

Formal Automatic Verification of
Cache Coherence in Multiprocessors
with Relaxed Memory Models

Fong Pong, Michel Dubois*
Computer Systems and Technology Laboratory
HP Laboratories Palo Alto
HPL-2000-33
February, 2000

E-mail: fpong@hpl.hp.com
 dubois@paris.usc.edu

Shared-Memory
Multiprocessor,
relaxed memory
consistency
models, delayed
consistency,
verification,
symbolic state
model

State-based, formal methods have been successfully applied to the
automatic verification of cache coherence in sequentially consistent
systems. However, coherence in shared-memory multiprocessors under a
relaxed memory model is much more complex to verify automatically. With
relaxed memory models, incoming invalidations and outgoing updates can
be delayed in each cache while processors are allowed to race ahead. This
buffering of memory accesses considerably increases the amount of state in
each cache and the complexity of protocol interactions. Moreover, because
caches can hold inconsistent copies of the same data for long periods of
time, coherence cannot be verified by simply checking that cached copies
are identical at all times.

This paper makes two major contributions. First, we demonstrate how to
model and verify cache coherence under a relaxed memory model in the
context of state-based verification methods. Frameworks for modeling the
hardware and for generating correct memory access sequences driving the
hardware model are developed. We also show correctness properties which
must be verified on the hardware model. Second, we demonstrate a
successful application of a state-based verification tool called SSM for the
verification of delayed protocol, an aggressive protocol for relaxed memory
models. SSM is based on an abstraction technique preserving the properties
to verify. We show that with classical, explicit approaches the verification of
cache coherence is realistically unfeasible because of the state space
explosion problem whereas SSM is able to verify protocols both at both
behavioral and message-passing levels.

∗ Department of Electrical Engineering-Systems, University of Southern California, Los Angeles, CA
90089-2562
 Copyright Hewlett-Packard Company 2000

Internal Accession Date Only

her-

so dem-

n tool

axed

mple-

ct of

nt pro-

8], the

buff-

cation

odel,

state-

ue to a

of other

serial-

ord

com-

bitrary

mem-

d

of

. The
1 Introduction

In this paper, we develop the framework to verify automatically and formally cache co

ence protocols under relaxed memory models using formal, state-based approaches. We al

onstrate the feasibility of verifying such cache protocols by applying a state based verificatio

called SSM (for “Symbolic State Model”) [25] to an aggressive cache protocol under rel

memory models, called the delayed protocol [10]. The delayed protocol is an aggressive i

mentation of release consistency [14], in which the sending of invalidations and the effe

received invalidations aredeliberatelydelayed until the nextreleaseand the nextacquirerespec-

tively. (Releases and acquires are synchronization primitives to order accesses of concurre

cesses sharing writable data.) As compared to protocols under a strong memory model [9, 1

performance improvements of the delayed protocol stem from the more effective use of store

ers, the more aggressive pipelineing of memory accesses, and the reduction offalse sharingeffects

[11].

State-based, formal methods have been successfully applied to the automatic verifi

of cache coherence under a strong memory model [16, 17, 26]. Under a strong memory m

memory accesses in the verification model are limited to loads and stores. In every step of a

based verification model, any processor can issue a load or a store unless it is blocked d

prior pending access and the issuance of a memory access is not restricted by the states

processors. Coherent accesses to a memory block, even to different words in the block, are

ized and the verification problem is simplified by assimilating a memory block to a single w

since the coherence unit is a memory block [21].

The verification of cache coherence under a relaxed memory model is much more

plex. First of all, the sequence of memory accesses driving the system cannot just be any ar

sequence of loads and stores. Consider the execution of figure 1 in a system with a relaxed

ory model [1, 2, 9, 14]. The write by p0 and the read by p1 are ordered by paired Test&Set an

Unset synchronization accesses. Since the read of p1 cannot complete before the write of p0 due to

the explicit synchronization, p0 does not need to block at the write waiting for the invalidation

p1’s copy. The only requirement for a correct execution is that the value written by p0 becomes vis-

ible to p1 before p1 reads it. To enforce this requirement the hardware relies on lock accesses
2

he

ems,

execu-

eration

roniza-

s and

odeled

associ-

state-

any

ay

lation

memory

e the

e data

che,

iffer-

of its
invalidation can propagate from p0 to p1 when p0 releases the lock (Unset) and must reach t

cache of p1 when p1 executes the acquire (Test&Set). To verify cache protocols in such syst

the model must take into account synchronizations on top of regular data accesses. In the

tion sequence of figure 1, p1 is allowed to issue its read only after p0 and p1 have performed their

Unset and Test&Set respectively. Clearly, the state expansion process of a state enum

method must be restricted to generate only such legal sequences of reads, writes and synch

tions.

Second the hardware to model is much more complex. It includes buffers for store

invalidations, write caches and lockup-free caches. These additional mechanisms must be m

by simple constructs in the hardware model and considerably increase the amount of state

ated with each cache. Thus they greatly contribute to the state explosion problem plaguing

based verification approaches.

A third problem is how to model and formulate the condition of data coherence. In m

protocols [3], if a cache block is in the “shared” state, an implication is that other processors m

have cached the block and all copies are identical to the main memory copy. This semantic re

between cache states and data copies is not guaranteed in a cache protocol under a relaxed

model. We cannot rely on checking if all individual cache states are compatible [20]. Becaus

enforcement of data consistency is delayed until synchronization points, caches may hav

copies with incoherent values for long periods of time. Even if a block is still accessible in a ca

some of its words may be stale and, in general, the effective state of a word within a block is d

ent from the state of the block. The verification model must track the states of the block and

words.

Figure 1. Explicit Synchronization in a Relaxed Memory Model.

p0

write (x)

Unset(lock)

p1

read (x)

Test&Set(lock)
3

tocols

meth-

that

ally for

a pro-

oge-

neous,

l. Each

d the

ch,

d finite

nt

SSM

space

erify

thods.

e hard-

condi-

ation

can be

pdates

cesses

stores

on the
Once these problems are solved we must adopt a verification strategy such that pro

for system of realistic sizes can be verified. We will show that classical, explicit state-based

ods fail in this regard for systems with relaxed memory models. By contrast we will also show

the sate-based verification method based onsymbolic state models(SSM) can successfully verify

coherence at both behavioral and message-passing levels. SSM [21] was conceived specific

the verification of cache protocols. It verifies cache protocols by exploring the state space of

tocol as in conventional state enumeration methods [15], but it exploits the symmetry and hom

neity of cache-based systems to reduce the size of the state space.

In traditional state-based methods, the behavior of the caches is specified by homoge

local finite state automata (representing caches) interacting through the coherence protoco

and every cache is specified individually in the model. LetM be theglobal state machine in this

explicit model.M is the composition of all local state automata (caches) and its state is calle

global state(or system state). To simplify the global state and reduce the complexity of the sear

the SSM provides a set of abstraction constructors to represent global states inM concisely, with-

out tracking the exact number of caches in particular states. The state space of the reduce

state machine in SSM denotedMr is much smaller than the state space ofM. The verification of

complex protocols onMr is more feasible than onM because the verification time and the amou

of memory to store global states are drastically cut. In contrast to other approaches [24],

enables the verification of cache protocols for any system size while avoiding the state

explosion problem [15].

This paper makes two major contributions. First, we demonstrate how to model and v

a cache protocol under a relaxed memory model in the context of state-based verification me

Three components are needed in a verification procedure for cache protocols: a model of th

ware, a model for the memory access sequences driving the model and a set of correctness

tions to verify. We show how to model complex latency tolerance mechanisms such as invalid

and store buffers, write caches and lock-up free caches. This general modeling approach

extended to other protocols under relaxed memory models such as protocols with delayed u

instead of invalidations. We also show how to generate correct sequences of memory ac

compatible with relaxed memory models. Such sequences must include not only loads and

but also synchronization accesses. We show correctness properties which must be verified
4

layed

evels:

sed on

n prob-

mod-

roto-

col

evelop

tool

.

dol-

um of

y mod-
hardware model in order to verify coherence.

Second, we demonstrate a successful application of SSM for the verification of the de

protocol, an aggressive protocol for relaxed memory models. The verification is done at two l

the behavioral and message passing levels. In both cases we show that SSM, which is ba

abstraction technique preserving the properties to verify overcomes the state space explosio

lem which is typical of current state-based approaches for protocols under relaxed memory

els.

The paper is structured as follows. In the next section, we present an overview of the p

col used in this paper to demonstrate the methodology and is called thedelayedprotocol. In sec-

tion 3, we establish a verification model for the protocol. An important element is anexecution

modelfor data race free(DRF) programs [1, 2]. This execution model ensures that the proto

state machine is driven by legal sequences of memory accesses (figure 1). In section 4, we d

the framework of the SSM method applicable to the protocol and we describe our verification

in section 5. Sections 6 and 7 include the verification results and section 8 is the conclusion

Figure 2. Illustration of System Architecture for Delayed Consistency.

