[cickano

Formal Automatic Verification of
Cache Coherence in Multiprocessors
with Relaxed Memory Models

Fong Pong, Michel Dubois*

Computer Systems and Technology Laboratory
HP Laboratories Palo Alto

HPL-2000-33

February, 2000

E-mail: fpong@hpl.hp.com
dubois@paris.usc.edu

Shared-Memory State-based, formal methods have been successfully applied to the
Multiprocessor, automatic verification of cache coherence in sequentially consistent
relaxed memory systems. However, coherence in shared-memory multiprocessors under a
consistency relaxed memory model is much more complex to verify automatically. With

relaxed memory models, incoming invalidations and outgoing updates can
be delayed in each cache while processors are allowed to race ahead. This
buffering of memory accesses considerably increases the amount of state in

models, delayed
consistency,

verlflca_tlon, each cache and the complexity of protocol interactions. Moreover, because
symbolic state caches can hold inconsistent copies of the same data for long periods of
model time, coherence cannot be verified by simply checking that cached copies

are identical at all times.

This paper makes two major contributions. First, we demonstrate how tc
model and verify cache coherence under a relaxed memory model in the
context of state-based verification methods. Frameworks for modeling the
hardware and for generating correct memory access sequences driving the
hardware model are developed. We also show correctness properties which
must be verified on the hardware model. Second, we demonstrate a
successful application of a state-based verification tool called SSM for the
verification of delayed protocol, an aggressive protocol for relaxed memory
models. SSM is based on an abstraction technique preserving the properties
to verify. We show that with classical, explicit approaches the verification of
cache coherence is realistically unfeasible because of the state space
explosion problem whereas SSM is able to verify protocols both at both
behavioral and message-passing levels.

Internal Accession Date Only

* Department of Electrical Engineering-Systems, University of Southern California, Los Angeles, CA
90089-2562

6] Copyright Hewlett-Packard Company 2000

1 Introduction

In this paper, we develop the framework to verify automatically and formally cache coher-
ence protocols under relaxed memory models using formal, state-based approaches. We also dem-
onstrate the feasibility of verifying such cache protocols by applying a state based verification tool
called SSM (for “Symbolic State Model”) [25] to an aggressive cache protocol under relaxed
memory models, called the delayed protocol [10]. The delayed protocol is an aggressive imple-
mentation of release consistency [14], in which the sending of invalidations and the effect of
received invalidations aréeliberatelydelayed until the nexteleaseand the nexacquirerespec-
tively. (Releases and acquires are synchronization primitives to order accesses of concurrent pro-
cesses sharing writable data.) As compared to protocols under a strong memory model [9, 18], the
performance improvements of the delayed protocol stem from the more effective use of store buff-
ers, the more aggressive pipelineing of memory accesses, and the reduéise sharingeffects
[11].

State-based, formal methods have been successfully applied to the automatic verification
of cache coherence under a strong memory model [16, 17, 26]. Under a strong memory model,
memory accesses in the verification model are limited to loads and stores. In every step of a state-
based verification model, any processor can issue a load or a store unless it is blocked due to a
prior pending access and the issuance of a memory access is not restricted by the states of other
processors. Coherent accesses to a memory block, even to different words in the block, are serial-
ized and the verification problem is simplified by assimilating a memory block to a single word

since the coherence unit is a memory block [21].

The verification of cache coherence under a relaxed memory model is much more com-
plex. First of all, the sequence of memory accesses driving the system cannot just be any arbitrary
sequence of loads and stores. Consider the execution of figure 1 in a system with a relaxed mem-

ory model [1, 2, 9, 14]. The write bygoand the read by jpare ordered by paired Test&Set and
Unset synchronization accesses. Since the reag adimot complete before the write of gue to
the explicit synchronization,gdoes not need to block at the write waiting for the invalidation of
p;’'s copy. The only requirement for a correct execution is that the value writteg bggomes vis-

ible to p; before g reads it. To enforce this requirement the hardware relies on lock accesses. The

invalidation can propagate fronypo p; when y releases the lock (Unset) and must reach the
cache of p when p executes the acquire (Test&Set). To verify cache protocols in such systems,

the model must take into account synchronizations on top of regular data accesses. In the execu-

tion sequence of figure 1, s allowed to issue its read only afteg and p have performed their

Unset and Test&Set respectively. Clearly, the state expansion process of a state enumeration
method must be restricted to generate only such legal sequences of reads, writes and synchroniza-

tions.

Second the hardware to model is much more complex. It includes buffers for stores and
invalidations, write caches and lockup-free caches. These additional mechanisms must be modeled
by simple constructs in the hardware model and considerably increase the amount of state associ-
ated with each cache. Thus they greatly contribute to the state explosion problem plaguing state-

based verification approaches.

A third problem is how to model and formulate the condition of data coherence. In many
protocols [3], if a cache block is in theshared state, an implication is that other processors may
have cached the block and all copies are identical to the main memory copy. This semantic relation
between cache states and data copies is not guaranteed in a cache protocol under a relaxed memory
model. We cannot rely on checking if all individual cache states are compatible [20]. Because the
enforcement of data consistency is delayed until synchronization points, caches may have data
copies with incoherent values for long periods of time. Even if a block is still accessible in a cache,
some of its words may be stale and, in general, the effective state of a word within a block is differ-

ent from the state of the block. The verification model must track the states of the block and of its

words.
Po P1
write (X)
Unset(lock)
Test&Set(lock)
read (x)

Figure 1. Explicit Synchronization in a Relaxed Memory Model.

Once these problems are solved we must adopt a verification strategy such that protocols
for system of realistic sizes can be verified. We will show that classical, explicit state-based meth-
ods fail in this regard for systems with relaxed memory models. By contrast we will also show that
the sate-based verification method basedymbolic state mode(SSM) can successfully verify
coherence at both behavioral and message-passing levels. SSM [21] was conceived specifically for
the verification of cache protocols. It verifies cache protocols by exploring the state space of a pro-
tocol as in conventional state enumeration methods [15], but it exploits the symmetry and homoge-

neity of cache-based systems to reduce the size of the state space.

In traditional state-based methods, the behavior of the caches is specified by homogeneous,
local finite state automata (representing caches) interacting through the coherence protocol. Each
and every cache is specified individually in the model. Mebe theglobal state machine in this
explicit model.M is the composition of all local state automata (caches) and its state is called the
global state(or system stade To simplify the global state and reduce the complexity of the search,
the SSM provides a set of abstraction constructors to represent global steteontisely, with-
out tracking the exact number of caches in particular states. The state space of the reduced finite

state machine in SSM denot&l is much smaller than the state spacévbfThe verification of
complex protocols oM, is more feasible than oMl because the verification time and the amount

of memory to store global states are drastically cut. In contrast to other approaches [24], SSM
enables the verification of cache protocols for any system size while avoiding the state space

explosion problem [15].

This paper makes two major contributions. First, we demonstrate how to model and verify
a cache protocol under a relaxed memory model in the context of state-based verification methods.
Three components are needed in a verification procedure for cache protocols: a model of the hard-
ware, a model for the memory access sequences driving the model and a set of correctness condi-
tions to verify. We show how to model complex latency tolerance mechanisms such as invalidation
and store buffers, write caches and lock-up free caches. This general modeling approach can be
extended to other protocols under relaxed memory models such as protocols with delayed updates
instead of invalidations. We also show how to generate correct sequences of memory accesses
compatible with relaxed memory models. Such sequences must include not only loads and stores

but also synchronization accesses. We show correctness properties which must be verified on the

hardware model in order to verify coherence.

Second, we demonstrate a successful application of SSM for the verification of the delayed
protocol, an aggressive protocol for relaxed memory models. The verification is done at two levels:
the behavioral and message passing levels. In both cases we show that SSM, which is based on
abstraction technique preserving the properties to verify overcomes the state space explosion prob-
lem which is typical of current state-based approaches for protocols under relaxed memory mod-

els.

The paper is structured as follows. In the next section, we present an overview of the proto-
col used in this paper to demonstrate the methodology and is calletelingedprotocol. In sec-
tion 3, we establish a verification model for the protocol. An important element exacution
modelfor data race freg DRF) programs [1, 2]. This execution model ensures that the protocol
state machine is driven by legal sequences of memory accesses (figure 1). In section 4, we develop
the framework of the SSM method applicable to the protocol and we describe our verification tool

in section 5. Sections 6 and 7 include the verification results and section 8 is the conclusion.

@ @ ® An ISB entry (cache block)
word; |di| | tag

C1 Co o Ch wordy |dy| | state
7 * 7 * 7 * word; |ds
|SB$ E IRB |SB$ H irB |SB$ H re
A A A
Interconnection word, |dy

'

Memory & Directory

Figure 2. Illustration of System Architecture for Delayed Consistency.

2 The Delayed Protocol

The delayed protocol [10] is the target protocol to demonstrate the verification methodol-
ogy proposed in this paper. The verification model includes features found in a wide spectrum of
designs and is general enough to apply to other protocols under relaxed memory consistency mod-

els.

2.1 System Configuration

Figure 2 shows a simplified architecture model with a shared memory and private caches
[6]. Every memory block has a directory entry which maintains the global state of the block and a
full-map presencebit vector. The presence bit vector points to the processors with a cached copy.
Every processor has a cache lavalidation Send BuffgfiSB) and aninvalidation Receive Buffer
(IRB). ThelSB keeps blocks that have been modified locally but are not owned locally and the

modified words in each block are marked by dirty bits; it could be implemented as a write cache or

as part of a lockup-free cache [12]. THRB is a buffer for received invalidatiohsCached copies

with pending invalidations in th&RB are considere®taleand are still accessible until the next

lock? executed by the local processor and the updated blocks ilstheare propagated to mem-
ory at the next unlock. In such a system, accesses to synchronization variables are treated differ-
ently that regular shared variables and the delayed protocol only applies to regular, non-

synchronization data accesses.

2.2 Cache states and Algorithm

Every cache block can be in any one of four statesalid , Keeper, Stale , and
Owner [10], with the following meanings: Aeeper copy is loaded into the cache on a read
miss, a block copy iStale when a pending invalidation is in tH&B, and anOwner copy
implies that the local copy has been modified. Because invalidations are not performed on-the-fly,
an Owner copy does not necessarily mean exclusivecopy in the system but th@®wner is
responsible for providing the copy in response to other processors’ misses. Local modifications are
buffered in thdSB even if the block is invalid in the cache, which means that a miss in the cache
must check thdSB before issuing a request to memory. This leads to complex definitions for

cache misses and hits in a processor node.

