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Abstract. Many operations within a solid modeling application, notably
applying thickness (shelling) or blending edges (�lleting), encounter di�-
culties during topology resolution. In order to create a solid object, certain
faces have to be intersected but the geometry is such that no intersection
curve can be computed. The solution is to "extend" one or both faces.
This means that one has to extrapolate the underlying curves or surfaces.
This operation causes instability since extrapolation is inherently an un-
stable process. An additional di�culty is the selection of a strategy to
compute the extension amount. Furthermore, there are additional restric-
tions relating to continuity across the extension boundary. In this talk I
will illustrate by examples some modeling situations where extensions are
necessary. I present the methods currently used, and illustrate their ad-
vantages and disadvantages. Subsequently, I will demonstrate a solution
for primitives such as cylinders, cones, spheres and tori. I will conclude
by suggesting approaches which could avoid some of the current pitfalls.

x1. Introduction

At present almost all engineering design tasks are performed with the help of
a CAD system or | more generally | mechanical design automation (MDA)

software. Most all of the commercial modelling packages converged to certain

standard respresentations. The geometry is represented as NURBS curves
and surfaces, where truly rational representations are used only for primitives
such as circular and elliptic arcs, cylinders, cones, tori and spheres. Most
modelers also moved from strictly CSG representations to a hybrid model
where the topology is expressed as a BRep, and the sequence of operations is
stored in a CSG-like tree. As mentioned above, our focus is on solid modelling
applications where it is essential to maintain a valid topological solid after each
operation. We restrict ourselves here to the manifold setting.

In more technical terms we de�ne a solid as a 3-manifold with a compact

boundary which is consistently oriented. This allows us to include objects with
�nite surfaces without excluding objects with in�nite volumes. The reader
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who is unfamiliar with these concepts should consult a textbook on solid
modelling such as [2,3] or the excellent survey [4].

The requirement that the validity of the solid be maintained after any
operation is a source for many of the robustness issues encountered in solid

modelling. For example, it is often di�cult to �nd a crisp intersection between
surfaces even though the intersection curve is needed to close the solid. In

this article I will focus on the problem of extensions. In a nutshell, we often

need to extend surface patches in order to create intersections. This extension
operator is equivalent to performing extrapolation. Very little information

can be found in the literature regarding this topic; the notable exception is
[5]. This survey article is meant to �ll the void.

The outline of this article is as follows. In section 2, I will describe three
operations which almost always lead to the need for extending curves and

surfaces. Section 3 will present the approaches used in practice and discuss
their advantages and disadvantages. Furthermore, I will describe one mod-
i�cation which leads to signi�cant improvements when extending quadratic
B�ezier patches such as cylinders, cones, spheres and tori. In Section 4 we
will suggest alternative approaches to circumvent the need for extensions and
encourage some future work.

x2. Extensions in Solid Modeling

The need for extensions arises quite frequently when modeling parts. I will
explain the need for extensions when performing three of the most common
operations, namely

� Shelling

� Blending

� Drafting

These three operators are local operators, meaning that only a region of
the solid is modi�ed. Shelling is the process of applying thickness to a part.

The steps to be performed are as follows: The intial step is to o�set all the
surfaces with prescribed o�set distance, the thickness. This distance can vary

considerably. The result is illustrated in Figure 1.

In step 2, surfaces need to be intersected to form edges. Here extensions

might be needed in order to compute crisp surface intersections. Trimming

back the surfaces in Step 3 yields the �nal result. The alert reader might
have noticed that the true o�set is the Minkowski sum, and vertices should

really correspond to arcs. This would avoid computing extensions all together.
However, this result is not desired in practice.

Blending or �lleting is the process of rounding sharp edges. Hereby an
additional face is constructed which meets the adjoining faces with G1 con-
tinuity as illustrated in Figure 2. This surface is typically constructed as a

loft interpolating circular or elliptic cross sections. Extensions are needed for
vertex resolution when multiple �lleted edges meet at a corner or for extend-

ing features when the blend face interferes with an existing feature. For more
information on blending, see the survey article by Varady et al. [6].
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Fig. 1. O�setting outward results in free edges which need to be resolved.