2 The Delayed Protocol

The delayed protocol [10] is the target protocol to demonstrate the verification metho

ogy proposed in this paper. The verification model includes features found in a wide spectr

designs and is general enough to apply to other protocols under relaxed memory consistenc

els.

P1

C1

Memory & Directory

Interconnection

ISB IRB

word1 d1

word2 d2

word3 d3

wordn dn

An ISB entry (cache block)

. . . .

P2

C2

ISB IRB

Pn

Cn

ISB IRB

tag

state
5

ches

nd a

copy.

the

he or

t

-

differ-

non-

d

he-fly,

ns are

che

for

tate

can be

ecog-
2.1 System Configuration

Figure 2 shows a simplified architecture model with a shared memory and private ca

[6]. Every memory block has a directory entry which maintains the global state of the block a

full-map presencebit vector. The presence bit vector points to the processors with a cached

Every processor has a cache, anInvalidation Send Buffer(ISB) and anInvalidation Receive Buffer

(IRB). The ISB keeps blocks that have been modified locally but are not owned locally and

modified words in each block are marked by dirty bits; it could be implemented as a write cac

as part of a lockup-free cache [12]. TheIRB is a buffer for received invalidations1. Cached copies

with pending invalidations in theIRB are consideredStaleand are still accessible until the nex

lock2 executed by the local processor and the updated blocks in theISB are propagated to mem

ory at the next unlock. In such a system, accesses to synchronization variables are treated

ently that regular shared variables and the delayed protocol only applies to regular,

synchronization data accesses.

2.2 Cache states and Algorithm

Every cache block can be in any one of four states:Invalid , Keeper , Stale , and

Owner [10], with the following meanings: AKeeper copy is loaded into the cache on a rea

miss, a block copy isStale when a pending invalidation is in theIRB , and anOwner copy

implies that the local copy has been modified. Because invalidations are not performed on-t

an Owner copy does not necessarily mean anexclusivecopy in the system but theOwner is

responsible for providing the copy in response to other processors’ misses. Local modificatio

buffered in theISB even if the block is invalid in the cache, which means that a miss in the ca

must check theISB before issuing a request to memory. This leads to complex definitions

cache misses and hits in a processor node.

Definition 1 (Cache Misses and Hits)Cache misses and hits are defined on the local cache s

and theISB state. For every access to addressd in blockB,

1. Note that the IRB is not necessarily a hardware buffer, although we model it as such here. For example, it
implemented with an additionalstale bit in each block of the cache [10].

2. To simplify the discussion, we assume that lock and unlock are two primitive synchronization instructions r
nized by the hardware. They can be used to build up more sophisticated synchronization libraries.
6

na-

owing

y.

o

he

the

s to
1. A read misses whenB is invalid in the cache andd is not valid in the localISB ,

2. A read hits whenB is valid in the cache ord is valid in the localISB ,

3. A write misses whenB is invalid in the cache andB is not in the localISB , and

4. A write hits whenB is valid in the cache orB is in the localISB .

Cached blockB is valid if B is not in theInvalid state. A data word at addressd in block

B is valid in theISB if B residesin the ISB (an ISB entry holds the tag of blockB) and the dirty

bit for d is set.

A brief description of the protocol is outlined below for completeness. Detailed expla

tions of coherence messages and transactions can be found in [10] and in [26]. The foll

description is from the perspective of local cacheCi. Cj is a generic cache other thanCi.

1. Read hit. No coherence action is taken.

2. Read miss. If Cj has a data copy in theOwner state, it must update memory with its data cop

The memory then sends a copy toCi. If no Owner exists, memory directly supplies its copy t

Ci. In both cases,Ci becomes aKeeper . If the block resides inCi’s local ISB , the valid words

kept in theISB entry are merged with the returned data block. TheISB block remains in the

buffer.

3. Write hit . If Ci is theOwner, the write is performed to the cache only. (A cache line in t

Owner state cannot be present in theISB .) Otherwise,Ci must either have a valid copy

(Keeper or Stale), or anInvalid copy with a validISB entry. An entry must be allo-

cated in theISB if an entry does not already exist. The value is always stored into theISB

block copy as well as in the cache copy if it is valid. The dirty bit of the modified word in

ISB block is set.

4. Write miss. Ci requests a copy with ownership from memory, which then sends invalidation

all caches with their presence bit set (these caches must beKeepers or Owners). When a

cacheCj receives an invalidation, it sends its copy to memory if it is anOwner and an acknowl-

edgement otherwise. The invalidation message received byCj is buffered in the localIRB and

Cj keeps an accessibleStale copy. The actual invalidation ofCj is delayed until the next

lock_acquire. When all remote copies have been staled,Ci gets a copy from memory and

becomes the newOwner.
7

ge.

for

ns to

sec-

be

a

5. Lock (RemoveIRB). Before a lock (lock_acquire), the invalidations buffered inCi’s local IRB

must propagate to the local cache. In other words, allStale copies becomeInvalid . This is

also true when theIRB is flushed for other reasons.

6. Unlock (RemoveISB). Before an unlock (lock_release), all entries inCi’s local ISB must be

flushed. For each block inCi’s ISB , if the cache line is in theKeeper state, the memory

merges its copy with the modified words in theISB copy, stales all other copies in theKeeper

state, and notifiesCi that it is the newOwner. Otherwise, ifCi’s cached copy isStale or

Invalid , the memory is updated with theISB content and the cache state does not chan

This is also true when theISB must be flushed for other reasons.

7. Replacement. A cache block must be replaced (victimized) when the cache needs room

data returned on a miss. If the victim is theOwner, memory is updated. If the victim is a

Keeper , two cases are possible depending on the state of theISB . If the block is not in the

ISB , a request is sent to memory to clear the presence bit. Otherwise, theISB copy is written

back to memory which then merges the modified words with its copy and sends invalidatio

all other Keepers . If the victim has an entry in theIRB (i.e., it is Stale), it becomes

Invalid and the pending invalidation is removed from theIRB ; moreover, if anISB entry

exists, memory is updated and all otherKeepers are notified.

3 Verification of the Explicit Model

In this section, we describe the global state machineM used in the verification of the

explicit model. We also specify the coherence conditions to verify on the model. In the next

tion we will show how to abstract this explicit model to form machineMr used in the SSM.

The verification model forM is a finite state transition system, which in general can

defined as follows.

Definition 2 (Finite State Transition System)With respect to a cache block, the behavior of

memory system with m local automata is modeled by a finite state transition system M:(s0, A, S, Σ,

δ), where

s0 is the initial state ,

A is the set of state symbols,

A A× …× A×〈 〉m
8

ular,

del

F1,

same

lo-

e such

allest

ram for

for each

sses

n

r

e

a

xits
S is the global state space (a subset of),

Σ is the set of operations causing state transitions, and

δ is the state transition function, .

Given the general definition 2, we need to identify the elements of the model, in partic

the set of state symbolsA in order to represent the system correctly. Also, the verification mo

must incorporate rules for ‘correct’ programs.

3.1 Execution Model

Correct programs for systems with relaxed memory models must be DRF1 [2]. In DR

conflictingmemory accesses must be explicitly synchronized. (Two memory accesses to the

address are deemedconflictingif at least one of them is a store.) In the verification model, the g

bal state machineM must be steered by access sequences compatible with DRF1. To generat

sequences the execution model in the verification keeps track of each processor’s executionmode.

The mode of each processor is defined with respect to a data word (a data word is the sm

addressable unit of memory) and transitions between modes are specified by a state diag

each processor and each data word, as shown in figure 3. There are three possible modes

data word and each processor:

1. Semi-Critical Section Mode (SCS). In this mode, the processor may execute read acce

only. To supportconcurrent readers, processors in modeSCSdo not prevent other processors i

modeSCS from reading the shared data. A processor may enter theSCSmode provided no

other processor is in theCS mode. A processor exits theSCS mode by executing an unlock.

2. Critical Section Mode (CS). A processor in modeCS is the only processor allowed to read o

modify the shared data. When a processor is in modeCS, all other processors must be in th

OUTmode. A processor may enter theCSmode provided no other processor is in theSCSor

CS mode. A processor exits theCS mode by executing an unlock.

3. Out Mode (OUT). When a processor is in theCSmode, all other processors must be in theOUT

mode and cannot access the shared data. Several processors may be in modeSCSwhile others

in the OUTmode. Any read or write by a processor in theOUTmode must be preceded by

lock; if another processor is in modeCS, the lock cannot be executed before that processor e

A A× …× A×〈 〉m[]

S Σ× S→
9

ces of

mit it

arately,

ltiple

roto-

s. We

edure

ocks,

e

ine

ks can
cope of
modeCS via an unlock.

Figure 3. Processor Execution Modes from the Standpoint of Local Processor pi

In [23], we proved that the above model correctly forces processors to issue sequen

memory accesses in conformance with DRF1 programs. The proof is quite trivial and we o

here.