Definition 1 (Cache Misses and HitslCache misses and hits are defined on the local cache state
and thelSB state. For every access to address blockB,

1. Note that the IRB is not necessarily a hardware buffer, although we model it as such here. For example, it can be
implemented with an additionatalebit in each block of the cache [10].

2. To simplify the discussion, we assume that lock and unlock are two primitive synchronization instructions recog-
nized by the hardware. They can be used to build up more sophisticated synchronization libraries.

1. A read misses whdgis invalid in the cache and is not valid in the localSB,
2. A read hits whemB s valid in the cache ad is valid in the localSB,

3. A write misses wheBis invalid in the cache an&is not in the localSB, and
4. A write hits wherBis valid in the cache aBis in the locallSB.

Cached blociBis valid if Bis notin thelnvalid state. A data word at addredsn block
Bis valid in thelSB if Bresidesin thelSB (anISB entry holds the tag of blocB) and the dirty
bit for d is set.

A brief description of the protocol is outlined below for completeness. Detailed explana-
tions of coherence messages and transactions can be found in [10] and in [26]. The following

description is from the perspective of local ca€heC; is a generic cache other th@p

1. Read hit. No coherence action is taken.

2. Read miss If Cj has a data copy in th@wner state, it must update memory with its data copy.
The memory then sends a copy@p If no Owner exists, memory directly supplies its copy to
Ci. In both case<;; becomes &eeper . If the block resides i€;'s local ISB , the valid words

kept in thelSB entry are merged with the returned data block. T®® block remains in the
buffer.

3. Write hit . If C; is theOwner, the write is performed to the cache only. (A cache line in the
Owner state cannot be present in th®B.) Otherwise,C; must either have a valid copy

(Keeper or Stale), or aninvalid copy with a validiISB entry. An entry must be allo-
cated in thelSB if an entry does not already exist. The value is always stored intéSBe
block copy as well as in the cache copy if it is valid. The dirty bit of the modified word in the
ISB block is set.

4. Write miss. C; requests a copy with ownership from memory, which then sends invalidations to

all caches with their presence bit set (these caches musebpers or Owners). When a

cacheC; receives an invalidation, it sends its copy to memory if it iQwmner and an acknowl-
edgement otherwise. The invalidation message receiveq sybuffered in the localRB and
C; keeps an accessibletale copy. The actual invalidation of; is delayed until the next
lock_acquire. When all remote copies have been staledjets a copy from memory and

becomes the ne®@wner.

5. Lock (RemovelRB). Before a lock (lock_acquire), the invalidations buffereiis local IRB
must propagate to the local cache. In other wordsStalle copies becoménvalid . Thisis
also true when thERB is flushed for other reasons.

6. Unlock (RemovelSB). Before an unlock (lock_release), all entriegdys local ISB must be
flushed. For each block i€;'s ISB, if the cache line is in th&eeper state, the memory

merges its copy with the modified words in #8B copy, stales all other copies in tkeeper

state, and notifie€; that it is the newOwner. Otherwise, ifCj's cached copy isStale or
Invalid , the memory is updated with tH8B content and the cache state does not change.
This is also true when tH&8B must be flushed for other reasons.

7. Replacement A cache block must be replaced (victimized) when the cache needs room for
data returned on a miss. If the victim is tkiavner, memory is updated. If the victim is a
Keeper , two cases are possible depending on the state afSBe If the block is not in the
ISB, a request is sent to memory to clear the presence bit. Otherwis&Bheopy is written
back to memory which then merges the modified words with its copy and sends invalidations to
all other Keepers . If the victim has an entry in théRB (i.e., it is Stale), it becomes
Invalid and the pending invalidation is removed from {RB ; moreover, if anSB entry

exists, memory is updated and all otkeepers are notified.

3 \Verification of the Explicit Model

In this section, we describe the global state macivhesed in the verification of the
explicit model. We also specify the coherence conditions to verify on the model. In the next sec-

tion we will show how to abstract this explicit model to form macMpeised in the SSM.

The verification model foM is a finite state transition system, which in general can be
defined as follows.
Definition 2 (Finite State Transition System)With respect to a cache block, the behavior of a
memory system with m local automata is modeled by a finite state transition sysigm\Vs, Z,
0), where

S is the initial statel A x Ax ... x A, ,

A is the set of state symbols,

S is the global state space (a subsetldf x Ax ... x ALl]),

> is the set of operations causing state transitions, and

0 is the state transition functioBx >~ - S

Given the general definition 2, we need to identify the elements of the model, in particular,
the set of state symboks in order to represent the system correctly. Also, the verification model

must incorporate rules focérrect programs.

3.1 Execution Model

Correct programs for systems with relaxed memory models must be DRF1 [2]. In DRF1,
conflictingmemory accesses must be explicitly synchronized. (Two memory accesses to the same
address are deemednflictingif at least one of them is a store.) In the verification model, the glo-
bal state machin®l must be steered by access sequences compatible with DRF1. To generate such
sequences the execution model in the verification keeps track of each processor’s exaodgon
The mode of each processor is defined with respect to a data word (a data word is the smallest
addressable unit of memory) and transitions between modes are specified by a state diagram for
each processor and each data word, as shown in figure 3. There are three possible modes for each

data word and each processor:

1. Semi-Critical Section Mode (SCS. In this mode, the processor may execute read accesses
only. To supportoncurrent readergprocessors in modeCSdo not prevent other processors in
mode SCSfrom reading the shared data. A processor may ente6@8mode provided no
other processor is in tl@Smode. A processor exits ti€Smode by executing an unlock.

2. Critical Section Mode (C9). A processor in mod€Sis the only processor allowed to read or
modify the shared data. When a processor is in mo8eall other processors must be in the
OUTmode. A processor may enter ti& mode provided no other processor is in 8@Sor
CSmode. A processor exits tiS mode by executing an unlock.

3. Out Mode (OUT). When a processor is in tli@&Smode, all other processors must be in @idT
mode and cannot access the shared data. Several processors may be 8Q8uwdhdle others
in the OUTmode. Any read or write by a processor in @&JTmode must be preceded by a

lock; if another processor is in mo@S the lock cannot be executed before that processor exits

modeCSvia an unlock.

Writej Rea
Read

Read Unlock Unlock;
scs ouT ,@}
w

Rea _/ P) ritei

Lock;: if not (] CS(R) Lock;: if Oj OUT i

Figure 3. Processor Execution Modes from the Standpoint of Local Procgssor p

In [23], we proved that the above model correctly forces processors to issue sequences of
memory accesses in conformance with DRF1 programs. The proof is quite trivial and we omit it

here.

3.2 Modeling Data Words and Automaton States

Because coherence is a property bearing on each and every cache block taken separately,
the verification procedure must deals with one memory block. Extending the model to multiple

blocks is straightforward, but there is no compelling reasons to model multiple blocks at the proto-

col leveP. Interferences between different memory blocks only occur on cache replacements. We
can always model replacements by assuming that the block we track in the verification procedure

may be removed from the cache at any time.

Because critical and semi-critical sections protect individual words and not cache blocks,

the data block is split in two partsyd; andwd,. wd, is the word in the block which we track for
data consistency. Concurrent accessesdpare restricted by the rules of DRF1. The rest of the
block, wd,, has an arbitrary size greater than or equal to one word. Modelthgs important

because the state whl, can affect the state ofd;.

3.3 Overview of the Global State Machiné/

To summarize, the local finite state automaton of each cache in the global state nMchine

3. In this paper, we only consider functional errors of the cache protocol. Accesses to multiple memory blocks can
cause additional implementation errors such as deadlocks by circularly holding resources, but it is out of the scope of
this paper.

10

of the explicit state model is characterized by three components:

1. The cache state)(wherec [{ Owner, Keeper , Stale , Invalid }.

2. The Invalidation Send Bufferisp) staté, where isb[J{isb00, isb01, isb10, isb11}. Each of
these four states specifies one of four possibilities: 1) no entry itSBe 2) wd, dirty in the
ISB, 3)wd; dirty in thelSB, and 4) bottwd; andwd, dirty in thelSB .

3. The processor modp9), whereps[{ OUT SCS CS. Mode CSindicates that the local proces-
sor is in the critical section and has the right to modifgy. Processors isCSare allowed to
readwd,; and processors @UTcannot accessd, at all.

The notation used to specify the automaton of each ca(digsé’ is

In addition to the above elements, we augment each cache automaton with auxiliary data
variables (called theache data statys

1. cwd; keeps track of the value wid; in the cache copy.

2. isbwd, keeps track of the value wid; in thelSB .

The cache data status takes values from the donmenddta fresh obsoleté and emulates

the data part of the protocol semantics. When a processor mowaifiests own cwd, becomes
freshwhile copies ofcwd, in other caches and in memory becowmiesolete Data transfers are

emulated by assigning the value of the data status of some cache to the data status of other caches.

The value ofwd, is not modeled because the roleved, is limited to modeling the changes in the

states ofvd; caused by accesseswd,.

The global state machine also includes the memory directory state denotedNxsingle
global variable called the memory data statasd, [{ fresh obsoleté holds the value ofwvd,; at
the memoryTo avoid laying out all the details of the memory states in this paper, we refer the
reader to [26] for a complete description of the protocol. The generic notation for a global state in

an explicit system witim caches is:

4. The state of IRB is already embedded in the cache state. Remember that a stale copy indicates a pending invalida-
tion in the IRB. Actually we advocate implementing the IRB with a stale state in the cache [10].

11

isbl isb
(C]‘I;sl [cwdy,isbwd], ..., Cnlss:[cwdn,isbwdn], m[mwdl])

Two local cache automata are in the same state if they agree on their cache state, their ISB
state, their processor state, and their data status. The state transitions are not functions of the status
of the data.

Finally, the set of operations triggering state transitions in the global state machine are:

1. read and write accessesnd; (wdy),

2. lock andunlocksynchronization accesses,
3. remisb(removal of the block from thiSB)
4. remirb (removal of the entry in thiRB and invalidation the block in the cache), and

5. repl (block replacement).

