aspect of a schema, including the flow structure, the definition of service, decision,
and event nodes, process data, and even transactional regions. eFlow only verifies
that behavioral consistency is respected when migrating an instance to a destination
schema (i.e., that instance migration does not generate run-time errors and that
transactional semantics can be enforced). Besides changes to the process schema,
authorized users can modify the course of a process instance execution by changing
the value of case packet variables, initiating the rollback of a process region or of the
entire process, terminating the process instance, or reassigning a node to a different
service.

Bulk changes handle exceptional situations that affect many instances of the same
process. Instead of handling running instances on a case-by-case basis, eFlow allows
authorized users to apply changes to sets of instances that have common properties.
Modifications are introduced by specifying one or more destination schemas and by
defining which set of instances should be migrated to each schema. A migration rule
identifies a subset of the running instances of a given process and specifies the
schema to which instances in this subset should be migrated. Rules have the form | F
<condi ti on> THEN M GRATE TO <schene>. The condition is a predicate over service
process data and service process execution state that identifies a subset of the
running instances, while <schema> denotes the destination schema. Instances whose
state does not fulfill the migration condition will proceed with the same schema. The
set of rules must define a partitioning over the set of active instances, so that each

instance is migrated to one schema at most.

17

3 eFlow Architecture

We next give an overbiew of the eFlow architecture and discuss its possible configuration
and extensions. Details on the architecture are provided in [eFlow10].

3.1 Architecture overview

Figure 6 presents the overall architecture of eFlow. Composite services are specified
through the Service Process Composer, that enables the definition and modification of
process schemas. Services are enacted by the service process engine, which is composed
of the Scheduler, the Event manager, and the Transaction manager. The Scheduler
processes messages notifying completion status of service nodes, by updating the value
of case packet variables accessed by the service node and by subsequently scheduling
the next node to be activated in the instance, according to the process definition. The
scheduler then contacts the Service process broker in order to discover the actual service
(and service provider) that can fulfill the requests specified in the service node definition,
and eventually contacts the provider in order to execute the service.

The Event Manager monitors event occurrences, by detecting temporal, data, and
workflow events, and by receiving notifications of application-specific events by external
applications (typically by external event managers such as those provided by TIBCO or
ActiveSoftware). In fact, eFlow provides modules that enable its event manager to
interface with other event managers, in order to notify and receive events from such
publish/subscribe systems. When an event is notified, the Event Manager analyzes
current requests and verifies which nodes (if any) are interested to the event. Then, it
delivers the events to the requesting nodes.

The Transaction manager enforces transactional semantics by enabling compensation of
transactional regions. When a region needs to be aborted, the transaction manager
identifies the compensating activities to be executed and the order of their execution
(i.e., it builds a compensating schema). Then, it notifies the schema to the scheduler in
order to execute it.

The Service operation monitor logs the execution details and provides correction
assistance if desired. It is the component through which authorized users can monitor
running service executions or retrieve information about completed service executions.
Finally, the Migration manager handles dynamic changes to process instances. It
suspends instances to be migrated, verifies that the migrations can be actually

performed (i.e, that behavioral consistency is preserved), generates an execution state

18

for the instance in the new schema, and finally informs the engine that the execution of

the migrated instances can be resumed.

eFlow
Service process
engine
»
Ll
Transaction
manager
ervice operation Migration service
monitor manager process broker
> Extetnal
¥ service
broker
Scheduler

A

External
Event
Manager A

process
definitions

service process Event manager

instance data

proxy A

A
) 4

.

External
Event
Manager B

(s

Service process
composer

repository of service

descriptions

Figure 6 - The eFlow architecture

3.2 eFlow configurations and extensions
This section discusses two additional aspects of flexibility and openness in eFlow: the
service process engine configurations and the system extensions by means of customized

components.

3.2.1 Service process configurations

Technological advances and the ever-increasing usage of the web to exchange
information and perform transactions are extending the type of devices that can access
the Internet. Palmtops, cellular phones, printers, microwave ovens and other appliances
can access the Web or include web servers. While some of these devices can have
considerable computing power and storage space, most of them are very limited in this

kind of resources. Hence, in order to enable devices to deliver composite services, we

19

designed the eflow model to be configurable: devices with limited capabilities (or, in
general, applications that do not require all of the model and system features) can install
lightweight versions of eFlow, which have less functionality but that are smaller in
footprint. These simpler versions of eFlow can then be progressively upgraded, if needed,
up to the full version presented in this paper.

The basic version of eFlow only allows sequential, linear processes, does not include
event or decision nodes, and it only offers basic service nodes. In addition, it does not
provide for transactions and audit logging. This basic version can be progressively
extended, by adding more functionality (at the cost of having a more heavyweight
system).