3.2 Modeling Data Words and Automaton States

Because coherence is a property bearing on each and every cache block taken sep

the verification procedure must deals with one memory block. Extending the model to mu

blocks is straightforward, but there is no compelling reasons to model multiple blocks at the p

col level3. Interferences between different memory blocks only occur on cache replacement

can always model replacements by assuming that the block we track in the verification proc

may be removed from the cache at any time.

Because critical and semi-critical sections protect individual words and not cache bl

the data block is split in two parts,wd1 andwd2. wd1 is the word in the block which we track for

data consistency. Concurrent accesses towd1 are restricted by the rules of DRF1. The rest of th

block, wd2, has an arbitrary size greater than or equal to one word. Modelingwd2 is important

because the state ofwd2 can affect the state ofwd1.

3.3 Overview of the Global State MachineM

To summarize, the local finite state automaton of each cache in the global state machM

3. In this paper, we only consider functional errors of the cache protocol. Accesses to multiple memory bloc
cause additional implementation errors such as deadlocks by circularly holding resources, but it is out of the s
this paper.

OUT CSSCS

Locki: if not ∃ j CS(Pj) Locki: if ∀ j OUT(Pj)

Unlocki

Writej
Readi

Writei
Readj

Readi
Readj

Unlocki
10

-

data

caches.

e

the

te in

invalida-
of the explicit state model is characterized by three components:

1. The cache state (c), wherec ∈{ Owner, Keeper , Stale , Invalid }.

2. The Invalidation Send Buffer (isb) state4, where isb∈{ isb00, isb01, isb10, isb11}. Each of

these four states specifies one of four possibilities: 1) no entry in theISB , 2) wd2 dirty in the

ISB , 3)wd1 dirty in theISB , and 4) bothwd1 andwd2 dirty in theISB .

3. The processor mode (ps), whereps∈{ OUT, SCS, CS}. Mode CSindicates that the local proces

sor is in the critical section and has the right to modifywd1. Processors inSCSare allowed to

readwd1 and processors inOUT cannot accesswd1 at all.

The notation used to specify the automaton of each cache is .

In addition to the above elements, we augment each cache automaton with auxiliary

variables (called thecache data status):

1. cwd1 keeps track of the value ofwd1 in the cache copy.

2. isbwd1 keeps track of the value ofwd1 in theISB .

The cache data status takes values from the domain {nodata, fresh, obsolete} and emulates

the data part of the protocol semantics. When a processor modifieswd1, its own cwd1 becomes

freshwhile copies ofcwd1 in other caches and in memory becomeobsolete. Data transfers are

emulated by assigning the value of the data status of some cache to the data status of other

The value ofwd2 is not modeled because the role ofwd2 is limited to modeling the changes in th

states ofwd1 caused by accesses towd2.

The global state machine also includes the memory directory state denoted bym. A single

global variable called the memory data statusmwd1 ∈{ fresh, obsolete} holds the value ofwd1 at

the memory. To avoid laying out all the details of the memory states in this paper, we refer

reader to [26] for a complete description of the protocol. The generic notation for a global sta

an explicit system withn caches is:

4. The state of IRB is already embedded in the cache state. Remember that a stale copy indicates a pending
tion in the IRB. Actually we advocate implementing the IRB with a stale state in the cache [10].

cps
isb
11

eir ISB

e status

re:

other

r

iza-

ly, as

d data

t

o-

ery
.

Two local cache automata are in the same state if they agree on their cache state, th

state, their processor state, and their data status. The state transitions are not functions of th

of the data.

Finally, the set of operations triggering state transitions in the global state machine a

1. read and write accesses towd1 (wd2),

2. lock andunlock synchronization accesses,

3. remisb (removal of the block from theISB) ,

4. remirb (removal of the entry in theIRB and invalidation the block in the cache), and

5. repl (block replacement).

Read, write and synchronization accesses are restricted by the DRF1 model. All

operations includingremisb, remirb, and repl can be executed at arbitrary times.remisb and

remirb model a realistic implementation withISB andIRB of finite capacities. Since they trigge

the same actions aslock andunlock, they can also be used to model occurrences of synchron

tion accesses.

3.4 Model for Data Consistency and Detection of Inconsistency

To verify data consistency, the model keeps track of the values of data copies explicit

described in section 3.3. Data inconsistency is reported when a processor is allowed to rea

with obsolete values.

Definition 3 (Detection of Data Inconsistency)By tagging all data copies with values in the se

{ nodata, fresh, obsolete} and emulating data transfers, data inconsistency is detected when a pr

cessor is allowed to read data with obsolete values.

Specifically, in the verification procedure, we check the following two conditions for ev

global state reached byM and for all processor pi which can readwd1 (i.e., pi is either in the CS or

in the SCS mode)

1. If pi’s cache copy is valid, then the copy must have the valuefresh.

c1ps1
isb1

cwd1 isbwd1,[] … cnpsn
isbn

cwdn isbwdn,[] m mwd1[], , ,()
12

. The

try

lete

not

dras-

hared-

iven a

a fac-

the

e that,

ches in

urrent

le-

red and
2. If pi ‘s cache copy is invalid but a validISB entry exists, the ISB copy must befresh.

The above two conditions are safety properties that must be true in all global states

check of data consistency onwd1 can be generalized to all other memory locations by symme

[16]. Data consistency is checked onlywhena data copy can be accessed and therefore obso

data copies can exist as long as they are not accessible.

4 Verification by Symbolic State Model (SSM)

The explicit model is now fully specified. However, as we will see, its verification is

feasible for systems of practical sizes. In order to make realistic protocols verifiable we must

tically reduce the size of the state space.

One possible approach to do this is based on system symmetry. Cache-coherent, s

memory multiprocessor systems such as the SGI Challenge [13] aresymmetric, which implies that

contexts of processors can be swapped without affecting the correctness of the system. G

protocol model ofn processors, the symmetry property reduces the size of the state space by

tor of n!. However, for complex protocols, this reduction is not sufficient in general to avoid

state space explosion problem [24, 25].

To further reduce the size of the state space, we take a different approach. We observ

in most existing cache protocols [3, 6, 10],

1. The behavior of every cache is specified by the same finite state machine (Therefore, ca

the same state move to the same next state in response to the same inputs.), and

2. When contending writes are posted, only one can progress at a time, but multiple conc

reads are allowed.

The implication of the above is that theexactnumber of caches in the same state is irre

vant to protocol correctness. For example, whether there are 1, 5 or 200 caches in the sha

i∀ psi CS=() psi SCS=()∨() ci Invalid≠() cwd1i fresh=→∧

i∀ psi CS=() psi SCS=()∨() Ci Invalid=()∧ ∧
isb1i isb10=() isb1i isb11=()∨() isbwd1i fresh=→
13

else-

advan-

not keep

done

wing

st

tion

rrors
clean state is not relevant. All these copies respond identically to memory events triggered

where in the system. Similarly, we need to single out the cache whichownsthe cache block and is

responsible for providing data to other processors which access the data and miss. Taking

tage of these observations, the SSM maps system states to more abstract states which do

track of the exact number of copies. In the balance of this section we show how this can be

successfully.

In general, we need first to identify an abstracted state transition system with the follo

properties.

4.1 Correspondence of State Transition Systems

Consider a state transition systemM: (s0, A, S, Σ, δ). Our goal is to find a moreabstract

state transition systemMr: (s0r, A, Sr, Σ, δr) such thatMr correspondsto M andSr is much smaller

thanS. Importantly,Mr must preserve the properties to verify. Error states ofM must be mapped

into error states inMr in the context of the correctness properties to verify.

Formally we define this correspondence as follows.

Definition 4 (Correspondence)Given two state transition systems M: (s0, A, S, Σ, δ) and Mr:

(s0r, A, Sr, Σ, δr), Mr corresponds to M iff there exists a correspondence relationϕ such that:

1. s0r corresponds to s0 as denoted bys0rϕs0,

2. For each , at least one state corresponds to s, i.e.,srϕs.

3. If M in state s makes a transition to state t on an enabled operationτ, and state sr of Mr corre-

sponds to state s, then there exists a state tr such that Mr can move from sr to tr by τ and tr cor-

responds to t.

4. With respect to the correctness properties, Mr’s states corresponding to error states in M mu

be error states.

Figure 4 illustrates this correspondence relation. The problem remains to find the relaϕ

such thatMrϕM. Once this correspondence is established, we can prove that no protocol e

s S∈ sr Sr∈
14

ula-

ffer-

y an

om-

ple-

condi-

to a

ether

er we
will go undetected in the abstract modelMr. We now proceed to define our abstraction.

Figure 4. Correspondence Relation.