Read, write and synchronization accesses are restricted by the DRF1 model. All other
operations includingemish remirb, and repl can be executed at arbitrary timeemisb and
remirb model a realistic implementation witBB andIRB of finite capacities. Since they trigger
the same actions dsck andunlock they can also be used to model occurrences of synchroniza-

tion accesses.

3.4 Model for Data Consistency and Detection of Inconsistency

To verify data consistency, the model keeps track of the values of data copies explicitly, as
described in section 3.3. Data inconsistency is reported when a processor is allowed to read data

with obsoletevalues.

Definition 3 (Detection of Data InconsistencyBy tagging all data copies with values in the set
{nodata fresh obsolet¢ and emulating data transferdata inconsistency is detected when a pro-

cessor is allowed to read data with obsolete values

Specifically, in the verification procedure, we check the following two conditions for every

global state reached by and for all processor;pvhich can reaavd, (i.e., g is either in the CS or

in the SCS mode)

1. If p/'s cache copy is valid, then the copy must have the Vedak

12

Oi ((ps =C9 O(ps =SCY) O(c; #Invalid) - cwd;;= fresh
2. If p; ‘s cache copy is invalid but a valiB entry exists, the ISB copy must fsesh

Oi ((ps =C9 O(ps = SCY) O(C, = Invalid) O
((isby; = isb10) O (isby; = isbll)) — isbwd; = fresh

The above two conditions are safety properties that must be true in all global states. The

check of data consistency avd; can be generalized to all other memory locations by symmetry

[16]. Data consistency is checked omena data copy can be accessed and therefore obsolete

data copies can exist as long as they are not accessible.

4 Verification by Symbolic State Model (SSM)

The explicit model is now fully specified. However, as we will see, its verification is not
feasible for systems of practical sizes. In order to make realistic protocols verifiable we must dras-

tically reduce the size of the state space.

One possible approach to do this is based on system symmetry. Cache-coherent, shared-
memory multiprocessor systems such as the SGI Challenge [18yex@etricwhich implies that
contexts of processors can be swapped without affecting the correctness of the system. Given a
protocol model oh processors, the symmetry property reduces the size of the state space by a fac-
tor of n!. However, for complex protocols, this reduction is not sufficient in general to avoid the

state space explosion problem [24, 25].

To further reduce the size of the state space, we take a different approach. We observe that,
in most existing cache protocols [3, 6, 10],
1. The behavior of every cache is specified by the same finite state machine (Therefore, caches in
the same state move to the same next state in response to the same inputs.), and
2. When contending writes are posted, only one can progress at a time, but multiple concurrent

reads are allowed.

The implication of the above is that tegactnumber of caches in the same state is irrele-

vant to protocol correctness. For example, whether there are 1, 5 or 200 caches in the shared and

13

clean state is not relevant. All these copies respond identically to memory events triggered else-
where in the system. Similarly, we need to single out the cache vaweisthe cache block and is
responsible for providing data to other processors which access the data and miss. Taking advan-
tage of these observations, the SSM maps system states to more abstract states which do not keep
track of the exact number of copies. In the balance of this section we show how this can be done

successfully.

In general, we need first to identify an abstracted state transition system with the following

properties.

4.1 Correspondence of State Transition Systems

Consider a state transition systévh (sp, A, S Z, 9). Our goal is to find a morabstract
state transition systervi,: (s, A, S, Z, 9;) such thatM, correspondgo M andS is much smaller
thanS. Importantly,M, must preserve the properties to verify. Error stateBohust be mapped

into error states iM, in the context of the correctness properties to verify.

Formally we define this correspondence as follows.

Definition 4 (Correspondence)Given two state transition systems 4,, A, S %,) and M:

(S A S Z,), M, corresponds to M iff there exists a correspondence relgtisach that

1. sy corresponds togsas denoted bgy, §sg,

2. Foreachs[S, at least one stats, 1S, corresponds 10.8.,s;¢s.

3. If M in state s makes a transition to state t on an enabled operatiamd state sof M, corre-
sponds to state s, then there exists a staseith that M can move fromso t, byt and { cor-

responds to.t

4. With respect to the correctness properties:sMtates corresponding to error states in M must

be error states.

Figure 4 illustrates this correspondence relation. The problem remains to find the rélation

such thatM,¢M. Once this correspondence is established, we can prove that no protocol errors

14

will go undetected in the abstract motigl We now proceed to define our abstraction.

Figure 4. Correspondence Relation.

Our definition of correspondence relation between two automata is similar to the simula-
tion relation based on possibility mapping in [19]. However, the fundamental proof tactic is differ-
ent. In [19], the idea is to prove that an automahmp simulates another automat&pecin the
sense that every correctness conditions satisfied by the beha@peas satisfied by the behavior
of Imp. It is based on a concept of hierarchical refinement that the low-level description by an
automatorimpis a correct implementation of a high-level abstraction (specification) by an autom-

atonSpec

By contrast to hierarchical refinement of proving that one automaton is a correct imple-
mentation of another, we mean to reduce the size of the automaton on which the correctness condi-
tions are evaluated. During the process, we convert the structure of an automaton to a

corresponding automaton by notations with more powerful expressiveness.

We now present the set of repetition constructors which will enable us to group together

sets of states to form superstates.

4.2 SSM Abstraction

4.2.1 Abstract State Representation

In SSM repetition constructors are used to represent global states [21-23]. In this paper we

will use the following set of constructors:

Definition 5 (Repetition Constructors)
1. Null (O) indicates zero instance.
2. Singleton (1) indicates one and only one instance, which can be omitted in the notation.

3. Star (*) indicates an unknown number of instances (i.e., greater than or edal to

15

We can use the above constructors to represent the global states concisely in a system with

an unspecified number of caches. For instance, we can represent all the global states such that “one

cache is in the Invalid state, and zero, one or multiple caches are in the Shared stateShy (

This representation includes a large set of explicit states.
We define the structure of global states (called composite states) in SSM as follows.

Definition 6 (Composite State)A composite state is the composition of local automaton states in

a system with an arbitrary number of caches. Supposeliti@inotes the local finite state machine.
A global state has the forrﬁqul, q;2, q;”% , Wwhere n®Llis the number of all possible states®f
and r, J[0, 1,*] is one of the repetition constructors of definition 5.

For the verification of the delayed protocq],in definition 6 includes all the elements of

the state given in section 3.3, i®.is a particular instance afjf or the memory directory state,

including the data status as well.

Composite state containment is an important characteristic of SSM, which leads to a large

reduction in the size of the state space expansion.

4.2.2 State Containment Relation

The repetition constructors in SSM are ordered according to the set of states they represent.

The resulting orders are 1*<and 0 <*. This leads to the definition sfate containment

Definition 7 (Containment) Composite state,fontains composite statg,®r § U S, if

1 M2 1_ 2.
Og 0SS, g 0S, suchthatg "<q ier;<r,
where g, r, 0[O0, 1,*].

In section 4.3, we will prove that the SSM yieldsrenotonic containment relatiosuch

that, if S, O S, thenS; - Sl' O, - SZ') D(81' O SZ') . We will also show that the abstract

state machin®, based on SSM is efficient and accurate for detecting protocol errors.

16

Since SSM directly expands composite states instead of explicit states, transitions triggered

on composite states are now specified.
4.2.3 State Expansion Rules and Algorithm

Consider the general form of a composite stenél, qrzz, q:]”) . The set of operators

applicable to composite states during the state generation process is defined as follows, where ‘/’
signifies “or” selection, -’ means a transition an@ is a generic term grouping local state

machines of no direct interest.

1. Aggregation: (Q, ®,) =(Q d), . q%. d"") =(Q, d).and Q. d", 4) = (Q. d).
2. Coincident Transition: g;" - ' g,", wherer O[1, *]. All automata in the same state will move to

the same next state in response to the same inputs.

3. One-step Transition
(@ (Q @ -"(Q", gy and
() (Q a) -"(Q\ a2 dz),
where all machines not in statg are denoted by in the tuple, - ' is a transition applied to

one of the component machines in stgiesuch thatq; —' gy, andt causes all other state
machines in statg, to move to stat@. After the transition, some state machine€imay be

affected as shown by the change frQno Q'.
4. N-steps Transitions This rule specifies the repetitive application of the same transikion
times, whereN is an arbitrary positive integer ai@represents other machines which are not in

Stateql.
(a) (Qi Oﬂ_) -1 (Q’ 872 qlo)’ and
0 Qo) -"Q &, q)

5. Progress Transitions
() (Q1, Q) ~"(Q, Q2") and
(b) (Q1, Q) - (Q1):

These two rules deal with transitions' leading to different protocol behaviors on empty and

17

non-emptyQ,. Becaus&), represents an unknown number of automata in some states and the

constructor* may include the null case, we generate two states corresponding to empty and
non-emptyQ, [25].

(Invalid*, Shared*) _W current state
: i
, one-stept - 4
P I coincident
vy

(Invalid*, Dirty, Invalid*)

J' aggregation

AN

(Invalid*, Dirty) -<«——! next state

Figure 5. lllustration of State Transitions in SSM.

A state expansion step has two phases. During the first phase, a new composite state is pro-
duced by applying transition rules to the current state. In the second phaaggtiegatiorrule is
applied to lump together local state machines in the same state. For illustration, consider the exam-
ple of figure 5. On the left is the finite state machine for a three-state protocol [3] from the perspec-

tive of cachel.] denotes any other cache. andW stand for read and write initiated by cache

On the right is the state transition from the current stelxtmaﬂid*, Sharea) to the next state

(Invalid®, Dirty) caused by a write miss. As shown in the example, the aggregation rule is a post-

transition rule to keep the representation for composite states concise.

Whereas, the SSM expansion rules manipulate the repetition constructors in the composite
state, the state transitions, or more precisely, the ways in which the local finite state machines react

to an input, are still dictated by the cache coherence protocol. For example, the transition from

(Invalid®, Shared) to (Invalid”, Dirty) is labeled by a write miss. Thus the SSM does not alter the

semantics of the protocol.

The example of figure 5 also demonstrates the application of the one-step rule. If we trig-

ger another write-miss transition, the cache in the dirty state becomes invalidated and a new dirty
copy is generated. Although the new state is sllriN/(iIid*, Dirty), the semantic is different. In the

transition from (nvalid”, Shared) to (Invalid”, Dirty), the missing block is provided by memory

18

(a clean copy is supplied by memory [3].) By contrast in the write-miss transition fioralid’,

Dirty) the block is supplied by the current cache in the dirty state.

