

eFlow: a Platform for Developing and
Managing Composite e-Services

Fabio Casati, Ski Ilnicki, Li-Jie Jin,
Vasudev Krishnamoorthy, Ming-Chien Shan
Software Technology Laboratory
HP Laboratories Palo Alto
HPL-2000-36
March, 2000

E-mail: casati,ski,ljjin,vasu,shan@hpl.hp.com

workflow,
service
composition,
adaptive,
dynamic change

Today, companies are using the Web to connect with their back-
end systems and perform e-commerce transactions. The next
chapter of the Internet story is the evolution of today's
access/content focused portals into e-services hubs. While many
traditional services become available on the Internet as e-
services, almost all of them are single point services. In order to
offer higher value, end-to-end services, it should be possible to
compose, customize, and deploy e-services in a very flexible and
efficient way.

To support e-service delivery, we have developed a platform,
called eFlow, that provides the service developer with a simple,
easy to use, yet powerful mechanism for defining the composite
service starting from basic services. Composite services can be
preassembled or created on the fly, and can dynamically adapt
to changes in the business environment, such as the
introduction of new basic services. In addition, eFlow includes
components that allow users to monitor, analyze, and modify a
service while in execution.

 Copyright Hewlett-Packard Company 2000

Internal Accession Date Only

eFlow: a Platform for Developing and Managing Composite e-Services

Fabio Casati, Ski Ilnicki, Li-Jie Jin, Vasudev Krishnamoorthy, Ming-Chien Shan
Software Technology Lab

Hewlett-Packard Laboratories, 1U-4A
1501 Page Mill Road
Palo Alto, CA, 94304

e-mail: casati,ski,ljjin,vasu,shan@hpl.hp.com

Abstract
Today, companies are using the Web to connect with

their back-end systems and perform e-commerce
transactions. The next chapter of the Internet story is the
evolution of today’s access/content focused portals into e-
services hubs. While many traditional services become
available on the Internet as e-services, almost all of them
are single point services. In order to offer higher value,
end-to-end services, it should be possible to compose,
customize, and deploy e-services in a very flexible and
efficient way.

To support e-service delivery, we have developed a
platform, called eFlow, that provides the service
developer with a simple, easy to use, yet powerful
mechanism for defining the composite service starting
from basic services. Composite services can be pre-
assembled or created on the fly, and can dynamically
adapt to changes in the business environment, such as the
introduction of new basic services. In addition, eFlow
includes components that allow users to monitor, analyze,
and modify a service while in execution.

1. Introduction

The Web is changing every aspect of our lives, but no

area is undergoing as rapid and significant changes as the
way businesses operate. Today, large and small
companies are using the Web to communicate with their
partners, to connect with their back-end systems, and to
perform electronic commerce transactions. The next
chapter of the Internet story is the evolution of today’s e-
business and e-commerce into e-services. Examples of e-
services are bill payment, hotel reservation, customized
on-line newspapers, or stock trading.

The e-service environment creates the business
opportunity for providing value-added services, which are
delivered by composing existing e-services, possibly
offered by different companies. For instance, an eMove

composite service could support customers that need to
relocate, by composing truck rental, furniture shipments,
address change, and airline reservation services,
according to the customer’s requirements.

In order to enable the delivery of such value-added
services, we have developed a platform, called eFlow,
that supports the specification, deployment, and
management of composite e-services, i.e., of e-services
that are carried out by invoking several other basic or
composite services. eFlow provides the service developer
with a simple, easy to use, yet powerful mechanism for
defining services by composing basic ones. Composite
services can be pre-defined or created on the fly,
according to the customer’s needs, and can dynamically
adapt to changes in the business environment, such as the
introduction of new basic services or the modification or
removal of existing ones. In addition, eFlow supports the
dynamic modification of service definitions while they
are operational, which is a fundamental feature in a
dynamic environment such as that of Internet-based e-
services.

2. The eMove scenario

We next present a scenario, called eMove, to illustrate

the main issues involved in service composition. eMove
services support several type of relocations: local,
interstate, or international. Different basic services are
needed for each type of relocation. For instance, local
relocations could require a truck rental service, while
international relocations may involve air or sea furniture
shipment.