Our definition of correspondence relation between two automata is similar to the sim

tion relation based on possibility mapping in [19]. However, the fundamental proof tactic is di

ent. In [19], the idea is to prove that an automatonImp simulates another automatonSpecin the

sense that every correctness conditions satisfied by the behavior ofSpecis satisfied by the behavior

of Imp. It is based on a concept of hierarchical refinement that the low-level description b

automatonImp is a correct implementation of a high-level abstraction (specification) by an aut

atonSpec.

By contrast to hierarchical refinement of proving that one automaton is a correct im

mentation of another, we mean to reduce the size of the automaton on which the correctness

tions are evaluated. During the process, we convert the structure of an automaton

corresponding automaton by notations with more powerful expressiveness.

We now present the set of repetition constructors which will enable us to group tog

sets of states to form superstates.

4.2 SSM Abstraction

4.2.1 Abstract State Representation

In SSM repetition constructors are used to represent global states [21-23]. In this pap

will use the following set of constructors:

Definition 5 (Repetition Constructors)

1. Null (0) indicates zero instance.

2. Singleton(1) indicates one and only one instance, which can be omitted in the notation.

3. Star (*) indicates an unknown number of instances (i.e., greater than or equal to0).

s t

sr tr

ϕ ϕ

τ

τ

15

m with

at “one

s in

.

f

te,

large

resent.

t

We can use the above constructors to represent the global states concisely in a syste

an unspecified number of caches. For instance, we can represent all the global states such th

cache is in the Invalid state, and zero, one or multiple caches are in the Shared state” by (I , S*).

This representation includes a large set of explicit states.

We define the structure of global states (called composite states) in SSM as follows.

Definition 6 (Composite State)A composite state is the composition of local automaton state

a system with an arbitrary number of caches. Suppose thatQ denotes the local finite state machine

A global state has the form , where n =Q is the number of all possible states ofQ

and ri ∈[0, 1,*] is one of the repetition constructors of definition 5.

For the verification of the delayed protocol,qi in definition 6 includes all the elements o

the state given in section 3.3, i.e.qi is a particular instance of or the memory directory sta

including the data status as well.

Composite state containment is an important characteristic of SSM, which leads to a

reduction in the size of the state space expansion.

4.2.2 State Containment Relation

The repetition constructors in SSM are ordered according to the set of states they rep

The resulting orders are 1 <* and 0 <* . This leads to the definition ofstate containment.

Definition 7 (Containment)Composite state S2 contains composite state S1, or S1 ⊆ S2, if

where r1, r2 ∈[0, 1,*].

In section 4.3, we will prove that the SSM yields amonotonic containment relationsuch

that, if S1 ⊆ S2, then . We will also show that the abstrac

state machineMr based on SSM is efficient and accurate for detecting protocol errors.

q1

r1
q2

r2 … qn

rn, , , 
 

cps
isb

q
r1

S1∈∀ q
r2

S2∈∃ such thatq
r1

q
r2≤ i.e.r1 r2≤

S1 S1
′→ S2 S2

′→() S1
′

S2
′⊆()∧⇒
16

gered

tors

here ‘/’

e

o

in

d

Since SSM directly expands composite states instead of explicit states, transitions trig

on composite states are now specified.

4.2.3 State Expansion Rules and Algorithm

Consider the general form of a composite state . The set of opera

applicable to composite states during the state generation process is defined as follows, w

signifies “or” selection, ‘→’ means a transition andQ is a generic term grouping local stat

machines of no direct interest.

1. Aggregation: (Q, q0, qr) ≡ (Q, qr), (Q, q1, q1/*) ≡ (Q, q*),and (Q, q*, q*) ≡ (Q, q*).

2. Coincident Transition: q1
r→τ q2

r, wherer ∈[1, *]. All automata in the same state will move t

the same next state in response to the same inputs.

3. One-step Transition:

(a) (Q, q1) →τ (Q’, q2) and

(b) (Q, q1
*) →τ (Q’, q2, q3

*),

where all machines not in stateq1 are denoted byQ in the tuple,→τ is a transition applied to

one of the component machines in stateq1 such thatq1 →τ q2, andτ causes all other state

machines in stateq1 to move to stateq3. After the transition, some state machines inQ may be

affected as shown by the change fromQ to Q’.

4. N-steps Transitions: This rule specifies the repetitive application of the same transitionN

times, whereN is an arbitrary positive integer andQ represents other machines which are not

stateq1.

(a) (Q, q1) →τ (Q, q2, q1
0), and

(b) (Q, q1
*) →τ (Q, q2

* , q1
*).

5. Progress Transitions:

(a) (Q1, Q2
*) →τ (Q1’, Q2’

*) and

(b) (Q1, Q2
*) →τ (Q1’).

These two rules deal with transitions→τ leading to different protocol behaviors on empty an

q1
r 1 q2

r 2 … qn
r n, , ,()
17

d the

and

is pro-

exam-

spec-

post-

posite

s react

from

the

trig-

dirty

y

non-emptyQ2. BecauseQ2 represents an unknown number of automata in some states an

constructor* may include the null case, we generate two states corresponding to empty

non-emptyQ2 [25].

Figure 5. Illustration of State Transitions in SSM.

A state expansion step has two phases. During the first phase, a new composite state

duced by applying transition rules to the current state. In the second phase, theaggregationrule is

applied to lump together local state machines in the same state. For illustration, consider the

ple of figure 5. On the left is the finite state machine for a three-state protocol [3] from the per

tive of cachei. j denotes any other cache.Ri andWi stand for read and write initiated by cachei.

On the right is the state transition from the current state (Invalid* , Shared*) to the next state

(Invalid* , Dirty) caused by a write miss. As shown in the example, the aggregation rule is a

transition rule to keep the representation for composite states concise.

Whereas, the SSM expansion rules manipulate the repetition constructors in the com

state, the state transitions, or more precisely, the ways in which the local finite state machine

to an input, are still dictated by the cache coherence protocol. For example, the transition

(Invalid* , Shared*) to (Invalid* , Dirty) is labeled by a write miss. Thus the SSM does not alter

semantics of the protocol.

The example of figure 5 also demonstrates the application of the one-step rule. If we

ger another write-miss transition, the cache in the dirty state becomes invalidated and a new

copy is generated. Although the new state is still (Invalid* , Dirty), the semantic is different. In the

transition from (Invalid* , Shared*) to (Invalid* , Dirty), the missing block is provided by memor

I

D S

Wi

Wi

Wi

Wj

Wj

Ri

Rj Ri
Rj

Rj Wj

Ri

(Invalid*, Shared*)

(Invalid*, Dirty, Invalid*)

(Invalid*, Dirty)

W

one-step
coincident

aggregation

current state

next state
18

sion.

N-step

are

se

rs post

terme-

still be

roto-

trans-

ed the

states

leted.

mem-

pera-

n

itively,

ates
(a clean copy is supplied by memory [3].) By contrast in the write-miss transition from (Invalid* ,

Dirty) the block is supplied by the current cache in the dirty state.

Generally speaking, the one-step transition rule is sufficient to carry on the expan

Nevertheless, to speed-up convergence in a series of transitions, we have introduced the

rule. AnN-steps transition consists of a chain of one-step transitions:

(Q, q1
*) →τ (Q, q2

1, q1
*) →τ (Q, q2

2, q1
*) →τ... →τ (Q, q2

* , q1
*).

The same transitionq1 →τ q2 can be applied an unlimited number of times as long as there

state machines in stateq1. Every application of the transition brings down the number of ba

machines in stateq1 by one and increases the number of base machines in stateq2. Note that the

transition→τ must have no effect on other machines (included inQ in the tuple). A typical appli-

cation of this rule is when processors replace their copy in shared state, or when processo

requests independently. Applications of the N-step rules do not necessarily mean that the in

diate states are correct. In each of these intermediate states the property to verify must

checked.

The progress rules are applied in the case of write-invalidations. In write-invalidate p

cols, a write may cause invalidations to propagate to all caches sharing the block. The write

action is complete when all processors have received their invalidation and have acknowledg

home directory. Because the SSM abstracts the number of caches in a particular state, two

are generated, one in which the write transaction is in progress and one in which it is comp

Note that the progress rule is an extension to our original work [21] and is only needed when

ory accesses are modeled as non-atomic operations [25].

4.3 Monotonicity

Given the framework of SSM, we can prove that the expansion rules are monotonic o

tors, i.e., ifS1 ⊆ S2, then . Practically, a composite state i

SSM represents a set of global states in an explicit state enumeration model. Therefore intu

if an SSM stateS1 is contained byS2 and if an expansion step is done correctly, then the next st

of all the states included inS1 must also be contained in the next states of all the states inS2.

S1 S1
′→ S2 S2

′→() S1
′

S2
′⊆()∧⇒
19

achine

stem

we

rom

a

t

In general, let’s consider a system composed of finite state machines such that one m

can communicate with all other machines directly. A composite state of any SSM for that sy

has the form

.

Lemma 1. The aggregation process is monotonic, that is, if and , then

have .