Generally speaking, the one-step transition rule is sufficient to carry on the expansion.
Nevertheless, to speed-up convergence in a series of transitions, we have introduced the N-step

rule. AnN-steps transitiortonsists of a chain of one-step transitions:

Qa)-"Q o) -"(Qa%a) " -"(Q &, &)

The same transition; —' g, can be applied an unlimited number of times as long as there are
state machines in statp. Every application of the transition brings down the number of base

machines in statg, by one and increases the number of base machines inggtai®te that the

transition — ' must have no effect on other machines (include®iim the tuple). A typical appli-

cation of this rule is when processors replace their copy in shared state, or when processors post
requests independently. Applications of the N-step rules do not necessarily mean that the interme-
diate states are correct. In each of these intermediate states the property to verify must still be

checked.

The progress rules are applied in the case of write-invalidations. In write-invalidate proto-
cols, a write may cause invalidations to propagate to all caches sharing the block. The write trans-
action is complete when all processors have received their invalidation and have acknowledged the
home directory. Because the SSM abstracts the number of caches in a particular state, two states
are generated, one in which the write transaction is in progress and one in which it is completed.
Note that the progress rule is an extension to our original work [21] and is only needed when mem-

ory accesses are modeled as non-atomic operations [25].

4.3 Monotonicity

Given the framework of SSM, we can prove that the expansion rules are monotonic opera-

tors, i.e, if§ O S, then§, - 51' oS - SZ') D(Slr O SZ') . Practically, a composite state in

SSM represents a set of global states in an explicit state enumeration model. Therefore intuitively,

if an SSM stateS; is contained bys, and if an expansion step is done correctly, then the next states

of all the states included B must also be contained in the next states of all the sta$gs in

19

In general, let’s consider a system composed of finite state machines such that one machine
can communicate with all other machines directly. A composite state of any SSM for that system

has the form

liv1

(O O oo O G TS o)

Lemma 1. The aggregation process is monotonic, that isgif < g > agd’<q? ,then we
have Aggregatiorf ¢ q %) = q ‘< Aggregationf ¢, q %) = q°

Proof: The proof follows from the ordering relation among the repetition constructors and from
checking all possible combinations Qf, r4,, r,; andr,, subject to the constraints of this lemma

and to the aggregation rulg.
We extend this monotonic aggregation process to state transitions.

Lemma 2.The immediate successsyoriginated from state

S1 = (A0, O ey 05 O G e O)

is contained by stat, originated from state

rl r |+1 Fn
S, = (G Oz o G5 G G e o O

if 1<r; j forallj #i, and the same expansion rule taken on the same memory ®eigent

I J
applied to gand S.

Proof: We only need to consider the effect of applymth machines in statg in S; andS,. To

simplify the notation, all classeg (j # i) are lumped iMQ. Providedg - T g, the following two

states are generated when a one-step transition rule is apdledtdS,.

1). $=(Q. q) - "'$=(Q’, 6° a),

20

2. 5=(Q.q)-"5=(Q.q", a4

Q’ means that the transition may cause state changes of other machines (coincident transition).

Since qiri includes the case of a single machtq]ré, must contain the case of zero machine. It is
clear thafS; O S,. This containment relation is also true when compound rules involving multiple

one-step transitions such as the N-steps rules are appganadS,. [
Lemma 3.The claimS; 0'S, holds if § 0 S, that is, y<r; for all j.

Proof: Because the aggregation process is monotonic by lemma 1, lemma 3 simply extends the

result of lemma 2]

Theorem 1. (Monotonicity) If S; O S,, then for evens,; reachable from $there existsS, reach-
able from $ such thatS; O'S,

Proof: This is an immediate result of lemmalB.

Because of the property of monotonicity, we only need to keep track of composite states

which are not contained by any other state. The final output is aesasftial states

Definition 8 (Essential State)Composite state S is essential if and only if there does not exist a

distinct composite state such that § S.

It should be pointed out that the generation of essential states terminates as soon as any
logical protocol error is detected, since expanding error states, which lead to unpredictable states,
is practically meaningless. At the end of a successful expansion process, the (explicit) state space
is partitioned into several families of states (which may be overlapping), each represented by an

essential composite state.

4.4 Correspondence Between State Enumeration and SSM Model

Now that we have shown that the SSM expansion is monotonic, we need to prove that a

correspondence relation exists between the abstract SSM state transition ys{egn A, S, 2,

;) and the explicit state transition syst&vh(sy, A, S Z, &) with respect to the property of data

21

consistency. For this purpose, we first define the correspondence rélation

Definition 9 (Correspondence Relation)States, :(q;", 0y, ..., qi') 0'S, corresponds to state
si(ay, ay, ..., a,) O S, i.e. s¢s, if s is one of the states abstractly represented oyisere ais the
state of the local automatoniaral.; ., d;.; A . The number of local automata of s in state q
(ie. |aj,,,=0;]) must be a case covered by the repetition constructor namely,

Oj [y =0 <1
For example, (§l) corresponds to (S,S, 1) according to definition 9.

Theorem 2.Given g, we can easily construcgssuch that §¢<.

For instance, it is normal to start the verification with an initial state in which no cached

copy exist. In this case, all caches are invalid &maalid)$(Invalid, Invalid, ... Jnvalid).

Finally, we prove that the correspondence relation illustrated in figure 4 exists for all possi-
ble transitions. Gives,¢sandd(s, op) = t , we show thad, (s, op) = t, angdt, whereopis

an operation irk.

Theorem 3.Consider the state transition system(#4, A, S %,) of an explicit model witlfunre-
stricted, arbitrary) m local automata and the abstract state transition modgl (s, A, S, Z, ;)
in the SSMConsider two states:(a,, a,, ..., a,,) 0 S ansi:(qul, qrzz, .., Gn) O'S,, where ais
the state of the local automaton i ar&gl.; ., 9;.; O A. Given s¢sand d(s, op) = t ,we can
derived,(s,, op) such thad, (s, op) = t, andq¢t.

Proof: Becausesis one of the states representedsys,¢s), the monotonic operation of SSM

guarantees thais a state characterized y[]

Theorem 4.Suppose that the abstract state transition modgl(§},, A, S, Z, ;) in the SSM cor-
responds to the explicit state transition systengsyl A, S Z, d). For all states, if gps and if s is a
state which violates the data consistency propegtys slso a state which violates the same data
consistency property.

22

Proof: According to the definition of data consistency (section 3.4), it is a safety property for all

global states. If a processorsican read an obsolete valuewdl;, some processors g must read

obsolete values afid; because is one of the states coveredy

4.5 Discussion

In this section we want to address a few issues that have been raised over time on the accu-
racy of the SSM abstraction for detecting data inconsistencies. The SSM method belongs to the
class of methods using abstraction [5, 7, 8]; it maps a concrete finite state autoMatora(more

abstract and small state automatbh). It was shown that abstraction mappings are nornely-

servativg7]. They preserve invariant properties, but might report false errors because the abstract
models could cover behavior not possible in the original machine. In particular, properties such as

liveness formulated with the existential path quantifier may not be preserved.

Given these known shortcomings, a particular abstraction mapping must be powerful and
accurate enough to verify important, global properties such as data consistency. Theorem 4 shows
that the SSM abstraction does preserve the global invariant property of consistency. Verification

based oM, is at least as accurate as verification runs based éor the detection of data incon-
sistenciesimportantly, sinceéM, is independent of the system size, the verificatioMptould dis-

cover protocol errors that may go undetecteldl iwith a small number of processors [22].

The question remains whether the SSM abstraction developed in this paper may report
false errors, or whether it is axact approximatiof the concrete model [7]. In [17], Ip and Dill

argue that our SSM abstraction may report false errors. For example, an explicit,staf ith

one invalid and two shared copies is coveredIbs() in SSM; however, I S) also covers states
with more than two shared copies. As a result, false errors may be reported because an SSM meta-

state covers many explicit states, including states which may not exist in a (finite) explicit model.

The answer to this argument is that the SSM abstraction cannot check properties depending
on the exact number of processors. SSM demonstrates the correctness of a cache protocol for any
number of caches in the system. It is conceivable that a flaw in a protocol never manifests itself in
systems with up to N processors. Thus, if one wants to build machines with less than N processors,

the verification based on SSM may over-constrain the design of the protocol. On the other hand,

23

depending on the value of N, it may be impossible to verify the protocol with the explicit model
because of the state space explosion. Furthermore, it may be unwise to design protocols that only

work for small numbers of processors.

In the most generic form, one can imagine an explicit model with a starting state such as

(q‘j---‘”). The number of exact instances of machines in ffgtis in the range of 0 to infinity.
Without loss of generality, the case of null instance reflects a system without any cache. Allowing
a cache protocol to operate in a system without any cache is practically meaningless, but harmless.
Accordingly, the corresponding SSM meta—state(obé) . Consider a transttion d, . The

resulting states arqu"'w, qg/l) ar(ai];, qg/l) respectively. (“/” means “or” selection.) There is

still an infinite number of machines in staggeven if one cache change stategaand, if the sys-

tem had no cache, then there are no machine in gicdéter the transition. The SSM meta-states

cover all the explicit states. Note th(zqg"'w, qg) is essentially the initial state(qhd]g) is the

same as(qz) in SSM. Suppose that a chain of the same transition (N-step transition rule) can be

applied, according to the semantics of the protocol. Two corresponding sequences of states are:

0/1

(qi)...oo’ 0") R (qg...oo’ qO/Z

5) = o (qg“'m, qg"'m), and

* / * / * *
(G 0y) = (Ap 0y) = .. — (0p, Op) -

It is clear that the final SSM meta-state catches all the possible explicit states along the
path. Readers should nevertheless notice that grouping of several caches together should conform
to the condition defined in [17], namely that transitions from the new state are independent of the
exact number of machines grouped in a particular state. In the example above, if the protocol

behavior is different when one or multiple instances.péxist, the above chain of transitions must
be disallowed. Logically, the * constructor characterizing the number of copiggisfexplicitly

broken into several less abstract constructors, covering 0, 1, or multiple.