Figure 7 shows the building blocks of the eFlow control flow model and how more
complex features can be added on top of more basic configurations. Boxes represent
layers, while arrows from a layer A to a layer B means that configuration B requires as a
minimum the feature provided by configuration A. If a block has several input arrows, it

means that at least one of the input blocks is needed.

e Basic layer: allows the definition of sequential processes: no decision, event,
multiservice, or generic node is provided, and no support for transactions or audit
logging is included.

« Conditional layer: adds the possibility of defining xor-splits and xor- join nodes.

» Parallel layer: adds the possibility of defining and-splits and and- join nodes.

* Generic layer: adds the possibility of defining generic routing nodes.

» Loop layer: adds the possibility of defining reset arcs. The loop layer can be plugged-
in on top of the conditional or of the generic layer®.

« Adaptive Layer: it adds multiservice and generic nodes.

« Event layer: it enables the definition of notify and request event nodes.

« Audit layer: adds audit logging capabilities.

« Transaction layer: adds the possibility of defining virtual transactions. It requires the
logging layer since the transaction manager accesses the log in order to determine

the compensating sequence to be executed.

4 It does not make sense to plug in lops on top of the parallel layers, because loops
requires xor-joins or generic routing nodes, otherwise they lead to deadlocks

20

At the time this paper is written, we have only implemented the basic, parallel, and
adaptive layers, and we are currently implementing the other layers. We foresee that the

event layer will be the one causing the biggest increase in the system’s size.

Basic

Parallel Conditional Generic routing Event Audit Adaptive

A
Transactions

Loops

Figure 7 - Building blocks of the eFlow model

3.2.2 Ad-hoc eFlow components

The Service process engine includes the core components of eFlow, necessary to enforce
the semantics of the process model described in Section 2 and detailed in [eFlow10].
While eFlow also provides default components for defining, monitoring, and migrating
process instances as well as for selecting services to be invoked, all of them can be
replaced with user-defined ones, in order to extend the features of the system and to
enable different service broker strategies and policies. The interfaces and the database
schemas needed in order to correctly implement these components so that they can
interact with eFlow have been kept very simple in order to ease the development of ad-
hoc components for the implementation of features required by specific customers, by
the evolution of standards, or by the adoption of a specific policy and ontology.

For instance, eFlow users can replace the default broker and plug-in the service broker
that best fits their needs. The model and the system have been designed in such a way
that the engine does not need to have knowledge of how the service selection rule should
be executed. Indeed, the rule is not even included in the process definition file. Plugged-

in brokers are not even required to access the service repository: they can dynamically

21

discover services by contacting other external brokers or service advertisement facility,
in order to get the most up to date information about available services and their
characteristics. Service selection rules will be then defined in the language supported by
that broker, and can include arbitrary service selection policies. Plugged-in brokers must
either present to the engine the same (simple) interface of the default one, or an adapter

must be interposed between the engine and the broker to map requests and responses”.

4 Related Work

To the best of our knowledge, there is no commercial process management system that
provides the flexibility and extensibility of eFlow. Commercial process management
systems, such as MQ Workflow [MQworkfl98], InConcert [Inconcer97], Staffware2000

Ill

[Staffwar99], or Forte' Fusion [Mann99], are excellent for “traditional” workflow
management and for integrating enterprise applications (which are the purposes for
which they were originally designed), but do not provide the required flexibility and
expressive power to cope with the e-services environment. In particular, their process
model provides very limited event and exception handling support, does not allow for late
binding of activities, and does not include generic nodes. In addition, they do not support
dynamic change of process instances (with the exception of InConcert, that allows simple
modifications to the schema followed by a given instance as well as execution state
modifications) and do not have configurable systems.

Within the research community, no work has been done on configurable or extensible
workflow systems. Work on flexible workflows has been mostly focused on dynamic
process modifications. For instance, ad-hoc and bulk changes are discussed in [Joeris99].
Workflow changes are specified by transformation rules composed of a source schema
fragment, a destination schema fragment, and of a condition. The system checks for
parts of the process that are isomorphic with the source schema and replaces them with
the destination schema for all instances for which the condition is verified. The paper also
proposes a migration language for managing instance-specific migrations, conceptually

similar to our migration language and to that presented in [Liu98].

5 If service brokers dynamically discover services not stored in the service description
repository, they must also return a mapping function that allows the mapping of service
node input/output data to service parameters.

22

In [Reichert98], a complete and minimal set of workflow modification operations is
presented. Correctness properties are defined in order to determine whether a specific
change can be applied to a given instance. If these constraints are violated, the change is
either rejected or the correctness must be explicitly restored with exception handling
techniques.