Fig. 2. Blending with features present: The edge denoted by an arrow in
the left �gure is �lleted. The face denoted by the arrow in the right �gure
needs to be extended.

A draft operation in solid modeling consists of changing the solid such
that certain faces are slightly angled, see Figure 3. This is necessary for
plastic parts manufactured by injection molding. In order to be able to pull
the part out of the mold, there needs to be some room such that the faces
do not stick to the mold wall. Hence this operation is mandated purely for

manufacturability. Extensions are needed here as well as Figure 3 illustrates.

In conclusion, one can see that the success of these operations depends
on being able to produce the geometry which is required for the successful
resolution of the topology. Speci�cally, this means that one has to be able
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Fig. 3. Draft: The angled face replaces the front face and, hence the
bottom face needs to be extended.

to produce intersection curves. The vast majority of failures can be traced

to the failure of producing these curves due to bad geometry generated by
extensions.

x3. Extension Methods

In this section we will survey the extension methods which are typically em-
ployed in commercial systems, and we will evaluate their strengths and weak-
nesses. Additionally, we will present a modi�cation which allows to extend
quadric surfaces while maintaining their current parametrization. Extensions
need to ful�ll certain requirements to be useful. Special surfaces such as cylin-

ders, cones, spheres, tori should be maintained. Ideally the existing degree of
continuity across the extension boundary should be kept as well; however, this

requirement is mostly relaxed and only G1 continuity is required. The shape

of the resulting surface should be predictable, and the extensions should result
in well-de�ned surface intersections. Note that the requirements di�er in one
crucial point: the �rst two requirements can be enforced, whereas the last two
can not when using extrapolation based methods. We will revisit this topic

in Section 4.

Subsequently, we assume as given a B-Spline surface sssssssss(u; v) of degree d
with control points sssssssssji; i = 1; : : : ; n; j = 1; : : : ;m and knot vectors uuuuuuuuu and vvvvvvvvv.
We assume the parameter domain of the surface to be [a1; b1] � [a2; b2]. We
assume that we want to extend across the boundary u = b1 such that the new
bound is û.

Natural Extension
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Fig. 4. Construction of linear extensions.

The natural extension approach is the straightforward extrapolation approach
in a B-Spline or B�ezier setting. Consider subdivision of a given B�ezier curve
ccccccccc(t) with t 2 [a; b]. It is known that the control points for any subcurve
ddddddddd(t) with t 2 [a; s] are given by the intermediate points of the de Casteljau
algorithm:

dddddddddi = ccccccccci0(s):

Of course the formula is still valid if s is lying outside the original parameter
interval, here [a; b]. Natural extension is performed by applying this formula
with a value ŝ 62 [a; b]. This results in extrapolation. Furthermore, the control
points are not computed as convex combinations of the previous layer control
points as before; hence attributes like the convex hull property are lost. The

derivation presented here directly generalizes to the setting we are considering.
In the B-Spline case the control points are the intermediate points generated
by the de Boor algorithm with the new extension parameter û. Pseudocode on

how to compute these intermediate points can be found in the book by Farin
[1]. We can easily extend this method to surfaces by repeatedly applying the

curve algorithm to rows or columns of control points. It is worthwhile to point
out that this method is inherently very unstable. However, it is often used in

practice even though it should be avoided.

Linear extension

The simplest form of extension is using the derivatives across the extension
boundary to infer the new geometry, see Figure 4.

This method is known as linear extension. In our case we extend each

row of control points linearly in the direction given by

vvvvvvvvvi = dddddddddn;i � dddddddddn�1;i:
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Fig. 5. Re
ection of control points.