The MOSEI protocol [27] is a classic example. The number of data copies in the “shared”

24

state determines whether a data block returned on a load miss is loaded in the “exclusive” state or
in the “shared” state. Therefore, the SSM model must distinguish the case of null copy in the
“shared” state from the case of at least one or multiple. Other examples include the Illinois proto-
col, the Firefly protocol [3, 21] and the S3.mp protocol [22] which all have transitions sensitive to

the number of caches in a particular state.

Applying the progress rule requires special attention as well. Essentially, the progress rule
captures the protocol behavior for the propagation of invalidations (To simplify this discussion we
limit ourselves to write-invalidate protocols, but the same argument would apply to updates in a
write-update protocol.) Before a write can successfully complete, all other cached copies must be

invalidated. The progress status of a write depends on whether there are cached copies.

Without loss of generality, consider a meta-ste(tqai, q;) . Suppose that transitions
g, - g3 or g, —» g, may be applied depending on whether the number of instanggisfnull

and thatq, always branchestg (This would be the case for a write miss in a cache o state

issuing a write miss request. In this case of a write miss, machines inggtateuld be the ones

subject to invalidations.) The two resulting states 61*9 d3) aﬁ_dq4, q;) . At first glance, it
would seem that the sta(q;, Ay q;) should be denote(dq%,sq‘l, q;_o) , which excludes the null

case forgg , because the path being taken assumes a non-empty aigss of . However, for proto-

cols such as the delayed protocol and many other existing protocols, all the caches to be invali-
dated behave the same way by acknowledging their invalidation. As long as a group of caches
must be invalidated, we really do not care about their exact number. As a result, we avoid compli-

cating the model by excluding the null case.

To emphasize, the SSM abstraction does not alter the state transition functions. State tran-
sitions are always defined by the cache protocol semantics rather than by the SSM absiaetion.
SSM abstraction is just a concise representafmrthe state space of a system composed of many
identical finite state processes and it never collapses states in a way that could eliminate or modify

protocol transitions.

25

Finally, in our previous work [21, 25] we introduced an additional constructor called Plus

(+), indicating one or multiple instances. The starting sta’(«ﬂs) corresponding to explicit states

(qi"'w). Operations are not performed on the null case. Since + is coveredriy operating on

null is harmless, the accuracy of SSM in detecting data inconsistency errors is not affected by
dropping +. In the following, we will refer to SSM schemes with or without the plus constructor as
SSM-+ and SSM-*. Also in sections 6.2 and 7.1, we will show that a significant reduction of state

space is achieved by the elimination of the + constructor.

5 The SSM Verification System

We have developed an automated verification system based on the SSM [25]. The system
consists of a high-level description language and an automated verifier. In the SSM system, users
describe their protocols at the level of finite state machines. Global states are competsd of
variablesdefined by the users. State transitions among global states are specified by a set of transi-
tion rules. Each rule consists of guarded statements: it is associated with an enabling condition and
it is applicable only when its enabling condition is true. The language is block structured and sup-
ports a rich subset of statements found in common programming languages, including basic

assignments, if-then-else conditionals, switch-case selections, for-loops and procedure calls.

Figure 6 shows the state declarations for the delayed protocol under atomic memory
accesses. The state model was developed in section 3.2. The processor environment represented by
the structurdroc s the basis of abstraction. Figure 6 also shows that transition rules applicable to
all Procsare collected in aRuleSét We show the example of the rule for reading wavdl when
a processor is either in ti&CSor in theCSmode. When the cache copy is valid or when the data
is present in théSB buffer, the copy must beffesi. Otherwise, a violation of the assertion will
cause the SSM system to report an error and start backtracking. The actions taken on the read miss
are modeled by changing the values of state variables. Note that in its current form, the tool

requires the users to provide information about which expansion rule (e.g., one-step or Nsteps)

26

should be taken.

Type
ValStatus: enum {nodata, fresh, obsolete};

ProcAccMode: {OUT, SCS, CS};

GlobalAccMode: {GLB_OUT, GLB_SCS, GLB_CS};
CacheSt: enum {INV, KEEPER, OWNER, STALE};
ISBSt: enum {ISBQO, ISB01, ISB10, ISB11};

Proc: Record
cs: CacheSt;
wd1:ValStatus;
acc_mode:ProcAccMode;
isb_st:ISBSt;
isb_wd1:ValStatus;

End;

Memory: Record
wdl: ValStatus;
global_access_mode: GlobalAccMode;

End;

ProtocolMachine: Record
bm: (epetition) Proc;
mem: Memory;

End;

GlobStategs: ProtocolMachine;

RuleSet p: (repetition) Proc Do

Rule “read access to WD1”
(p.acc_mode==SCS || p.acc_mode==CS)
Begin
ExpansionClass p NSteps
Switch (p.cs)
Case KEEPER, OWNER, STALE:

-- for modeling convenience
-- IRB state is embedded in STALE
-- refer to section 3.2

-- cache state

-- status of the cached copy
-- processor access mode

-- state of the ISB buffer

-- status of wd1l in ISB buffer

-- status of the memory copy
-- global access mode to wdl

-- define the protocol machine
-- define a repetition base
-- home memory/directory

-- actually define the global state variable

-- p cannot read WD1 in OUT mode
-- which rule?

-- in-line assertion

assert (p.wd1==fresh) “read obsolete value”;

Case INV: Switch (p.isb_st)

Case ISB00: // also read miss in ISB

p.cs=KEEPER; // take actions to load the data block

Case @
End
End -- Rule

End -- RuleSet

Figure 6. Example Code in the SSM System.

The protocol description in the SSM language is not directly executable. The description is

27

first translated into a verifier written in C, which is then compiled to generate an executable image.

The verifier uses the symbolic state expansion algorithm to explore the state space of the protocol

exhaustively.
Informal
description

correction refinement

-
High-level FSM Description
* ? syntax checking
Trace Generation Compilation & Code Generation
error
Verification (Reachability Analysis Bounded-Memory Simulation

Analysis

¢ complete

Figure 7. SSM Environment.

In its current status, the SSM verifier chededetyproperties specified by the user. These
properties must be respected in every state. The user normally inserts as$i@gionstatements
in the description program as shown in figure 6. When an assertion is not satisfied, the current state
is reported as aarroneousstate. In addition to in-line assertions, the users have all the flexibility
to add sophisticated procedures for error detection. For instance, one can examine every newly
generated state by calling procedures for checking errors at the end of state transitions. One such

procedure for the delayed protocol model is to check if a processor can access obsolete data (sec-

28

tion 3.4).

Procedure InvariantCheck;
Var qg:(pointer) ProcState;
Begin
For qg:(repetition) ProcState Do
If (g.p_blocked == NoPending) Then
Switch (g.c_st)
Case INV:
If (q.acc_mode==SCS || g.acc_mode==CS) Then -- if the processor can access wd1l
Switch (g.isb_st)
Case ISB10,
ISB11:
Assert (q.isb_wd1 == FRESH) “Can read stale ISB-WD1";
End;

End;
Case STALE:
If (g.acc_mode==SCS || g.acc_mode==CS) Then -- if the process can access wd1l
Assert (q.wdl_val == FRESH) “Can read stale WD1";
End;

Case KEEPER,OWNER:
If (g.acc_mode==SCS || g.acc_mode==CS) Then -- if the process can access wd1l
Assert (q.wd1l_val == FRESH) “Read stale WD1";

End;
End; -- Switch
End; -- If
End;
End;

Figure 8. An Example Procedure for Checking Data Consistency.

Figure 8 shows the procedure for checking data consistency. After a new state is generated

in the generic forn(qy’, gy, ..., q") , the procedure is called. The variajiea control variable
which walks through algj in the next state. The code checks that if a processor has the access right

to an obsolete data copy, the protocol fails. The users can define any procedure to check the values

of state variables, including the constructor carried;by

At the occurrence of an error, the verifier terminates and reports a trace leading from the
initial state to the error state. The verification procedure with the SSM system is illustrated by the

flow diagram in figure 7.

Because the SSM abstraction does not maintain the identity of processes, it cannot check

properties referred to specific processes. For instance, queries of finite behavior stiph &ssiri

state A, there exist a global state in which ig in state B in the futurecan not generally be

29

answered. However, we feel this type of query is usually not interesting except for checking for the
absence of deadlocks and livelocks. In [25], we adopt a simple but useful definition for deadlocks
and livelocks in the context of cache protocols. In brief, a memory access should eventually be sat-
isfied. In existing cache protocols, it means that a “shared” copy is always procured after a read
miss, and a “dirty” copy after a write miss. The checking procedure work as follows. Assume that

the global state graph is built on top of the final set of essential states and the starting state is

(Invalid’). We logicallytag one of the caches in the Invalid class of automata, and traverse through
the state graph following the transitions. In it current status, the tool does not check the livelock
case as described, but it checks simple deadlock states, which are states with no successors other

than themselves.

The SSM system verifies protocols completely by exploring all reachable states and always
terminates. However, the SSM system also allows users to run the sydbenmided-memory sim-
ulation mode. The major difference between verification and simulation is that the verifier never
terminates in the simulation mode: The state expansion paths are randomly selected, and hence,
there is no guarantee that all reachable states are generated. The simulation mode can be very use-
ful when the available memory is small and the verification cannot be completed due to limited
memory size. The idea behind bounded-memory simulation is to approximate the quality of a
complete verification by maximizing the utilization of available memory. When the SSM system is
executed in this mode, users must specify the maximum memory size which can be used to store
state information. The SSM verifier initially runs as usual as a verification tool. When the SSM
system consumes memory in excess of the available memory, some states stored in the history list

or the list of unexpanded states are removed in order to meet the memory constraint.

6 Verification at the Behavioral Level

In this section, we present the results of applying the SSM system to verify the delayed
protocol. We first verify the delayed protocol at the behavior level by assuatmmic memory
accesses, namely, protocol transitions happen instantaneously in zero time. After showing that the
delayed protocol has correct behavior, we verify a design of the delayed protocol at the more
detailed, message-passing level for systems with non-ordered interconnections. In this case, mem-

ory accesses armn-atomicand cache coherence is achieved by exchanging messages among pro-

30

cessors.