In the eMove scenario we assume that three service
providers A, B, and C, offer several basic services, such
as airline ticket reservation, furniture shipment, truck
rental, and storage space rental service (see Figure 1).
Realizing that relocating customers must typically access
many of the above mentioned services to fulfill their
requirements, a new service provider (service provider D)
decides to support such customers by offering a new

service category, called eMove, that provides complete
relocation services. eMove services are operated by
invoking other services, possibly offered by service
providers A, B, C, or by service provider D itself.

Figure 1 - Basic E-Services offered by Service

Providers

Different eMove services target different relocation

requirements. Customers do not need to be aware of the
specific details of each eMove service: they simply
specify the current location and their destination, and
optionally indicate some constraints such as time or
budget limit. The service provider will take care of
selecting and invoking the proper composite eMove
service. In the following, we briefly describe the usage of
the eMove services and which (basic or composite)
services are needed to support them. In Section 3 we will
show how these services can be modeled and managed
with eFlow.

eMove Level I (Figure 2) supports customers that have

simple relocation requirements. It collects data from the
customer (e.g., name, current address, destination
address), notifies the change of address (or request
termination of service) to all the parties that have relations
with the customer (such as the local telephone company,
the Department of Motor Vehicles, or the post office), and
then bills the customer. eMove level I is suited for local
relocations, and supports customers that do not require a
packing or shipping service. This moving service is
composed of two basic services (Data collection I and
Billing I) and of one composite service (Change of
address/termination notification).

eMove Level II (Figure 3) may be used for domestic

relocations. In addition to the features provided by eMove
level I, it supports customers in renting trucks and in

packing and shipping furniture. eMove level II also
provides an airline reservation service, in order to book
the flight for the customer’s travel to the destination. As
the figure shows, this relocation service uses the eMove
level I service in order to manage the address
change/termination notifications to relevant parties and to
perform the related data collection and billing activities.
Rentals, shipments, and airline reservations are instead
performed through the invocation of suitable basic
services.

Notice that eMove level II invokes a Data Collection II
service, which is different from the Data Collection I

Figure 2 - eMove Level I service

Figure 3 - eMove level II service

� � � � � � � � � � � 	 �
 � �
 �������� ��� �
��	�
 � � � � ��
 � 	��

����
 ��� 	�� � ���
 � 	����

������������� ��� ���	�
 � � � � ��
 � 	��

��	���� ����
 � � �
 � ���������� ��� �
��	�
 � � � � ��
 � 	��

� ��
 ��� ���
���� � 	�����
 �������� ��� ����	�
 � � � � ��
 � 	��

 !����� ��� �"��#�����$�� %
 ��� &�� ����
 � 	����	�
 � � � � ��
 � 	��
'(����)�� ��$�������� ��� ���	�
 � � � � ��
 � 	��

'!� � � � ��$*�

���+	�,���� ��,������

-/. 0 1 . 2�340 3�5�360 7�8�9�. :+2

-/. 0 1 . 2�3<;�=6. >6?@3+2�9

;69 :+0 8+A�3@5!>�8+B�3C0 3�2�9 8"1

D
0 E�B!F@0 3+2�9 8+1

G 8 . 1 H 8 I 5 = . > ? 3 2 93 J : 7 3 1 3 7 3 1 K K

3 J : 7 3 1 3 7 3 1 K

L�8�9 8<B(:+1 1 3�B�9�. :62<K K

M
. 1 1 . 2�ACK K

 N�O�P�Q�R S�O

PROVIDER
A

 T U V W X Y U
PROVIDER

C

 Z�[�\�]�^ _�[
PROVIDER

B

`�a b c!d�e!f�g�d�e
h�i d!j g h j f�g(e!e�a c�f�fd i j b k b h g(j b i d

l"m
nog(e�e�a c�f�fd i j b k b h g�j b i d

p i!q f�c q j b r b j b c(fg�e(e�a c�f�f*d i j b k b h g(j b i d
s d�j c(a d�c�j6g h�h�i!q d�j fg(e!e�a c�f�f*d i j b k b h g(j b i d

t!g!d�u�b d�vwg�e(e�a c�f�fd i j b k b h g�j b i d

x6b a r b d�cf y b z { c d j

|�g�}(g�rf�y!b z({~c�d�j
��g�b r ��g��f y b z { c d j

� j i a g(v!cf z g h c a c d j g r

� q f�j i {�fz�g!z�c!a � i a u

��a q(h ua c d j g r

x6b a r b d�ca c�f�c!a }!g�j b i d

t b r r b d v

� a c e b j h g a e}(c(a b k b h g(j b i d

h a c�e�b jh y�c h u

t�g!d!u*g h�h�i�q d�jz�g��!{�c(d�j

� j i a g(v(cf z g h c a c d j g r

��a q(h u�a c�d�j g!r

� a c(e�b j h g!a ez�g��!{�c!d�j

invoked by eMove level I, since it needs to obtain the
information required to provide the address
change/termination notification service, plus the
information related to rentals, shipments, and airline
reservations. For instance, Data Collection II requires
customers to provide information about the number and
size of items to be moved and about the customers’
preferred airline for their travel to the new location. Part
of this information is needed by the eMove level I service,
while other is needed by the basic services invoked by
eMove level II.