Proof: The proof follows from the ordering relation among the repetition constructors and f

checking all possible combinations ofr11, r12, r21 andr22 subject to the constraints of this lemm

and to the aggregation rule.❑

We extend this monotonic aggregation process to state transitions.

Lemma 2.The immediate successorS1 originated from state

is contained by stateS2 originated from state

,

if 1< ri, rj = rj for all j ≠ i, and the same expansion rule taken on the same memory evenτ is

applied to S1 and S2.

Proof: We only need to consider the effect of applyingτ to machines in stateqi in S1 andS2. To

simplify the notation, all classesqj (j ≠ i) are lumped inQ. Providedqi →τ qk, the following two

states are generated when a one-step transition rule is applied toS1 andS2.

(1). S1=(Q, qi) →τ S1=(Q’ , qi
0, qk),

q1
r 1 q2

r 2 … qi 1–
r i 1– qi

r i qi 1+
r i 1+ … qn

r n, , , , , , ,()

q
r 11 q

r 21≤ q
r 12 q

r 22≤

Aggregation q
r 11 q

r 12,() q
r 1 Aggregation q

r 21 q
r 22,()≤ q

r 2= =

S1 q1
r 1 q2

r 2 … qi 1–
r i 1– qi

r i=1
qi 1+

r i 1+ … qn
r n, , , , , , ,()=

S2 q1
r 1 q2

r 2 … qi 1–
r i 1– qi

r i qi 1+
r i 1+ … qn

r n, , , , , , ,()=
20

sition).

e. It is

iple

ds the

tates

st a

as any

states,

space

by an

that a
(2). S2=(Q,)→τ S2=(Q’, , qk)

Q’ means that the transition may cause state changes of other machines (coincident tran

Since includes the case of a single machine, must contain the case of zero machin

clear thatS1 ⊆ S2. This containment relation is also true when compound rules involving mult

one-step transitions such as the N-steps rules are applied toS1 andS2. ❑

Lemma 3.The claimS1 ⊆ S2 holds if S1 ⊆ S2, that is, rj ≤ rj for all j.

Proof: Because the aggregation process is monotonic by lemma 1, lemma 3 simply exten

result of lemma 2.❑

Theorem 1. (Monotonicity) If S1 ⊆ S2, then for everyS1 reachable from S1 there existsS2 reach-

able from S2 such thatS1 ⊆ S2.

Proof: This is an immediate result of lemma 3.❑

Because of the property of monotonicity, we only need to keep track of composite s

which are not contained by any other state. The final output is a set ofessential states.

Definition 8 (Essential State)Composite state S is essential if and only if there does not exi

distinct composite stateS such that S⊆ S.

It should be pointed out that the generation of essential states terminates as soon

logical protocol error is detected, since expanding error states, which lead to unpredictable

is practically meaningless. At the end of a successful expansion process, the (explicit) state

is partitioned into several families of states (which may be overlapping), each represented

essential composite state.

4.4 Correspondence Between State Enumeration and SSM Model

Now that we have shown that the SSM expansion is monotonic, we need to prove

correspondence relation exists between the abstract SSM state transition systemMr: (s0r, A, Sr, Σ,

δr) and the explicit state transition systemM:(s0, A, S, Σ, δ) with respect to the property of data

qi
r i qi

r i'

qi
r i qi

r i'
21

te q

hed

ossi-

ta
consistency. For this purpose, we first define the correspondence relationϕ.

Definition 9 (Correspondence Relation)State corresponds to state

, i.e. srϕs, if s is one of the states abstractly represented by sr, where ai is the

state of the local automaton i and . The number of local automata of s in staj

(i.e.) must be a case covered by the repetition constructor rj, namely,

.

For example, (S* ,I) corresponds to (S,S,I) according to definition 9.

Theorem 2.Given s0, we can easily construct s0r such that s0rϕs0.

For instance, it is normal to start the verification with an initial state in which no cac

copy exist. In this case, all caches are invalid and (Invalid*)ϕ(Invalid, Invalid,...,Invalid).

Finally, we prove that the correspondence relation illustrated in figure 4 exists for all p

ble transitions. Givensrϕs and , we show that andtrϕt, whereop is

an operation inΣ.

Theorem 3.Consider the state transition system M:(s0, A, S, Σ, δ) of an explicit model with(unre-

stricted, arbitrary) m local automata and the abstract state transition model Mr: (s0r, A, Sr, Σ, δr)

in the SSM. Consider two states and , where ai is

the state of the local automaton i and . Given srϕs and ,we can

derive such that and trϕt.

Proof: Becauses is one of the states represented bysr (srϕs), the monotonic operation of SSM

guarantees thatt is a state characterized bytr. ❑

Theorem 4.Suppose that the abstract state transition model Mr: (s0r, A, Sr, Σ, δr) in the SSM cor-

responds to the explicit state transition system M:(s0, A, S, Σ, δ). For all states, if srϕs and if s is a

state which violates the data consistency property, sr is also a state which violates the same da

consistency property.

sr : q1
r1

q2
r2 … qn

rn, , ,() Sr∈

s: a1 a2 … am, , ,() S∈

ai :1..m qj :1..n, A∈

ai :1..m qj=

j ai :1..m qj= r j≤∀

δ s op,() t= δr sr op,() tr=

s: a1 a2 … am, , ,() S∈ sr : q1
r1

q2
r2 … qn

rn, , ,() Sr∈

ai :1..m qj :1..n, A∈ δ s op,() t=

δr sr op,() δr sr op,() tr=
22

r all

accu-

to the

stract

ch as

l and

shows

cation

report

meta-

odel.

ending

for any

self in

ssors,

hand,
Proof: According to the definition of data consistency (section 3.4), it is a safety property fo

global states. If a processor inscan read an obsolete value ofwd1, some processors insr must read

obsolete values ofwd1 becauses is one of the states covered bysr.

4.5 Discussion

In this section we want to address a few issues that have been raised over time on the

racy of the SSM abstraction for detecting data inconsistencies. The SSM method belongs

class of methods using abstraction [5, 7, 8]; it maps a concrete finite state automaton (M) to a more

abstract and small state automaton (Mr). It was shown that abstraction mappings are normallycon-

servative[7]. They preserve invariant properties, but might report false errors because the ab

models could cover behavior not possible in the original machine. In particular, properties su

liveness formulated with the existential path quantifier may not be preserved.

Given these known shortcomings, a particular abstraction mapping must be powerfu

accurate enough to verify important, global properties such as data consistency. Theorem 4

that the SSM abstraction does preserve the global invariant property of consistency. Verifi

based onMr is at least as accurate as verification runs based onM for the detection of data incon-

sistencies. Importantly, sinceMr is independent of the system size, the verification ofMr could dis-

cover protocol errors that may go undetected inM with a small number of processors [22].

The question remains whether the SSM abstraction developed in this paper may

false errors, or whether it is anexact approximationof the concrete model [7]. In [17], Ip and Dill

argue that our SSM abstraction may report false errors. For example, an explicit state (I, S, S) with

one invalid and two shared copies is covered by (I, S*) in SSM; however, (I, S*) also covers states

with more than two shared copies. As a result, false errors may be reported because an SSM

state covers many explicit states, including states which may not exist in a (finite) explicit m

The answer to this argument is that the SSM abstraction cannot check properties dep

on the exact number of processors. SSM demonstrates the correctness of a cache protocol

number of caches in the system. It is conceivable that a flaw in a protocol never manifests it

systems with up to N processors. Thus, if one wants to build machines with less than N proce

the verification based on SSM may over-constrain the design of the protocol. On the other
23

del

at only

ch as

wing

rmless.

The

e is

s

the

can be

 are:

g the

onform

of the

otocol

st

red”
depending on the value of N, it may be impossible to verify the protocol with the explicit mo

because of the state space explosion. Furthermore, it may be unwise to design protocols th

work for small numbers of processors.

In the most generic form, one can imagine an explicit model with a starting state su

. The number of exact instances of machines in stateq1 is in the range of 0 to infinity.

Without loss of generality, the case of null instance reflects a system without any cache. Allo

a cache protocol to operate in a system without any cache is practically meaningless, but ha

Accordingly, the corresponding SSM meta-state is . Consider a transition .

resulting states are and respectively. (“/” means “or” selection.) Ther

still an infinite number of machines in stateq1 even if one cache change state toq2 and, if the sys-

tem had no cache, then there are no machine in stateq2 after the transition. The SSM meta-state

cover all the explicit states. Note that is essentially the initial state and is

same as in SSM. Suppose that a chain of the same transition (N-step transition rule)

applied, according to the semantics of the protocol. Two corresponding sequences of states

, and

.

It is clear that the final SSM meta-state catches all the possible explicit states alon

path. Readers should nevertheless notice that grouping of several caches together should c

to the condition defined in [17], namely that transitions from the new state are independent

exact number of machines grouped in a particular state. In the example above, if the pr

behavior is different when one or multiple instances ofq2 exist, the above chain of transitions mu

be disallowed. Logically, the * constructor characterizing the number of copies ofq2 is explicitly

broken into several less abstract constructors, covering 0, 1, or multiple.