To evaluate the efficiency of the SSM method, we have also applied the Stanfogd Mur
system [16] to the delayed protocol. The Mius an efficient verification tool based on state enu-
meration, incorporating state encoding to reduce memory usage, and hash tables to speed up the
search and comparison steps. There are twodMaystems: one exploits the system symmetry
(Mur¢-s) and one does not (Mpins). The comparison between SSM and #lgan assess the
performance advantages afforded by the drastic reduction of the global state space in the symbolic

state mode.

For all verification runs, we start the expansion process in an initial state in which no cache

has a block copy and all processors are in@téTmode, prevented from accessivg,. Thus, the

isb00+
out

ISBOOy i SgM-*,

initial state is(Invalid out

) in SSM-+ andinvalid

6.1 Behavioral Correctness of the Delayed Protocol

Before reaching the conclusion that the delayed protocol presented in [10] is correct, sev-
eral errors were found. These errors arise from ambiguities in the informal protocol description
[10]. One major oversight leading to confusion is described in the following scenario.

1. Initially, cacheC, is in theStale state and cach@, is theOwner. Moreover,C, is in the crit-
ical section fowd1 and an updated copy ofd1 is inISB ;.

2. WhenC, exits its critical section, the value afd1 in ISB; is sent to memory, which is
updated. Subsequently, an invalidation is sex@;to

3. WhenG, receives the invalidation, it writes its copy back to memory.

4. Upon receiving the write-back message, memory is updated. Thus, the most recent value of

wd1 from C, is lost.

This error occurred because the literal description of the delayed protocol in [10] does not
give a clear indication of the correct sequence that should be taken to update the memory by write-

backs fromC, andC,. An incorrect protocol model was then built and verified to reveal the prob-

lem. This experience has convinced us of the importance of formal verification methods which

uses formal specification rather than linguistic form to specify protocols.

31

After fixing such errors, the delayed protocol was proven to be correct by exploring the

b

state space exhaustively. With respecivt) and processd?; in state c; I:s , the delayed protocol

has the following properties:

1. ((ps =cs)UO(ps = scs)) U(c; # Invalid) - (cwd;;= fresh). This property partially

proves that the delayed protocol preserves data consistency. If proBgssoraccess its local
copy ofwd,, the copy must have a fresh value.
2. When there is a modified copy stored in the It8BI, all other copies are obsolete. We have
(isb, = isb10) O(isb, = isb11) -
(isbwd;;= fresh) O(mwd,= obsoletg [
(=0 #i, (cwdlj: fresh) D(isbwdljz fresh))

This property confirms that the delayed protocol ensures data consistency. Since a read access
may miss in the local cache and hit in #&B , the word present in th&SB copy must have the
most recent value. The new value stored in fBB is not yet visible to other processors and

therefore, multiple copies of the same memory location in diffég&8d are not allowed.
3. (¢;= Owner) - (isb=isb00). This invariant states that if the local cache is ®wner,

there must be no corresponding entry in tB8 . This property shows an optimization of the
protocol to avoid coherence overhead on private data. Updated private data is written back to
memory only when the block is replaced.

4. (c;= Owner) - -1 #1i, (cj: Owner) D(CJ: Keeper). This means that, if there is an

Owner, no other caches may be @wner or a Keeper . This property must be respected
because, when a cache procures the ownership of the protocol, the protocol stales all other
cached copies.

5. The final property we proved shows that a correct path leading to a fresh data copy always

exists:
((ps =scs)UO(ps =cs))O(c= Invalid)O
= ((ishy = isb10) O(ish; = isb11)) -

(O #1 c;= Owner - cwdlj: fresh) O((=0j #i C;= Owner) - mwdlj: fresh)

32

The above expression means thatyd is accessible by processBy, and if neither nor the

local ISB have a copyP; can get the correct data from the memory or the rer@ot@er. Since

the memory controller requests tavner (if any) to write back its copy on a cache miss, the

Owner must have a fresh copy to avoid updating the memory with obsolete data.

6.2 Performance Results

Table 1 shows the performance of the four tools for the verification of the delayed protocol

on a SPARCstation 10 Model 30 with 128 MBytes of memory. The state space of the delayed pro-

tocol quickly increases with the model sizes, even under the assumption of atomic memory

accesses. Using the same assumption of atomic memory accesses, the delayed consistency has a

much higher level of complexity as compared with the verification of other protocols [21]. The

number of essential states reported by SSM-+ is 58, which is much larger than the number of

essential states (usually under 8, cf. [21]) in traditional protocol designs, when atomic memory

accesses are assumed.

TABLE 1. Performance Results of Different Methods for Verifying the
Delayed Protocol (atomic transactions).

Method Number of Size of global | Size of search \(erification Memory
processors | state space state space time (seconds) | (Mbytes)
Mur¢-ns 2 484 4,184 0.9 0.00y
3 6,228 76,170 14.7 0.1
4 75,088 1,202,544 268.p 1.15
5 905,312 18,132,640 3,303]1 17.85
Murd-s 2 248 2,148 0.9 0.004
3 1,206 14,844 14.9 0.0k
4 4,500 72,575 330.1 0.0y
5 14,366 288,932 7,949.8 0.28
SSM-+ anyn>1 59 6,864 0.67 0.01
SSM-* anyn>1 36 1,342 0.2b 0.01

The size of the state space quickly increases with the model size for state enumeration

methods. The symmetric Méirs shows significant reductions in both the global state space and

33

the search state space over the non-symmetrichMhst However, Mup-s takes twice as much
time as Mu#-ns to verify the model with five processors. The computation of canonical states for

symmetrically equivalent states may be the cause for this abnormality.

Table 1 also shows that the simplified SSM-* reduced the number of essential states by
38% as compared to SSM-+. Additionally, the search state space is smaller and verification time is
less. By abstracting and grouping global states further, SSM-* is superior to other methods in
terms of performance as we show in next section. This performance improvement is obtained with

no loss in accuracy.

The most complex essential state characterizing the delayed protocol and reported by the

tool consists of 14 processors in different states (i.e., we have meta-states in the form

(qul, qrzz, qulj)). Therefore, SSM effectively verifies models with more than 14 processors. For

conventional protocols, a model of 3 or 4 processors is able to cover all possible cases (under
atomic memory accesses). We can assume that the size of the state space will be excessive for the

delayed protocol if non-atomic memory accesses are modeled

7 \erification at the Non-Atomic Transactions Level

In this section, we present the verification results for an implementation of the delayed pro-
tocol at the non-atomic transactions level for systems with non-FIFO networks. In a non-FIFO
interconnection, messages between two nodes are not guaranteed to be received in the same order
as they were issued. The protocol is an extension of the behavioral protocol in [10]. In this case,
protocol transactions are non-atomic and are accomplished by exchanging coherence messages

between processors.

Figure 9 shows the abstract verification model of the system. A detailed description of the
protocol is given in [26]. In addition to cachdSBs , andIRBs , each processor is associated with
onemessage sending chanr{€H!) and onemessage receiving chanr€@H?) to model the mes-
sage flow between caches and main memory [25]. We assume that messages are never lost. Of
course, the verification at the message-passing level is much more complex than the verification at

the behavior level because the number of possible system states is much larger.

34

base machine

cT cT

o
I

Home Memory & Directory (full-map + dirty bit)

iHO
¢HO
¢(HO
iHO

Figure 9. Abstract Verification Model at the Message-passing Level

7.1 Performance Results

Table 2 shows the results of applying the Muand SSM methods to verify the delayed
protocol at the message-passing level. The state space explosion problem appears clearly in the
case of Mué, which uses the state enumeration method. Along with the exponential rise of the
state space, the search state space, the verification time, and the memory requirement soar. For the
model of four processors, Méirns quickly takes up 500M bytes of memory. (Because of the enor-
mous memory consumed, these runs are performed on a UltraSparc Il workstation equipped with

512M bytes of memory.)

Even when the system symmetry is exploited in Whs; the size of the state space is only
reduced by the factorial of the number of processors. Given limited resources, the largest model
we could verify includes four processors. This verification run uses more than 300M bytes of

memory and takes more than 134 hours.

As compared to My, SSM-+ is more efficient. The verification time is about 69 hours
and the memory consumption is 210 M bytes. The most complex essential state consists of 111
bases machines in different states. This means that SSM-+ effectively verifies the delayed protocol
model with 111 processors. Clearly, no existing method based on state enumeration is capable of

handling such a complex model.

35

Note that the search state space of SSM-+ is much larger than that ¢f Vhis is reason-
able because the SSM model practically includes more processors. However, the verification time
of SSM-+ is shorter. This is because our implementation of the SSM system uses the monotonicity
property to remove non-essential states as soon as possible. Consider a current state S and its suc-

cessors § S,,.....,S, which are generated in sequence. Suppose that$, where 1<k<n.
Because of the property of monotonicity, we know that S, apg.$can be removed immediately.
Moreover, .1 ,do not need to be generated. We simply keep on expandingtsch will lead

to states covering ;Sy_.; and 41 As a result, we avoid very costly comparisons between a

newly generated state and all previous states. Although hashing is used¢ntd/speed up the
comparison operations, the efficiency depends on the rate of hash conflict. When the hash function
is not ideal or the utilization of hash table is high, the operations of searching for the state and
resolving conflict become expensive. Another reason is thatpMuacodes state information into

bit vectors in order to save memory. Therefore, the modification of state information is more
expensive. On the other hand, the state information in SSM is not encoded. For instance, a state
variable of boolean type is translated into an enumeration type of two elements {false, true} in the
generated C program. In this case, the SSM uses 4 bytes to represent information which could be
coded into a single bit. When the state space is small, this is normally not a problem [25].

TABLE 2. Performance Results of Different Methods for Verifying the
Delayed Protocol (non-atomic transactions).

Number of Size of global | Size of search | Verification Memory
Method .
processors | state space state space time (seconds) | (Mbytes)
Mur¢-ns 2 29,585 109,224 1386 0.68
3 2,617,224 13,922,454 19,448.6 70.04
4 (excessive memory requirement > 500M bytes)
Mur¢-s 2 14,821 54,734 369.8 0.34
3 442,496 2,358,487 6,190{7 11.86
4 10,083,443 72,659,596 484,456.8 30863
SSM-+ any n > 1 331,004 285,435,076 248,638.1 210.63
SSM-* anyn>1 8,048 5,204,909 4,190.9 2.96

To improve the verification time of SSM, we must find optimal expansion paths. Figure 10

36

shows the number of essential states and the number of unexpanded states kept during the verifica-
tion. In brief, the state expansion process maintains two lists of global stdtestoay list and a
queuewhich respectively keeps expanded and unexpanded states. At each expansion step, a state
is popped from the queue and all of its successor states are generated. When a new state is gener-
ated, it is compared with all previous states which are kept in the history list and in the queue. If
the new state is found (contained in SSM), it is discarded; otherwise it is pushed into the queue for
further expansion. The current st&es saved in the history list if it is not contained by any newly

generated state.