Note that now one additional segment is being created, and hence we increase
the number of control points in each row. Typically, we have the freedom to
achieve C1 continuity by appropriate scaling. If we de�ne

� =
û� un+d+1

un+d+1 � un+d

;

then by setting

dddddddddn+1;i = dddddddddn;i + �vvvvvvvvvi;

we have achieved C1 continuity at u� = un+d+1 as can readily be veri�ed. If
we denote as DDDDDDDDD+ the partial of sssssssss at u� computed from the (new) right segment
and with DDDDDDDDD

�
the corresponding partial computed from the left segment, we

derive:

DDDDDDDDD+ =
dddddddddn+1;i � dddddddddn;i

û� un+d+1

=
vvvvvvvvvi

û� un+d+1

û� un+d+1

un+d+1 � un+d

=
vvvvvvvvvi

un+d+1 � un+d

= DDDDDDDDD
�
:

The other control points are usually placed equidistantly on the tangent line.
Again rational surfaces are treated in homogeneous space, and it is possible

that negative weights are created. One can remedy this by inserting knots

appropriately.

Re
ection Extension

This method has been introduced in [5]. The idea here is that more predictable
results can be obtained by just mirroring the existing geometry across the

normal plane. This is shown in Figure 5.
The basic operation of re
ecting control points su�ces when dealing with

nonrational surfaces. The basic re
ection operation can be formalized as fol-
lows: We again de�ne vvvvvvvvvi as in the case for linear extensions. Let us denote

by v̂vvvvvvvvi the normalized vector. Then we have

dddddddddn+j;i = dddddddddn�j;i � 2 < v̂vvvvvvvvi; dddddddddn�j;i � dddddddddn;i > v̂vvvvvvvvi; j = 1; : : : ; K;
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where K is the number of new control points to be computed. It can be
easily seen that G1 continuity is preserved across the boundary u = b. A

more subtle point to consider is continuity in v across a knot vl with full
multiplicity. If the original surface is C1 continuous across vl, we would like to

ensure that the new part of the surface ful�lls that condition as well. Control
points generated by the simple extension equation above will not inherit C1

continuity from the generating geometry. This is due to the fact that the
normalization introduces a nonlinearity into the re
ection formula. Only if

we have the same re
ection plane for the three rows a�ected is C1 continuity
across vl achievable. G1 continuity is achievable if one chooses the weight
functions in the continuity equations appropriately. In the case of rational

surfaces, more work is required in any case. The continuity conditions for
adjacent rational patches are somewhat complex: Suitable weights and scalar

values have to be computed by inserting the model space control points into
the equations for G1 continuity as stated in [5]. In addition, it is now not clear
that G1 continuity across a knot vl with full multiplicity can be obtained. The
authors in [5] ignored the complications arising by this con�guration. Note
that this problem is closely related to twist incompatibility issues when one is
computing the new corner points.

Extending special surfaces

In most CAD systems, rational surfaces are only used to represent surfaces
such as cones, cylinders, spheres and tori. In this case, one can create an
extension surface which is again a special patch by solving a simple system
of equations without invoking the machinery of rational continuity conditions
across boundaries: We make use of the fact that we are dealing with quadratic
Bezier patches. So let us assume that we are given a biquadratic patch ppppppppp(u; v)
which again shall be extended across u = b. Let us denote the new patch by qqqqqqqqq.
The boundary control points are generated by simple re
ection in model space.

The weights are just copied, hence we guarantee positive weights. It remains

to generate the point qqqqqqqqq11.We make use of the fact that the two end derivatives
of the isoparametric curve formed by qqqqqqqqq01,qqqqqqqqq11, and qqqqqqqqq21 are the same up to a
scale factor as the corresponding derivatives of the curve denoted by ppppppppp01,ppppppppp11,
and ppppppppp21. Furthermore, the scale factor � is identical for both derivatives. This

gives rise to a simple system of 6 equations in 4 unknowns: Denote by

DDDDDDDDD0 :=
@ppppppppp

@u
(u = a; v)

w01

w11

u4 � u1

2
;