Adaptive process management is also recently gaining attention, although few
contributions have been made in this field. The workflow model proposed in [Dirk98]
includes a "shoot tip" activity: when a shoot tip activity is executed, the control is
transferred to a process modeler that can extend the flow structure with one additional
activity, which is inserted before the shoot tip activity. Next, instance execution will
proceed by activating the newly inserted task and subsequently another "shoot tip"
activity to determine the next step. Another interesting approach, which also allows for
automatic adaptation, is proposed in [Georgako00]. The presented workflow model
includes a placeholder activity, which is an abstract activity replaced at runtime with a
concrete activity type, that must have the same input and output data of those defined
as part of the placeholder. In addition, a selection policy can be specified to indicate the
activity that should be executed. The model allows an expressive power similar to the
one allowed by eFlow dynamic service discovery mechanism, obtained through service
selection rules. However, we do not restrict the input and output parameters of the
selected activity (service) to be the same of those of the node. In addition, we also
provide the notion of generic and multiservice node for achieving additional flexibility, we
provide an open approach that enables user to plug in their service broker (and use their
own language to specify selection policies), and finally we also provide a set of dynamic
modification features to cope with situations in which changes in the flow are needed.
Events in workflow systems are supported by Staffware and by a few research
prototypes, such as Opera [Hagen98] or WIDE [Casati00]. Staffware and Opera allows
the definition of event nodes. However, they can only receive events, they do not have
event filtering capabilities, and they are more limited with respect to eFlow in the type of
events they can generate and monitor. WIDE has a very rich event language, but it
adopts a different approach for their management, based on ECA rules, whose conditions
are expressed in a Datalog-like language. While this approach is very powerful, we
experienced that rule design is more complex with respect to event nodes, and can easily

lead to errors because of subtle semantic issues and unforeseen interactions among

23

rules. Therefore, we integrated event handling in the process graph by means of event

nodes.

References

[CasatiOO0] F. Casati, S. Ceri, S. Paraboschi, G. Pozzi. Specification and implementation of exceptions in
Workflow Management Systems, ACM Trans. On Database Systems, to appear.

[Dirk9o8] T. Dirk Meijler, H. Kessels, C. Vuijst and R. le Comte. Realising Run-time Adaptable Workflow by

means of Reflection in the Baan Workflow Engine. Proceedings of the CSCW Workshop on Adaptive
Workflow Management, Seattle, WA, 1998.

[Edmond98] D. Edmond and A. ter Hofstede. Achieving Workflow Adaptability by means of Reflection.
Proceedings of the CSCW Workshop on Adaptive Workflow Management, Seattle, WA, 1998.

[eFlow10] Hewlett-Packard Labs. eFlow Service Process Model and architecture, version 1.0, 1999.

[espeak99] Hewlett-Packard. e”speak Architectural Specifications. 1999.

[GeorgakoO0] D. Georgakopoulos, H. Schuster, D. Baker, and A. Cichocki. Managing Escalation of Collaboration
Processes in Crisis Mitigation Situations. Procs of ICDE 2000, San Diego, CA, USA, 2000.

[Hagen98] C. Hagen, G. Alonso. Flexible exception handling in the OPERA process support system.
Proceedings of ICDCS 98, Amsterdam, May 1998.

[Krishnam0O0] V. Krishnamoorthy and M. Shan. “Virtual transactions”. Proceedings of SAC 2000, Como, lItaly,
March 2000.

[Inconcer97] Ronni T. Marshak. InConcert Workflow. Workgroup Computing report, Vol 20, No. 3, Patricia
Seybold Group, 1997.

[Joeris99] G. Joeris and O. Herzog. Managing Evolving Workflow Specifications with Schema Versioning and
Migration Rules. TZI Technical Report 15, University of Bremen, 1999.

[Liu98] C. Liu, M. Orlowska and H. Li. Automating Handover in Dynamic Workflow Environments.
Proceedings of CAISE '98, Pisa, Italy, 1998.

[Mann99] J. Mann. Forte' Fusion. Patricia Seybold Group report, 1999.

[MQworkfl98] IBM. MQ Series Workflow - Concepts and Architectures. 1998.
[Reichert97] M. Reichert, P. Dadam. ADEPTflex: Supporting Dynamic Changes of Workflows Without Loosing
Control. Tech. Rep. 97-07, Dept. of Databases and Information Systems, University of Ulm, 1997.

[Robie98] J. Robie, J. Lapp, and D. Schach. XML Query Language (XQL). Proceedings of the Query Languages
Workshop, Cambridge, Mass., 1998.
[Staffwar99] Staffware Corporation, Staffware2000 White Paper, Available at

http://www.staffware.com/home/products/Staffware2000WP.zip, 1999

24