As shown in figure 10, the number of states kept in the history list increases rapidly at the
beginning, but drops close to the end. Meanwhile, the queue shrinks slowly and steadily. Ideally,
the number of expanded non-essential states should be kept to a minimum because they represent
wasted work. In the run of figure 10, about 30% of the expanded states are non-essential. Although
it does not show in figure 10, one can imagine that expanding non-essential states causes larger
gueue sizes. In the worst case, unexpanded essential states can be buried and wrapped by non-
essential states, which prevents essential states from being popped out of the queue and expanded.
Searching for optimal solutions is a common problem for many applications; unfortunately, we do

not have an answer.

Finally, we observe that SSM-* cuts the state space of SSM-+ by 98%, which leads to dras-

37

tic reductions of the verification time and memory requirement, at equal verification accuracy.

350
1
] /
300 a
] ‘\ //
[] //
/
= 250 [
8 250 - ///
S
—i "] /
= ///
B 200 //
® . s
n [e —<+— |ded
“— - .
S 1504 - S - -~ Number of Kept Essential States
/
g - J/ ---#-- Length of the History List
£ df /
2 100 : /
| I /"‘\"

1 ‘.% y // h W\

]] PJE’ g

. /

50 1 }// ‘\

L B e e B e o o
0 500 1000 1500 2000 2500 3000 3500 4000

Number of Expanded States (x1000)

Figure 10. Efficiency of the SSM Method.
8 Conclusion

In this paper, we have verified the delayed protocol, which has high complexity even at the
behavior level. This protocol delays the sending and receiving of invalidations until synchroniza-
tion points in a weakly-ordered system. Because the design of delayed protocol covers a wide
range of techniques that can be exploited in relaxed memory models for good performance, the
verification approach can be applied to similar protocols. This includes protocols designed for sys-
tems usingwrite cacheq12] which can be verified in the same way because the functionality of

write caches is essentially the same as3$Be employed in the delayed protocol.

Although the delayed protocol is complicated, the symbolic verification method effectively
reduces the complexity of the verification process by only keeping track of 0, 1, or unknown num-

ber of caches in particular states. The set of repetition constructors used for abstract state represen-

38

tation is not surprising because cache coherence is similar to mutual exclusion or single-writer-
multiple-readers protocols in distributed computing. There are only special cases (such as a single
writer) where we need to explicitly keep track of its state. Other state machines can be simply

lumped because they exhibit the same behavior.

We have also shown that the set of constructors in SSM can be simplified as compared to
previous publication, resulting in much better performance. Interestingly, Ip and Dill have imple-
mented a simplified variation of the SSM method and have reported a successful application of
their tool in [17]. The difference is that our method works directly on the abstract state space
whereas their tool expands explicit states and then constructs abstract states based on generated
explicit states. Therefore, the tool may require multiple runs (adding one more processor to the
model in each consecutive run) to reach the complete verification results obtained with our
method. In any event, both experiences demonstrate that the SSM method is very effective in veri-
fying complex cache protocols. For further exploration of verification techniques to cache proto-

cols, one can refer to [24].

39

References

[1] Adve, S.V. and Hill, M.D., “Weak Ordering--A New Definition'Rroc. of the 17th Int'l Sym-
posium on Computer Architectuddlay 1990, pp. 2-14.

[2] Adve, S.V. and Hill, M.D., “A Unified Formalization of Four Shared-Memory Model&EE

Trans. on Parallel and Distributed Systenfsugust 1993, pp. 613-624. (Also, Technical Report
#1051, University of Wisconsin.)

[3] Archibald, J. and Baer, J.-L. “Cache Coherence Protocols: Evaluation Using a Multiprocessor
Simulation Model”, ACM Trans. on Computer Systerasl.4, No4, Nov. 1986, pp. 273-298.

[4] Amza, C., Cox, A. L., Dwarkadas, S., Keleher, P., Lu, H., Rajamony, R., Yu, W. and Zwaene-
poel, W., “TreadMarks: Shared Memory Computing on Networks of WorkstatidB&E Com-

puter, pp. 18-28, Feb. 1996.

[5] Browne, M.C., Clarke, E.M. and Grumberg, O., “Reasoning about Networks with Many Iden-
tical Finite State Processe#iformation and Computatiodl, 1989, pp. 13-31.

[6] Censier, L.M. and Feautrier, P., “A new solution to coherence problems in multicache sys-
tems”,IEEE Trans. on Comygers, Vol. C-27, No. 12, Dec. 1978, pp. 1112-1118.

[7] Clarke, E. M., Grumberg, O. and Long, D. E., “Model Checking and Abstracti&M
Transaction on Programming Languages and Syst®bis16, No. 5, Sep. 1994, pp. 1512-1542.

[8] Cousot P. and Cousot, R., “Abstract Interpretation Framewodairnal of Logic and Com-
putation Vol. 2, No. 4, Aug. 1992, pp. 511-547.

[9] Dubois, M., Scheurich, C. and Briggs, F.A. “Memory Access Buffering in Multiprocessors”,
Proceedings of the 13th International Symposium on Computer Architedtume 1986pp. 434-

442,

[10] Dubois, M., et al. “Delayed Consistency and Its Effects on the Miss Rate of Parallel Pro-
grams”,Supercomputingyov. 1991, pp. 197-206.

[11] Dubois, M., et al., “The Detection and Elimination of Useless Misses in Multiprocessors,”
Proceedings of the 20th International Symposium on Computer Architedfiag 1993, pp. 88-

97.

[12] Dahlgren, F., and Stenstrom, P., “Using Write Caches to Improve Performance of Cache
Coherence Protocols in Shared-Memory Multiprocessors”, Technical Report, Department of Com-

puter Engineering, Lund University, April 1993.

40

[13] Galles, M. and Williams, E.,”"Performance Optimizations and Verification Methodology of
the SGI Challenge MultiprocessorHawaii International Conference on System Sciendas
1994.

[14] Gharachorloo, K., et al. “Memory Consistency and Event Ordering in Shared-Memory Mul-
tiprocessors”Proceedings of the 17th International Symposium on Computer Architedfiang
1990, pp. 15-26

[15] Holzmann, G.J. “Algorithms for Automated Protocol Verificatio®AT\&T Technical Jour-

nal, Jan./Feb., 1990.

[16] Ip, C.N. and Dill, D.L., “Better Verification Through SymmetryProc. 11th Int'l Symp. on
Computer Hardwae Description Languages and Their Applicatiogns87-100, Apr. 1993.

[17] Ip, C.N. and Dill, D.L., “Verifying Systems with Replicated Components in urint’l

Conf. on Computer-Aided Verificatioh996.

[18] Lamport, L., “How to Make a Multiprocessor Computer that Correctly Executes Multipro-
cess ProgramsTEEE Trans. on Computersol. C-28, No.9, Sept. 1979, pp. 690-691.

[19] Lynch, Nancy A. and Tuttle, Mark R., “Hierarchical Correctness Proofs for Distributed
Algorithms”, Proceedings of the 6th Annual ACM Symposium on Principles of Distributed Com-
puting (PODC'87), pp. 137-151, August 1987.

[20] Nanda, A.K. and Bhuyan, L.N. “A Formal Specification and Verification Technique for
Cache Coherence Protocol&toceedings of the 1992 International Conference on Parallel Pro-
cessingpp. I-22-1-26.

[21] Pong, F. and Dubois, M., “A New Approach for the Verification of Cache Coherence Proto-
cols”, IEEE Trans. on Parallel and Distributed Systemsl. 6, No. 8, Aug. 1995, pp. 773-787.

[22] Pong, F., Browne, M., Aybay, G. Nowatzyk, A. and Dubois, M., “Verifying Distributed
Directory-based Cache Coherence Protocols: S3.mp, a Case Sy’ of the First Int'l EURO-

PAR Conf.Aug. 1995, pp. 287-300.

[23] Pong, F. and Dubois, M., “Formal Verification of Delayed Consistency Protodeiet. of

the 10th Int’l Parallel Processing SyrmApr. 1996, pp. 124 - 131.

[24] Pong, F. and Dubois, M., “A Survey of Techniques for Verifying Cache Coherence Proto-
cols”, ACM Computing Surveys, Vol. 2@ar. 1997, pp. 83-126.

41

[25] Pong, F., “Symbolic State Model; A New Approach for the Verification of Cache Coherence
Protocols”, Ph.D. Dissertation, Dept. of Electrical Engineering-Systems, University of Southern
California, Aug. 1995.

[26] Pong, F., and Dubois, M., “The Verification of Relaxed Consistency Protocols with the Sym-
bolic State Model,” USC Computer Engineering Report 97-12, Department of EE-Systems, Uni-
versity of Southern California, July 1997.

[27] Sweazey, P. and Smith, A.J., “A Class of Compatible Cache Consistency Protocols and their
Support by the IEEE FuturebudPyoc. of the 13th Int'l Symp. on Computer Architectysp. 414-

423, 1986.

42

	Formal Automatic Verification of Cache Coherence in Multiprocessors with Relaxed Memory Models
	Fong Pong and Michel Dubois*
	1 Introduction
	Figure 1. Explicit Synchronization in a Relaxed Memory Model.
	Figure 2. Illustration of System Architecture for Delayed Consistency.