Similarly eMove level II invokes a Billing II service,
whose function is to charge the customer for the rentals,
shipments, airline reservations, and address change
services. Each component service (including eMove level
I) may be provided by a different company: the eMove
level II provider is billed by these companies and directly
pays them for their services. Then, the Billing II activity
summarizes the costs and presents a single bill to the
customer.

The eMove level II provides a comprehensive service
package to support interstate relocations. However, a
customer may only need a subset of these services. For
instance, he/she may have no need for storage space or
may want to separately book the flight ticket from his/her
preferred travel agent. eMove level II is designed to be
very flexible and allows different customers to select the
desired subset of features that this composite service can
offer. In Section 3 we will show how eFlow can support
the definition and enactment of composite services with
complex requirements such as those of eMove level II .

eMove Level III (Figure 4) supports customers that

are relocating to a foreign country. In addition to the
services provided by eMove Level II, eMove level III
allows for shipment of furniture by sea and handles the
paperwork needed to clear the shipped items through
customs. Basic services Data collection III and Billing III
provides for the additional data collection and billing
requirements not managed by eMove level II.

The three mentioned levels of eMove services are pre-
composed and will post different charges for their usage.
In addition, service provider D would also like to offer a
service, called custoMove, that supports the particular
needs of each relocating customer. custoMove will allow
customers to select all the services they need, and is
invoked when none of the pre-packaged services can
satisfy the customer’s particular moving requirements.

3. Composing and managing e-services with
eFlow

In eFlow a composite service is described as a process

that composes other basic or composite services. Visually,
a composite service is modeled by a graph that defines the

overall flow of service execution and data exchange
among them. The graph may include two types of nodes:
service nodes and decision nodes. Service nodes represent
the invocation of a basic or composite service, while
decision nodes specify the alternatives and rules
controlling the execution flow. Figures 5 and 6 show the
process definitions that model the eMove level I and
eMove level II services introduced in Section 2.

In the figures, basic services are represented by
rounded boxes in a light background, while composite
services are represented by boxes with a darker
background. Filled-in circles represent the starting and
ending point of the process, while horizontal bars are one
of eFlow decision node types, and are used to specify
parallel invocation of services and synchronization after
parallel service executions.

Figure 4 - eMove level III service

Figure 5 - eMove Level I composite service
modeled as a process flow

�*���!���
���C�6���6��� �o�����

� �+�
���6�+��� �"�����+�� � � � � � � � � � � � �

� � � � � � � � � � � �

� �6�����!��� � �"�!��� ���������

 � � � � � ¡ � � �

Data collection I

Change of address/
termination notification

Billing I

eMove level I

For instance, Figure 6 shows how eMove level II can
be modeled with eFlow. First, the process invokes the
Data collection II service to ask customers to determine
the services they need among those offered by eMove
level II and collect the data required by those chosen
services. The next step in the process involves the parallel
invocation of the Airline reservation, Storage space
rental, and eMove level I services. Notice that the services
will be invoked only if the customer requests them;
otherwise they will be skipped. The skip condition
attribute of service node is used to indicate the customer’s
choice. In general, if the skip condition holds, a service
node is skipped and the flow continues with the activation
of the next node. Skippable services are graphically
represented by rounded boxes with a dotted border.

After the storage space has been rented, eMove level II
invokes the requested shipment and truck rental services.
Finally, when all invoked services have been completed,
Billing II is started to bill the customer and collect the
payment.

4. Dynamic service process composition and
modification

The e-services environment is highly dynamic: the

number and types of services provided through the
Internet is growing on a daily basis, as is the number of
companies that offer e-services. Therefore, in order to

stay competitive, providers of composite services must be
able to quickly and effectively modify their processes, in
order to adapt to the ever-changing environment.