The MOSEI protocol [27] is a classic example. The number of data copies in the “sha

q1
0…∞()

q1
*() q1 q2→

q1
0…∞

q2
0/1,() q1

*
q2

0/1,()

q1
0…∞

q2
0,() q1

*
q2

0,()

q1
*()

q1
0…∞

q2
0/1,() q1

0…∞
q2

0/2,() … q1
0…∞

q2
0…∞,()→→ →

q1
*

q2
0/1,() q1

*
q2

0/2,() … q1
*

q2
*,()→→ →
24

tate or

n the

roto-

e to

s rule

n we

in a

ust be

tions

ate

e, it

null

proto-

invali-

aches

mpli-

e tran-

on.

ny

odify
state determines whether a data block returned on a load miss is loaded in the “exclusive” s

in the “shared” state. Therefore, the SSM model must distinguish the case of null copy i

“shared” state from the case of at least one or multiple. Other examples include the Illinois p

col, the Firefly protocol [3, 21] and the S3.mp protocol [22] which all have transitions sensitiv

the number of caches in a particular state.

Applying the progress rule requires special attention as well. Essentially, the progres

captures the protocol behavior for the propagation of invalidations (To simplify this discussio

limit ourselves to write-invalidate protocols, but the same argument would apply to updates

write-update protocol.) Before a write can successfully complete, all other cached copies m

invalidated. The progress status of a write depends on whether there are cached copies.

Without loss of generality, consider a meta-state . Suppose that transi

or may be applied depending on whether the number of instance ofq2 is null

and that always branches to (This would be the case for a write miss in a cache in stq1

issuing a write miss request. In this case of a write miss, machines in stateq2 would be the ones

subject to invalidations.) The two resulting states are and . At first glanc

would seem that the state should be denoted as , which excludes the

case for , because the path being taken assumes a non-empty class of . However, for

cols such as the delayed protocol and many other existing protocols, all the caches to be

dated behave the same way by acknowledging their invalidation. As long as a group of c

must be invalidated, we really do not care about their exact number. As a result, we avoid co

cating the model by excluding the null case.

To emphasize, the SSM abstraction does not alter the state transition functions. Stat

sitions are always defined by the cache protocol semantics rather than by the SSM abstractiThe

SSM abstraction is just a concise representationfor the state space of a system composed of ma

identical finite state processes and it never collapses states in a way that could eliminate or m

protocol transitions.

q1
*

q2
*,()

q1 q3→ q1 q4→

q2 q5

q1
*

q3,() q1
*

q4 q, 5
*,()

q1
*

q4 q, 5
*,() q1

*
q4 q, 5

* 0–,()

q5 q2
25

lus

tates

ed by

r as

state

ystem

, users

f

transi-

on and

sup-

basic

s.

mory

ented by

le to

ta

l

ad miss

tool

steps)
Finally, in our previous work [21, 25] we introduced an additional constructor called P

(+), indicating one or multiple instances. The starting state is corresponding to explicit s

. Operations are not performed on the null case. Since + is covered by* and operating on

null is harmless, the accuracy of SSM in detecting data inconsistency errors is not affect

dropping +. In the following, we will refer to SSM schemes with or without the plus constructo

SSM-+ and SSM-*. Also in sections 6.2 and 7.1, we will show that a significant reduction of

space is achieved by the elimination of the + constructor.

5 The SSM Verification System

We have developed an automated verification system based on the SSM [25]. The s

consists of a high-level description language and an automated verifier. In the SSM system

describe their protocols at the level of finite state machines. Global states are composed ostate

variablesdefined by the users. State transitions among global states are specified by a set of

tion rules. Each rule consists of guarded statements: it is associated with an enabling conditi

it is applicable only when its enabling condition is true. The language is block structured and

ports a rich subset of statements found in common programming languages, including

assignments, if-then-else conditionals, switch-case selections, for-loops and procedure call

Figure 6 shows the state declarations for the delayed protocol under atomic me

accesses. The state model was developed in section 3.2. The processor environment repres

the structureProc is the basis of abstraction. Figure 6 also shows that transition rules applicab

all Procsare collected in a “RuleSet”. We show the example of the rule for reading wordwd1 when

a processor is either in theSCSor in theCSmode. When the cache copy is valid or when the da

is present in theISBbuffer, the copy must be “fresh”. Otherwise, a violation of the assertion wil

cause the SSM system to report an error and start backtracking. The actions taken on the re

are modeled by changing the values of state variables. Note that in its current form, the

requires the users to provide information about which expansion rule (e.g., one-step or N

q1
+()

q1
1…∞()
26

ion is

age.
should be taken.

Figure 6. Example Code in the SSM System.

The protocol description in the SSM language is not directly executable. The descript

first translated into a verifier written in C, which is then compiled to generate an executable im

Type
ValStatus: enum {nodata, fresh, obsolete};

ProcAccMode: {OUT, SCS, CS};

GlobalAccMode: {GLB_OUT, GLB_SCS, GLB_CS}; -- for modeling convenience

CacheSt: enum {INV, KEEPER, OWNER, STALE}; -- IRB state is embedded in STALE

ISBSt: enum {ISB00, ISB01, ISB10, ISB11}; -- refer to section 3.2

Proc: Record

cs: CacheSt; -- cache state

wd1:ValStatus; -- status of the cached copy

acc_mode:ProcAccMode; -- processor access mode

isb_st:ISBSt; -- state of the ISB buffer

isb_wd1:ValStatus; -- status of wd1 in ISB buffer

End;

Memory: Record

wd1: ValStatus; -- status of the memory copy

global_access_mode: GlobalAccMode; -- global access mode to wd1

:::

End;

ProtocolMachine: Record -- define the protocol machine

 bm: (repetition) Proc; -- define a repetition base

 mem: Memory; -- home memory/directory

End;

GlobStategs: ProtocolMachine; -- actually define the global state variable

RuleSet p: (repetition) Proc Do

Rule “read access to WD1”
(p.acc_mode==SCS || p.acc_mode==CS) -- p cannot read WD1 in OUT mode
Begin

ExpansionClass p NSteps; -- which rule?
Switch (p.cs)

Case KEEPER, OWNER, STALE: -- in-line assertion
assert (p.wd1==fresh) “read obsolete value”;

Case INV: Switch (p.isb_st)
Case ISB00: // also read miss in ISB

p.cs=KEEPER; // take actions to load the data block
::::

Case ::::
End

End -- Rule
:::::
Rule ::::::

End -- RuleSet
27

rotocol

e

t state

ility

newly

e such

ta (sec-
The verifier uses the symbolic state expansion algorithm to explore the state space of the p

exhaustively.

Figure 7. SSM Environment.

In its current status, the SSM verifier checkssafetyproperties specified by the user. Thes

properties must be respected in every state. The user normally inserts in-lineassertionstatements

in the description program as shown in figure 6. When an assertion is not satisfied, the curren

is reported as anerroneousstate. In addition to in-line assertions, the users have all the flexib

to add sophisticated procedures for error detection. For instance, one can examine every

generated state by calling procedures for checking errors at the end of state transitions. On

procedure for the delayed protocol model is to check if a processor can access obsolete da

High-level FSM Description

Compilation & Code Generation

Verification (Reachability Analysis)

Trace Generation

error

complete

refinementcorrection

Informal
description

Bounded-Memory Simulation

Analysis

syntax checking
28

erated

right

values

the

y the

check
tion 3.4).

Figure 8. An Example Procedure for Checking Data Consistency.

Figure 8 shows the procedure for checking data consistency. After a new state is gen

in the generic form , the procedure is called. The variableq is a control variable

which walks through allqi in the next state. The code checks that if a processor has the access

to an obsolete data copy, the protocol fails. The users can define any procedure to check the

of state variables, including the constructor carried byqi.

At the occurrence of an error, the verifier terminates and reports a trace leading from

initial state to the error state. The verification procedure with the SSM system is illustrated b

flow diagram in figure 7.