DDDDDDDDD1 :=
@ppppppppp

@u
(u = b; v)

w21

w11

u4 � u1

2
:

Then we obtain the equations

�DDDDDDDDD0 � qqqqqqqqq11 = �qqqqqqqqq01;

�DDDDDDDDD1 + qqqqqqqqq11 = qqqqqqqqq21:
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We know that a solution must exist, and by looking at the system, we can
readily determine � - for example by adding equation 4 to equation 1. Having

determined �, qqqqqqqqq11 follows trivially.
Hence we have presented an approach to compute the correct control

points in the circular direction of a special surface such as cone, cylinder,
sphere or torus.

Summary

We have presented the three commonly used extension methods. Let us sum-
marize the advantages and disadvantages of each: Starting with the natural

extension, its advantages are that maximal continuity is preserved and spe-
cial surfaces retain their characteristic. The disadvantages are that depending
on the original surface parameterization the results can be undesirable even

when only extending a relatively small amount. Furthermore, since extension
is performed in homogeneous space, weights can easily become negative even
for special surfaces.

Linear extension is the most predictable method in that it resembles a
ruled segment that joins the original surface with G1 or C1 continuity. How-
ever special surfaces are not preserved, and again we might produce negative
weights when dealing with rational surfaces.

Re
ection extensions yield positive weights for rational surfaces. The
resulting surface is related to the original surface in a predictable fashion, at
least for a modest extension amount. It is possible to create G2 continuous
surfaces across the extension boundary. However, one might lose continuity

in the other direction when knots with full multiplicity are present.

The combination scheme derived above combines re
ection extension with
a direct computation of inner B�ezier points. This method has been developed

especially for the extension of rational quadratic B�ezier patches, and hence it
preserves special surfaces without introducing negative weights.

Implementation Issues

In order to implement a topology resolution system based on extensions, there
are some other complicating factors to consider. First, the amount of exten-
sion has to be determined. In general this amount is given in parameter

space. Depending on the parameterization, parameter space and model space
might not correspond well. As a consequence, it is di�cult to even predict
the extension amount in model space without careful analysis of the given
parameterization. Usually one needs to perform extensions in a loop by ways

of callbacks. The process 
ow is as follows:

1 ) extend

2 ) test for intersection

3 ) if intersection found then process, else goto 1)
Of course, it is necessary to monitor this iteration. When �nding an

intersection curve requires extensions of signi�cant amount, it is likely that
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the result is not acceptable. This is particularly true for shelling operations.
When dealing with trimmed surfaces, the desired result might di�er: In some

cases it might be valid to extend the untrimmed surface; in other cases the
trimming information must be preserved.

x4. Alternatives

We have seen that extension approaches are the weak link in topology reso-
lution algorithms. Inherently, the problem of extrapolation is ill-de�ned. An

alternative solution worth exploring is to reverse the process and to establish

the desired intersection curve �rst. Given this intersection curve and option-
ally a tangent ribbon, one can construct a cubic B�ezier patch blending between

the intersection curve and the extension boundary and tangents constructing
a G1 continuous extension. Variations of this approach are possible as well:

one might even prescribe four boundary curves and construct the extension
patch by Coons blending techniques. If one needs to establish a vertex by per-
forming multiple intersections, one could again establish intersection curves
�rst, and then perform additional intersections to establish the vertex. To
the authors knowledge, such an approach is currently not implemented in any
commercial modeler.

x5. Conclusion

This survey article presented the methods used for extending curves and sur-
faces. Since they are all based on extrapolation, the algorithms are unstable
and can lead to undesirable results. As a consequence, the topology cannot be
resolved, and a valid solid cannot be produced. This leads to the failure of the
entire local topology operation such as shelling, blending or drafting and loss

of productivity for the end user who typically has to perform time-consuming
steps to get the desired result. We have shown that all the algorithms have
inherent weaknesses, and we have put forward a suggestion for alternative ap-
proaches. It is the authors hope that this paper motivates some much-needed
further work in this area.
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