In addition, the increased, global competition is
pushing companies to provide personalized services, to
better satisfy the needs of each individual customer. In
order to support these requirements, eFlow includes
several features that enable the dynamic creations of
service process definitions as well as the dynamic
modifications of service process instances while they are
in execution. In the following subsections we illustrate
these features.

4.1 Dynamic service node creation

To support the dynamic creation of process definitions
for composite services, the eFlow model includes the
generic service node. Generic service nodes support
dynamic process definitions for composite services such
as custoMove, mentioned in Section 2. Unlike ordinary
service nodes, generic service nodes are not statically
bound or limited to a specific set of services. Instead, they
include a configuration parameter that can be set with a
list of actual services either at process instantiation time
(through the process instance input parameters) or at
runtime, by a previously executed service node. The
specified services will be executed in parallel or
sequentially depending on an executionMode attribute of
the generic service node.

Figure 7 presents the sample custoMove process and
shows how the process is instantiated according to the
customer’s input. In the scenario, customers specify the
services they need by accessing the custoMove web page
and by selecting the checkboxes corresponding to the
required services. As the customer submits the form, a
new instance of the custoMove process is started, and the
list of selected services is passed as part of the process
instance input parameter, in order to configure the generic
service node Furniture Moving Services. The new
instance will be executed according to the custoMove
process definition where the generic service node has
been replaced by a set of service nodes (whose definition
is loaded from the service node repository, defined next)
to be executed in parallel, according to the customer’s
input and to the generic service node specification.

If the flexibility requirements are such that the services
to be invoked within a generic service node cannot be
determined at service process instantiation time, the
resolution of a generic service node can be further
delayed until its execution time. In this case, the
configuration parameters can be set by previously
executed service nodes rather than through the process
instance input parameter. Notice that generic nodes are
resolved each time they are activated: if the generic
service node is within a loop, and a service node in the
loop changes the configuration parameters, then the

Figure 6 - eMove level II process

Data collection II

Billing II

Airline
shipment

Storage space
rental

Truck rental Railway
shipment

Airline
reservation

eMove
level I

¢
£"¤ ¥§¦
¨~©�ª�¤ «
¤ ¨~©�¢
SERVICE Airline reservation: SKIP IF neededServices.AirlineReservation=FALSE ¬�­�®�¯�° ±�­�¬(² ³�´ µ�¶�·/¸�¹�µ�º ·�´ ·�»�² µ�¼ ½�¬�¾�° ¿�° À�»�·�·�Á�·�Á�¬!·�´ Â�Ã º ·�¸�Ä ¬(² ³�´ µ�¶�·�Å"À Æ+Ç ¬+­
SERVICE eMove level I: SKIP IF neededServices.eMoveI=FALSE
SERVICE Railway shipment: SKIP IF neededServices.RailShip=FALSE
SERVICE Airline shipment: SKIP IF neededServices.AirShip= FALSE
SERVICE Truck Rental: SKIP IF neededServices.TruckRental= FALSE

eMove level II

generic node can be resolved into different service nodes
for each loop of the execution.

The generic node approach provides considerable
flexibility and supports the needed changes of services in
a dynamic way to cope with today’s changing
environments. In particular, it minimizes the effort of
changing the process when services are added, modified,
or removed, since the generic node dynamically adapts to
these changes and retrieves the latest service node
definitions from the repository.

4.2 Dynamic service process instance
modification

In dynamic operational environments, service process
definitions may need to be modified for some of the
running instances. For example, we may need to manage
errors or exceptional situations, deal with new laws or
business policies, or simply to improve the process
definition. eFlow supports two types of dynamic changes:

Ad-hoc changes: these are modifications that can be

applied to a given composite service process while it is in
execution. For instance, suppose that the travel
arrangements booked by an agent is unavailable due to a
strike. Then, the process need to be modified to contact
different agents for alternatives. The eFlow system
supports several types of ad-hoc changes. These include
modifications to the process flow graph, modifications to
the definitions of service nodes, modification of the
routing conditions, and modifications of the value of
service node data. Ad-hoc changes only affect the
execution of a specific process instance. Other running
process instances or the stored process definition will not
be affected. In general, this mechanism is used to handle
exceptional situations that are not expected to occur again
in other executions of this service process.