Because the SSM abstraction does not maintain the identity of processes, it cannot

properties referred to specific processes. For instance, queries of finite behavior such as “if p1 is in

state A, there exist a global state in which p2 is in state B in the future” can not generally be

Procedure InvariantCheck;
Var q:(pointer) ProcState;
Begin
 For q:(repetition) ProcState Do
 If (q.p_blocked == NoPending) Then
 Switch (q.c_st)
 Case INV:
 If (q.acc_mode==SCS || q.acc_mode==CS) Then -- if the processor can access wd1
 Switch (q.isb_st)
 Case ISB10,

ISB11:
 Assert (q.isb_wd1 == FRESH) “Can read stale ISB-WD1”;
 End;

 End;
 Case STALE:
 If (q.acc_mode==SCS || q.acc_mode==CS) Then -- if the process can access wd1
 Assert (q.wd1_val == FRESH) “Can read stale WD1”;
 End;

 Case KEEPER,OWNER:
 If (q.acc_mode==SCS || q.acc_mode==CS) Then -- if the process can access wd1
 Assert (q.wd1_val == FRESH) “Read stale WD1”;
 End;
 End; -- Switch
 End; -- If
 End;
End;

q1
r1

q2
r2 … qn

rn, , ,()
29

r the

locks

e sat-

read

that

tate is

ugh

elock

rs other

lways

ever

hence,

ery use-

ited

of a

m is

o store

SM

tory list

ayed

hat the

more

, mem-

g pro-
answered. However, we feel this type of query is usually not interesting except for checking fo

absence of deadlocks and livelocks. In [25], we adopt a simple but useful definition for dead

and livelocks in the context of cache protocols. In brief, a memory access should eventually b

isfied. In existing cache protocols, it means that a “shared” copy is always procured after a

miss, and a “dirty” copy after a write miss. The checking procedure work as follows. Assume

the global state graph is built on top of the final set of essential states and the starting s

(Invalid*). We logicallytagone of the caches in the Invalid class of automata, and traverse thro

the state graph following the transitions. In it current status, the tool does not check the liv

case as described, but it checks simple deadlock states, which are states with no successo

than themselves.

The SSM system verifies protocols completely by exploring all reachable states and a

terminates. However, the SSM system also allows users to run the system inbounded-memory sim-

ulation mode. The major difference between verification and simulation is that the verifier n

terminates in the simulation mode: The state expansion paths are randomly selected, and

there is no guarantee that all reachable states are generated. The simulation mode can be v

ful when the available memory is small and the verification cannot be completed due to lim

memory size. The idea behind bounded-memory simulation is to approximate the quality

complete verification by maximizing the utilization of available memory. When the SSM syste

executed in this mode, users must specify the maximum memory size which can be used t

state information. The SSM verifier initially runs as usual as a verification tool. When the S

system consumes memory in excess of the available memory, some states stored in the his

or the list of unexpanded states are removed in order to meet the memory constraint.

6 Verification at the Behavioral Level

In this section, we present the results of applying the SSM system to verify the del

protocol. We first verify the delayed protocol at the behavior level by assumingatomicmemory

accesses, namely, protocol transitions happen instantaneously in zero time. After showing t

delayed protocol has correct behavior, we verify a design of the delayed protocol at the

detailed, message-passing level for systems with non-ordered interconnections. In this case

ory accesses arenon-atomicand cache coherence is achieved by exchanging messages amon
30

ur

u-

up the

ry

mbolic

ache

, sev-

iption

lue of

s not

write-

ob-

hich
cessors.

To evaluate the efficiency of the SSM method, we have also applied the Stanford Mϕ

system [16] to the delayed protocol. The Murϕ is an efficient verification tool based on state en

meration, incorporating state encoding to reduce memory usage, and hash tables to speed

search and comparison steps. There are two Murϕ systems: one exploits the system symmet

(Murϕ-s) and one does not (Murϕ-ns). The comparison between SSM and Murϕ can assess the

performance advantages afforded by the drastic reduction of the global state space in the sy

state mode.

For all verification runs, we start the expansion process in an initial state in which no c

has a block copy and all processors are in theOUTmode, prevented from accessingwd1. Thus, the

initial state is in SSM-+ and in SSM-*.

6.1 Behavioral Correctness of the Delayed Protocol

Before reaching the conclusion that the delayed protocol presented in [10] is correct

eral errors were found. These errors arise from ambiguities in the informal protocol descr

[10]. One major oversight leading to confusion is described in the following scenario.

1. Initially, cacheC1 is in theStale state and cacheC2 is theOwner. Moreover,C1 is in the crit-

ical section forwd1 and an updated copy ofwd1 is in ISB 1.

2. WhenC1 exits its critical section, the value ofwd1 in ISB 1 is sent to memory, which is

updated. Subsequently, an invalidation is sent to C2.

3. When C2 receives the invalidation, it writes its copy back to memory.

4. Upon receiving the write-back message, memory is updated. Thus, the most recent va

wd1 from C1 is lost.

This error occurred because the literal description of the delayed protocol in [10] doe

give a clear indication of the correct sequence that should be taken to update the memory by

backs fromC1 andC2. An incorrect protocol model was then built and verified to reveal the pr

lem. This experience has convinced us of the importance of formal verification methods w

uses formal specification rather than linguistic form to specify protocols.

Invalidout
isb00+() Invalidout

isb00 *()
31

the

l

access

d

e

ack to

d

l other

lways
After fixing such errors, the delayed protocol was proven to be correct by exploring

state space exhaustively. With respect towd1 and processorPi in state , the delayed protoco

has the following properties:

1. . This property partially

proves that the delayed protocol preserves data consistency. If processorPi can access its local

copy ofwd1, the copy must have a fresh value.

2. When there is a modified copy stored in the localISB , all other copies are obsolete. We have

This property confirms that the delayed protocol ensures data consistency. Since a read

may miss in the local cache and hit in theISB , the word present in theISB copy must have the

most recent value. The new value stored in theISB is not yet visible to other processors an

therefore, multiple copies of the same memory location in differentISBs are not allowed.

3. . This invariant states that if the local cache is theOwner,

there must be no corresponding entry in theISB . This property shows an optimization of th

protocol to avoid coherence overhead on private data. Updated private data is written b

memory only when the block is replaced.

4. . This means that, if there is an

Owner, no other caches may be anOwner or a Keeper . This property must be respecte

because, when a cache procures the ownership of the protocol, the protocol stales al

cached copies.

5. The final property we proved shows that a correct path leading to a fresh data copy a

exists:

ci psi

isbi

psi cs=() psi scs=()∨() ci Invalid≠() cwd1i fresh=()→∧

isbwd1i fresh=() mwd1 obsolete=()∧ ∧

j i cwd1 j fresh=() isbwd1 j fresh=()∨,≠∃¬()

isbi isb10=() isbi isb11=()∨ →

ci Owner=() isbi isb00=()→

ci Owner=() j i c j Owner=() cj Keeper=()∨,≠∃¬→

psi scs=() psi cs=()∨() ci Invalid=()∧ ∧

j i c j Owner=≠∃ cwd1 j fresh=→() j i c j Owner=≠∃¬() mwd1 j fresh=→()∨

isbi isb10=() isbi isb11=()∨()¬ →
32

e

tocol

d pro-

mory

cy has a

The

ber of

mory

ration

and
The above expression means that, ifwd1 is accessible by processorPi, and if neither Ci nor the

local ISB have a copy,Pi can get the correct data from the memory or the remoteOwner. Since

the memory controller requests theOwner (if any) to write back its copy on a cache miss, th

Owner must have a fresh copy to avoid updating the memory with obsolete data.

6.2 Performance Results

Table 1 shows the performance of the four tools for the verification of the delayed pro

on a SPARCstation 10 Model 30 with 128 MBytes of memory. The state space of the delaye

tocol quickly increases with the model sizes, even under the assumption of atomic me

accesses. Using the same assumption of atomic memory accesses, the delayed consisten

much higher level of complexity as compared with the verification of other protocols [21].

number of essential states reported by SSM-+ is 58, which is much larger than the num

essential states (usually under 8, cf. [21]) in traditional protocol designs, when atomic me

accesses are assumed.

The size of the state space quickly increases with the model size for state enume

methods. The symmetric Murϕ-s shows significant reductions in both the global state space

TABLE 1. Performance Results of Different Methods for Verifying the
Delayed Protocol (atomic transactions).

Method
Number of
processors

Size of global
state space

Size of search
state space

Verification
time (seconds)

Memory
(Mbytes)

Murϕ-ns 2 484 4,184 0.9 0.007

3 6,228 76,170 14.7 0.1

4 75,088 1,202,544 268.2 1.15

5 905,312 18,132,640 3,303.1 17.35

Murϕ-s 2 248 2,148 0.8 0.004

3 1,206 14,844 14.9 0.02

4 4,500 72,575 330.1 0.07

5 14,366 288,932 7,949.3 0.28

SSM-+ any n > 1 58 6,864 0.67 0.01

SSM-* any n > 1 36 1,342 0.25 0.01
33

s for

es by

ime is

ds in

d with

by the

form

For

(under

e for the

pro-

FIFO

e order

case,

essages

f the

th

lost. Of

tion at
the search state space over the non-symmetric Murϕ-ns. However, Murϕ-s takes twice as much

time as Murϕ-ns to verify the model with five processors. The computation of canonical state

symmetrically equivalent states may be the cause for this abnormality.

Table 1 also shows that the simplified SSM-* reduced the number of essential stat

38% as compared to SSM-+. Additionally, the search state space is smaller and verification t

less. By abstracting and grouping global states further, SSM-* is superior to other metho

terms of performance as we show in next section. This performance improvement is obtaine

no loss in accuracy.