	2 The Delayed Protocol
	2.1 System Configuration
	2.2 Cache states and Algorithm
	Definition 1 (Cache Misses and Hits) Cache misses and hits are defined on the local cache state a...
	1. A read misses when B is invalid in the cache and d is not valid in the local ISB,
	2. A read hits when B is valid in the cache or d is valid in the local ISB,
	3. A write misses when B is invalid in the cache and B is not in the local ISB, and
	4. A write hits when B is valid in the cache or B is in the local ISB.
	1. Read hit. No coherence action is taken.
	2. Read miss. If Cj has a data copy in the Owner state, it must update memory with its data copy....
	3. Write hit. If Ci is the Owner, the write is performed to the cache only. (A cache line in the ...
	4. Write miss. Ci requests a copy with ownership from memory, which then sends invalidations to a...
	5. Lock (Remove IRB). Before a lock (lock_acquire), the invalidations buffered in Ci’s local IRB ...
	6. Unlock (Remove ISB). Before an unlock (lock_release), all entries in Ci’s local ISB must be fl...
	7. Replacement. A cache block must be replaced (victimized) when the cache needs room for data re...

	3 Verification of the Explicit Model
	Definition 2 (Finite State Transition System) With respect to a cache block, the behavior of a me...
	3.1 Execution Model
	1. Semi-Critical Section Mode (SCS). In this mode, the processor may execute read accesses only. ...
	2. Critical Section Mode (CS). A processor in mode CS is the only processor allowed to read or mo...
	3. Out Mode (OUT). When a processor is in the CS mode, all other processors must be in the OUT mo...
	Figure 3. Processor Execution Modes from the Standpoint of Local Processor pi

	3.2 Modeling Data Words and Automaton States
	3.3 Overview of the Global State Machine M
	1. The cache state (c), where c Œ{Owner, Keeper, Stale, Invalid}.
	2. The Invalidation Send Buffer (isb) state, where isb Œ{isb00, isb01, isb10, isb11}. Each of the...
	3. The processor mode (ps), where ps Œ{OUT, SCS, CS}. Mode CS indicates that the local processor ...
	1. cwd1 keeps track of the value of wd1 in the cache copy.
	2. isbwd1 keeps track of the value of wd1 in the ISB.
	1. read and write accesses to wd1 (wd2),
	2. lock and unlock synchronization accesses,
	3. remisb (removal of the block from the ISB),
	4. remirb (removal of the entry in the IRB and invalidation the block in the cache), and
	5. repl (block replacement).

	3.4 Model for Data Consistency and Detection of Inconsistency
	Definition 3 (Detection of Data Inconsistency) By tagging all data copies with values in the set ...
	1. If pi’s cache copy is valid, then the copy must have the value fresh.
	2. If pi ‘s cache copy is invalid but a valid ISB entry exists, the ISB copy must be fresh.

	4 Verification by Symbolic State Model (SSM)
	1. The behavior of every cache is specified by the same finite state machine (Therefore, caches i...
	2. When contending writes are posted, only one can progress at a time, but multiple concurrent re...
	4.1 Correspondence of State Transition Systems
	Definition 4 (Correspondence) Given two state transition systems M: (s0, A, S, S, d) and Mr: (s0r...
	1. s0r corresponds to s0 as denoted by s0rjs0,
	2. For each , at least one state corresponds to s, i.e., srjs.
	3. If M in state s makes a transition to state t on an enabled operation t, and state sr of Mr co...
	4. With respect to the correctness properties, Mr’s states corresponding to error states in M mus...
	Figure 4. Correspondence Relation.

	4.2 SSM Abstraction
	4.2.1 Abstract State Representation
	Definition 5 (Repetition Constructors)
	1. Null (0) indicates zero instance.
	2. Singleton (1) indicates one and only one instance, which can be omitted in the notation.
	3. Star (*) indicates an unknown number of instances (i.e., greater than or equal to 0).
	Definition 6 (Composite State) A composite state is the composition of local automaton states in ...

	4.2.2 State Containment Relation
	Definition 7 (Containment) Composite state S2 contains composite state S1, or S1 Õ S2, if

	4.2.3 State Expansion Rules and Algorithm
	1. Aggregation: (Q, q0, qr) º (Q, qr), (Q, q1, q1/*) º (Q, q*),and (Q, q*, q*) º (Q, q*).
	2. Coincident Transition: q1rÆt q2r, where r Œ[1, *]. All automata in the same state will move to...
	3. One-step Transition:
	4. N-steps Transitions: This rule specifies the repetitive application of the same transition N t...
	5. Progress Transitions:
	Figure 5. Illustration of State Transitions in SSM.

	4.3 Monotonicity
	Proof: The proof follows from the ordering relation among the repetition constructors and from ch...
	Lemma 2. The immediate successor S1 originated from state

	Proof: We only need to consider the effect of applying t to machines in state qi in S1 and S2. To...
	Lemma 3. The claim S1 Õ S2 holds if S1 Õ S2, that is, rj £ rj �for all j.

	Proof: Because the aggregation process is monotonic by lemma 1, lemma 3 simply extends the result...
	Theorem 1. (Monotonicity) If S1 Õ S2, then for every S1 reachable from S1 there exists S2 reachab...

	Proof: This is an immediate result of lemma 3. q
	Definition 8 (Essential State) Composite state S is essential if and only if there does not exist...

	4.4 Correspondence Between State Enumeration and SSM Model
	Definition 9 (Correspondence Relation) State corresponds to state , i.e. srjs, if s is one of the...
	Theorem 2. Given s0, we can easily construct s0r such that s0rjs0.
	Theorem 3. Consider the state transition system M:(s0, A, S, S, d) of an explicit model with (unr...

	Proof: Because s is one of the states represented by sr (srjs), the monotonic operation of SSM gu...
	Theorem 4. Suppose that the abstract state transition model Mr: (s0r, A, Sr, S, dr) in the SSM co...

	Proof: According to the definition of data consistency (section 3.4), it is a safety property for...

	4.5 Discussion

	5 The SSM Verification System
	Figure 6. Example Code in the SSM System.
	Figure 7. SSM Environment.
	Figure 8. An Example Procedure for Checking Data Consistency.

	6 Verification at the Behavioral Level
	6.1 Behavioral Correctness of the Delayed Protocol
	1. Initially, cache C1 is in the Stale state and cache C2 is the Owner. Moreover, C1 is in the cr...
	2. When C1 exits its critical section, the value of wd1 in ISB1 is sent to memory, which is updat...
	3. When C2 receives the invalidation, it writes its copy back to memory.
	4. Upon receiving the write-back message, memory is updated. Thus, the most recent value of wd1 f...
	1. . This property partially proves that the delayed protocol preserves data consistency. If proc...
	2. When there is a modified copy stored in the local ISB, all other copies are obsolete. We have
	3. . This invariant states that if the local cache is the Owner, there must be no corresponding e...
	4. . This means that, if there is an Owner, no other caches may be an Owner or a Keeper. This pro...
	5. The final property we proved shows that a correct path leading to a fresh data copy always exi...

	6.2 Performance Results
	TABLE 1. Performance Results of Different Methods for Verifying the Delayed Protocol (atomic tran...

	7 Verification at the Non-Atomic Transactions Level
	Figure 9. Abstract Verification Model at the Message-passing Level
	7.1 Performance Results
	TABLE 2. Performance Results of Different Methods for Verifying the Delayed Protocol (non-atomic ...
	Figure 10. Efficiency of the SSM Method.

	8 Conclusion
	[1] Adve, S.V. and Hill, M.D., “Weak Ordering--A New Definition”, Proc. of the 17th Int’l Symposi...
	[2] Adve, S.V. and Hill, M.D., “A Unified Formalization of Four Shared-Memory Models”, IEEE Trans...
	[3] Archibald, J. and Baer, J.-L. “Cache Coherence Protocols: Evaluation Using a Multiprocessor S...
	[4] Amza, C., Cox, A. L., Dwarkadas, S., Keleher, P., Lu, H., Rajamony, R., Yu, W. and Zwaenepoel...
	[5] Browne, M.C., Clarke, E.M. and Grumberg, O., “Reasoning about Networks with Many Identical Fi...
	[6] Censier, L.M. and Feautrier, P., “A new solution to coherence problems in multicache systems”...
	[7] Clarke, E. M., Grumberg, O. and Long, D. E., “Model Checking and Abstraction”, ACM Transactio...
	[8] Cousot P. and Cousot, R., “Abstract Interpretation Frameworks”, Journal of Logic and Computat...
	[9] Dubois, M., Scheurich, C. and Briggs, F.A. “Memory Access Buffering in Multiprocessors”, Proc...
	[10] Dubois, M., et al. “Delayed Consistency and Its Effects on the Miss Rate of Parallel Program...
	[11] Dubois, M., et al., “The Detection and Elimination of Useless Misses in Multiprocessors,” Pr...
	[12] Dahlgren, F., and Stenström, P., “Using Write Caches to Improve Performance of Cache Coheren...
	[13] Galles, M. and Williams, E.,”Performance Optimizations and Verification Methodology of the S...
	[14] Gharachorloo, K., et al. “Memory Consistency and Event Ordering in Shared-Memory Multiproces...
	[15] Holzmann, G.J. “Algorithms for Automated Protocol Verification”, AT\&T Technical Journal, Ja...
	[16] Ip, C.N. and Dill, D.L., “Better Verification Through Symmetry”, Proc. 11th Int’l Symp. on C...
	[17] Ip, C.N. and Dill, D.L., “Verifying Systems with Replicated Components in Murj”, Int’l Conf....
	[18] Lamport, L., “How to Make a Multiprocessor Computer that Correctly Executes Multiprocess Pro...
	[19] Lynch, Nancy A. and Tuttle, Mark R., “Hierarchical Correctness Proofs for Distributed Algori...
	[20] Nanda, A.K. and Bhuyan, L.N. “A Formal Specification and Verification Technique for Cache Co...
	[21] Pong, F. and Dubois, M., “A New Approach for the Verification of Cache Coherence Protocols”,...
	[22] Pong, F., Browne, M., Aybay, G. Nowatzyk, A. and Dubois, M., “Verifying Distributed Director...
	[23] Pong, F. and Dubois, M., “Formal Verification of Delayed Consistency Protocols”, Proc. of th...
	[24] Pong, F. and Dubois, M., “A Survey of Techniques for Verifying Cache Coherence Protocols”, A...
	[25] Pong, F., “Symbolic State Model; A New Approach for the Verification of Cache Coherence Prot...
	[26] Pong, F., and Dubois, M., “The Verification of Relaxed Consistency Protocols with the Symbol...
	[27] Sweazey, P. and Smith, A.J., “A Class of Compatible Cache Consistency Protocols and their Su...