Dynamic process evolution: eFlow allows service

designers to modify service process definitions and to
apply the changes to a subset of (or to all) the running
instances of that service. In addition, the service designer
may specify that newly started services should follow the
new definition. For instance, consider the situation in
which a strike hit a big airline company and is assumed to
last for a long period: clearly, it is not practically feasible
to separately modify each process instance; instead, with
eFlow, the service designer can define a new process and
specify that all running instances with a given property (in
this case, all instances in which the customer has booked
a flight with the air carrier hit by the strike) should be
migrated to the new version.
The definition of service instances that need to be
migrated is performed through a very simple migration
language, consisting of a set of rules of the form IF
<condition> THEN MIGRATE TO <version>.
The condition is a predicate over service process data and

service process execution state that identifies a subset of
the running instances, while <version> denotes the
process definition version to which instances should be
migrated. The set of rules must define a partitioning over
the set of active instances, so that each instance is
migrated to one version at most. An example of
migration rule is:
IF (selectedAirline="FlyHigh" and
travelStatus="booked") THEN MIGRATE TO
"A.00.02". When executing migration rules, eFlow
enforces process consistency constraints, so that the
migration does not generate any runtime errors. The
interested reader is referred to the eFlow technical
documentation for details [3].

5. Process templates, service nodes, and
service data repositories

In order to facilitate service process development, eFlow
provides a repository of processes, nodes, and data type
definitions. The process library includes complete process
definitions as well as process templates, i.e., of process
skeletons in which some parts of the process are specified
while other are abstract, i.e., are left undefined. Process
templates are useful in order to capture characteristics that
may be common to several processes, so that they may be
used as a starting point for their development. When
specifying a new composite service, a service designer
can browse the process library to search for a process or a
template of interest and modify or specialize it as needed
in order to obtain the desired composite service definition.
For instance, many eMove processes follow a similar
pattern: they begin by collecting data from the customer,
they invoke the needed services, and finally they bill the
customer. Hence, it would be useful to factorize the
common aspects in a process template such as the one
shown in Figure 8. As the figure shows, the template may
fully define some nodes (such as Data Collection and
Billing), but leave other part of the process unspecified. In
particular, the dotted box represents a part of the process
graph that must be specified in order to obtain a concrete
service definition. For simplicity, the figure only shows
the flow graph of the template, but in general a template
can specify any part of a process, such as process data,
service node data, or deadlines. When reusing a template,
in addition to the specification of abstract parts, the
service designer can also modify or extend the definition
of concrete service nodes.

For instance, in order to specify the composite services
eMove level I, II, and III, the service designer can reuse
the template of Figure 8, specify the abstract part of the
graph, and possibly add input and output data to the Data
Collection node so that it can gather the appropriate
information from the customer.

Figure 7 - The custoMove generic process is fully defined at process instantiation time, based on the customer’s
choices

Figure 8 - Sample process template definition

Data collection

Billing

È/É6Ê�Ë�Ì Í+Î�Ë�Ï�Í
Ì Ë�Ð
Ë�Ñ�É+ÒCÊ�Ï+Ò�Î�Ó Ô Ó Ò+Õ
Ó ÖCÑ"Ì Õ6Ò"Ì/Ë�ÑCÑ"É�Ë Í"Ó ÖCÍCÎ(Ñ
Ö+Î�Ì Ò�Ë�Ò
Ê�Ò"Ì ×
Ó Î(ÒCÕ"Ò�Ô Ó Ö"Ó Ë�Ó Ñ
Ö

Ø Ñ
Ö+Î�Ì Ò�Ë Ò�Ù�É"Ú�Ë~Î(Ñ"Ö�Ô Ó Û�Ú"Ì Í"É"Ü Ò+Ý
Ê�Ï�Ò�Î�Ó Ô Ó Î(Í+Ë�Ó Ñ
Ö6Ê

 Þ�ßCà<á4â�ãäßCà@åçæéèëê<â�á<ìîíäå�à�êCâ+ï@å/íñð�ò�ówô~ò�õ�ö<÷�øäö�ù�õúò�õ�û(ü�ý þ�õçÿ�÷���õçû!õ��~÷wò�ý ö�÷wû����

��� 	�
 � ��

��� � ����
����Storage space

rental
(local)

Truck rental

Data collection

Billing

Furniture Moving
Services

(generic node)

���

+

Generic process definition
(includes a generic node)

Data collection

Billing

Railway
shipment

�������! �"#"%$� '&�()�(*+(�,)-*+.�/0*
will be followed by the new instance

the process definition is
determined at process

instantiation time

1�2 354 2 6�7
8�9 2 :�;<7�6>=

Storage space
rental

(at destination)

Railway
shipment

Storage space
rental

(at destination)

Process templates can be divided into groups, and

groups can be organized into a hierarchy in order to
structure the repository and to simplify its browsing. In
addition, they have associated attributes (such as name,
description, keywords, specialization/instantiation
guidelines, etc) that help the service designer in querying
the template repository and in using the selected template.

Another eFlow feature that supports reuse is the
service node repository. Consider again the eMove
scenario, where different eMove composite services may
need to invoke the same service during their execution. In
this case, many processes may need to include the same
(or similar) service nodes. In order to simplify the
definition of such composite services, eFlow provides a
repository where service node definitions can be stored
and accessed when defining new processes. As for
process templates, service node definitions can be
modified or extended when reused in the context of a
specific process.

Finally, eFlow provides a data type repository, to
allow the reuse of the same data type across different
service nodes and processes. This feature is useful when
different service nodes need the same data. For instance,
most eMove services require general information related
to a customer (e.g., name, home address) as well as billing
information (e.g., credit card number, expiration date). In
order to ease and speed up the definition of service node
and process data, eFlow includes a data type repository
(also structured into groups and groups hierarchies as the
other eFlow repositories).

Besides providing methods and tools for modeling and
managing the flow of service invocations, eFlow also
supports the designer in handling the interaction with
these services. In fact, eFlow provides several adapters
enabling access to services that talk different e-commerce
protocols, such as OTP, OBI, RosettaNet, or e-speak.

Due to space limitations we are unable to describe the
eFlow architecture and to provide implementation details.
The interested reader is referred to [3].

6. Related Work

Commercial workflow management systems, such as

MQ Workflow [9] or Staffware2000 [11], do not typically
provide support for adaptive or dynamic processes, with
the only exception of InConcert [5], that does provide
some flexibility, although it is limited to allowing ad-hoc
changes.

Recently, some approaches to handle dynamic changes
have been presented in the literature by the workflow
research community. One of the first contributions came
from [4], where a correctness criterion for workflow
evolution is proposed. The criterion, based on the
definition of the set of all valid node sequences, defines

when a case can be migrated to a new schema. The paper
restricts to a limited set of modifications and does not
discuss the handling of instances that cannot meet the
correctness criteria. It also does not deal with adaptive
process management.

Other contributions to the area of workflow evolution
come from [8,10]. In [10], a complete and minimal set of
workflow modification operations is presented.
Correctness properties are defined in order to determine
whether a specific change can be applied to a given
instance. If these constraints are violated, the change is
either rejected or the correctness must be explicitly
restored with exception handling techniques. Liu et al [8]
focus instead on a language for workflow evolution, by
which the designer can specify which cases should be
migrated to which versions, depending on conditions over
workflow data. The language is (conceptually) similar to
our migration language.

Ad-hoc changes and dynamic evolution are also
discussed in [7]. Workflow changes are specified by
transformation rules composed of a source graph
fragment, a destination graph fragment, and of a
condition. The system checks for parts of the process that
are isomorphic with the input graph and then replaces the
isomorphic graph with the destination graph for all
instances for which the condition is verified. The paper
also proposes a migration language for managing
instance-specific migrations.

A few contributions also come from the software
process modeling field. SLANG [1] is a reflective
language for software process modeling. A SLANG
model includes a set of type definitions and a set of
activity definitions. Instances of activities are called
active copies, and include all the necessary information to
execute an activity, namely type and activity definition
and the active copy state. EPOS [2] is a software
engineering environment intended to support the
evolution of large software systems. A process is
described by a network of tasks, and composite tasks to
be refined into subtask networks can be defined. An
Execution Manager checks a task preconditions, executes
its associated code, and verifies its postconditions. In [6]
the EPOS support to process evolution is presented;
EPOS and SPADE offer reflective features since both task
definitions and task instances can be accessed like other
objects in the system. Changes to a process are therefore
performed through modifications to the definition of a
composite task; running instances of a task are
automatically converted in order to follow the new
definition, although they might have to be restarted
(losing all the work done) if the modifications cause an
instance to be in an inconsistent state.

In designing eFlow, we took advantage of these
research contributions and extended them in order to cope

with a more complex process model such as that of
eFlow. In addition, we implemented them in a
commercial process management system targeted to
service composition. Our major contribution lies however
in the definition of the adaptive features of eFlow. In fact,
eFlow allows the definition of processes that transparently
adapt to changes in the environment with minimal or no
user intervention, which is a fundamental requirement for
operational environment. The reader interested in the
details of the eFlow model, the detailed language features
that support adaptive processes, and the full specification
of the migration language and semantics is referred to [3].

7. Concluding remarks

In this paper we have shown how eFlow supports the

dynamic composition, enactment, and management of
composite e-services. As part of our future work, we plan
to investigate issues related to dynamic change of process
definitions in which transactional/compensation regions
are defined. The problem in this context is that
transactions and compensation require actions (such as
locking of variables and maintenance of additional log
data) to be performed at the beginning of the region.
Hence, some restrictions need to be imposed on
modifications applied while the transactional region is in
execution.

In summary, we believe that the eFlow platform has
the required characteristics and functionality to satisfy the
need of Internet-based service providers. eFlow is
integrated with the Hewlett-Packard e-service strategy,
and will be the backbone of many HP e-services
platforms. However, eFlow is an open technology: it is
based on Java and it is compliant with the workflow and
Internet standards, such as XML and the Workflow
Management Coalition Interface standards. Hence, it can
be integrated and used in virtually any IT environment.

References

[1] S. Bandinelli, A. Fuggetta and C. Ghezzi, Software

process model evolution in the SPADE environment,
IEEE Transactions on Software Engineering, 19(2), 1993.

 [2] R. Conradi, E. Osjord, P. Westby and C. Liu, Initial
Software Process Management in EPOS, Software
Engineering Journal (special issue on Software
Development Environments and Factories), Sep 1991.

[3] Hewlett-Packard. eFlow Model and Architecture, version
1.0. 1999

[4] S. Ellis, K. Keddara and G. Rozenberg, Dynamic Change
within Workflow Systems, Proceedings of the ACM
Conference on Organizational Computing Systems
(COOCS ’95), Milpitas, California, 1995.

[5] Ronni T. Marshak. InConcert Workflow. Workgroup
Computing report, Vol 20, No. 3, Patricia Seybold Group,
1997.

[6] M. Jaccheri and Reidar Conradi, Techniques for Process
Model Evolution in EPOS, IEEE Transactions on
Software Engineering, 19(12), 1993

[7] G. Joeris and O. Herzog. Managing Evolving Workflow
Specifications with Schema Versioning and Migration
Rules. TZI Technical report 15, University of Bremen,
1999.

[8] C. Liu, M. Orlowska and H. Li. Automating Handover in
Dynamic Workflow Environments. Proceedings of CaiSE
’98, Pisa, Italy, June 1998.

[9] MQ Series Workflow - Concepts and Architectures,
"IBM, 1998

[10] M. Reichert, P. Dadam. Supporting Dynamic Changes of
Workflows Without Loosing Control. Technical report
97-07, University of Ulm, 1997.

 [11] Staffware Corporation, Staffware2000 White Paper,
Available at
http://www.staffware.com/home/products/Staffware2000
WP.zip, 1999

Fabio Casati is a researcher at HP Labs, Palo Alto. He

received the Ph.D. degree from Politecnico di Milano in
1999. His research interests include information systems
modeling and design, business process management
systems, and e-services hubs. He has published several
papers in international journals and conferences, and
contributed to several books.

Vasudev Krishnamoorthy is senior architect at
Rightworks. He received his MS degree from the
University of Texas, El Paso, in 1991. After working at
Consilium, in 1996 he joined HP to work on the
Changengine workflow system. He moved to HP labs in
1999, before joining Rightworks in the same year.

Ski Ilnicki is a project scientist at HP Labs, Palo Alto.
His main research interests are focused on end-to-end
security solutions. In the past, he has been engaged in
research on network, specifically on secure network
printing and secure multicast fabric.

Lijie Jin is a researcher in the Hewlett Packard
Laboratories, Palo Alto, California. He joined HP in 1999.
He received his PhD degree in computer science from
Harbin Institute of Technology, China. His research
interests include distributed computing environment,
scalable computing architecture and business process
management systems.

Ming-Chien Shan is a project manager at HP Labs,
Palo Alto. He joined HP in 1985 and managed various
projects in object-oriented DBMS, heterogeneous DBMS,
workflow, telecom service provision, and E-business
operational hub. He received his PhD degree in computer
science from UC Berkeley. He has published more than
50 research papers and been granted 11 software patents.
Ming-Chien has served as chairperson or program
committee member in many conferences.