The most complex essential state characterizing the delayed protocol and reported

tool consists of 14 processors in different states (i.e., we have meta-states in the

). Therefore, SSM effectively verifies models with more than 14 processors.

conventional protocols, a model of 3 or 4 processors is able to cover all possible cases

atomic memory accesses). We can assume that the size of the state space will be excessiv

delayed protocol if non-atomic memory accesses are modeled

7 Verification at the Non-Atomic Transactions Level

In this section, we present the verification results for an implementation of the delayed

tocol at the non-atomic transactions level for systems with non-FIFO networks. In a non-

interconnection, messages between two nodes are not guaranteed to be received in the sam

as they were issued. The protocol is an extension of the behavioral protocol in [10]. In this

protocol transactions are non-atomic and are accomplished by exchanging coherence m

between processors.

Figure 9 shows the abstract verification model of the system. A detailed description o

protocol is given in [26]. In addition to caches,ISBs , andIRBs , each processor is associated wi

onemessage sending channel(CH!) and onemessage receiving channel(CH?) to model the mes-

sage flow between caches and main memory [25]. We assume that messages are never

course, the verification at the message-passing level is much more complex than the verifica

the behavior level because the number of possible system states is much larger.

q1
r 1 q2

r 2 … q14
r 14, , ,()
34

d

y in the

f the

. For the

or-

d with

ly

model

es of

rs

of 111

otocol

able of
Figure 9. Abstract Verification Model at the Message-passing Level

7.1 Performance Results

Table 2 shows the results of applying the Murϕ and SSM methods to verify the delaye

protocol at the message-passing level. The state space explosion problem appears clearl

case of Murϕ, which uses the state enumeration method. Along with the exponential rise o

state space, the search state space, the verification time, and the memory requirement soar

model of four processors, Murϕ-ns quickly takes up 500M bytes of memory. (Because of the en

mous memory consumed, these runs are performed on a UltraSparc II workstation equippe

512M bytes of memory.)

Even when the system symmetry is exploited in Murϕ-s, the size of the state space is on

reduced by the factorial of the number of processors. Given limited resources, the largest

we could verify includes four processors. This verification run uses more than 300M byt

memory and takes more than 134 hours.

As compared to Murϕ, SSM-+ is more efficient. The verification time is about 69 hou

and the memory consumption is 210 M bytes. The most complex essential state consists

bases machines in different states. This means that SSM-+ effectively verifies the delayed pr

model with 111 processors. Clearly, no existing method based on state enumeration is cap

handling such a complex model.

C

C
H

?

C
H

!

Home Memory & Directory (full-map + dirty bit)

base machine

P

ISB IRB

C

C
H

?

C
H

!

P

ISB IRB

C

C
H

?

C
H

!

P

ISB IRB
35

n time

nicity

its suc-

.

a

nction

e and

ore

a state

in the

uld be

e 10
Note that the search state space of SSM-+ is much larger than that of Murϕ. This is reason-

able because the SSM model practically includes more processors. However, the verificatio

of SSM-+ is shorter. This is because our implementation of the SSM system uses the monoto

property to remove non-essential states as soon as possible. Consider a current state S and

cessors S1, S2,.....,Sn, which are generated in sequence. Suppose that S⊆ Sk, where 1<k<n.

Because of the property of monotonicity, we know that S, and S1..k-1can be removed immediately

Moreover, Sk+1..n do not need to be generated. We simply keep on expanding Sk, which will lead

to states covering S1..k-1 and Sk+1..n. As a result, we avoid very costly comparisons between

newly generated state and all previous states. Although hashing is used in Murϕ to speed up the

comparison operations, the efficiency depends on the rate of hash conflict. When the hash fu

is not ideal or the utilization of hash table is high, the operations of searching for the stat

resolving conflict become expensive. Another reason is that Murϕ encodes state information into

bit vectors in order to save memory. Therefore, the modification of state information is m

expensive. On the other hand, the state information in SSM is not encoded. For instance,

variable of boolean type is translated into an enumeration type of two elements {false, true}

generated C program. In this case, the SSM uses 4 bytes to represent information which co

coded into a single bit. When the state space is small, this is normally not a problem [25].

To improve the verification time of SSM, we must find optimal expansion paths. Figur

TABLE 2. Performance Results of Different Methods for Verifying the
Delayed Protocol (non-atomic transactions).

Method
Number of
processors

Size of global
state space

Size of search
state space

Verification
time (seconds)

Memory
(Mbytes)

Murϕ-ns 2 29,585 109,224 138.6 0.68

3 2,617,224 13,922,454 19,448.6 70.14

4 (excessive memory requirement > 500M bytes)

Murϕ-s 2 14,821 54,738 369.3 0.34

3 442,496 2,358,487 6,190.7 11.86

4 10,083,443 72,659,595 484,456.8 308.63

SSM-+ any n > 1 331,004 285,435,076 248,638.1 210.63

SSM-* any n > 1 8,048 5,204,909 4,190.9 2.96
36

verifica-

state

s gener-

ue. If

ue for

ly

t the

eally,

present

hough

s larger

by non-

panded.

we do

dras-
shows the number of essential states and the number of unexpanded states kept during the

tion. In brief, the state expansion process maintains two lists of global states: ahistory list and a

queuewhich respectively keeps expanded and unexpanded states. At each expansion step, aS

is popped from the queue and all of its successor states are generated. When a new state i

ated, it is compared with all previous states which are kept in the history list and in the que

the new state is found (contained in SSM), it is discarded; otherwise it is pushed into the que

further expansion. The current stateS is saved in the history list if it is not contained by any new

generated state.

As shown in figure 10, the number of states kept in the history list increases rapidly a

beginning, but drops close to the end. Meanwhile, the queue shrinks slowly and steadily. Id

the number of expanded non-essential states should be kept to a minimum because they re

wasted work. In the run of figure 10, about 30% of the expanded states are non-essential. Alt

it does not show in figure 10, one can imagine that expanding non-essential states cause

queue sizes. In the worst case, unexpanded essential states can be buried and wrapped

essential states, which prevents essential states from being popped out of the queue and ex

Searching for optimal solutions is a common problem for many applications; unfortunately,

not have an answer.

Finally, we observe that SSM-* cuts the state space of SSM-+ by 98%, which leads to
37

y.

t the

niza-

wide

e, the

r sys-

of

vely

num-

presen-
tic reductions of the verification time and memory requirement, at equal verification accurac

Figure 10. Efficiency of the SSM Method.

8 Conclusion

In this paper, we have verified the delayed protocol, which has high complexity even a

behavior level. This protocol delays the sending and receiving of invalidations until synchro

tion points in a weakly-ordered system. Because the design of delayed protocol covers a

range of techniques that can be exploited in relaxed memory models for good performanc

verification approach can be applied to similar protocols. This includes protocols designed fo

tems usingwrite caches[12] which can be verified in the same way because the functionality

write caches is essentially the same as theISB employed in the delayed protocol.

Although the delayed protocol is complicated, the symbolic verification method effecti

reduces the complexity of the verification process by only keeping track of 0, 1, or unknown

ber of caches in particular states. The set of repetition constructors used for abstract state re

0 500 1000 1500 2000 2500 3000 3500 4000

Number of Expanded States (x1000)

0

50

100

150

200

250

300

350
N

um
be

r
of

 S
ta

te
s

(x
10

00
)

 Size of the Queue

 Number of Kept Essential States

 Ideal

Length of the History List
38

riter-

single

imply

red to

ple-

ion of

pace

enerated

to the

h our

n veri-

roto-
tation is not surprising because cache coherence is similar to mutual exclusion or single-w

multiple-readers protocols in distributed computing. There are only special cases (such as a

writer) where we need to explicitly keep track of its state. Other state machines can be s

lumped because they exhibit the same behavior.

We have also shown that the set of constructors in SSM can be simplified as compa

previous publication, resulting in much better performance. Interestingly, Ip and Dill have im

mented a simplified variation of the SSM method and have reported a successful applicat

their tool in [17]. The difference is that our method works directly on the abstract state s

whereas their tool expands explicit states and then constructs abstract states based on g

explicit states. Therefore, the tool may require multiple runs (adding one more processor

model in each consecutive run) to reach the complete verification results obtained wit

method. In any event, both experiences demonstrate that the SSM method is very effective i

fying complex cache protocols. For further exploration of verification techniques to cache p

cols, one can refer to [24].
39

rt

essor

ene-

en-

sys-

.

rs”,

Pro-

rs,”

ache

Com-
References

[1] Adve, S.V. and Hill, M.D., “Weak Ordering--A New Definition”,Proc. of the 17th Int’l Sym-

posium on Computer Architecture, May 1990, pp. 2-14.

[2] Adve, S.V. and Hill, M.D., “A Unified Formalization of Four Shared-Memory Models”,IEEE

Trans. on Parallel and Distributed Systems, August 1993, pp. 613-624. (Also, Technical Repo

#1051, University of Wisconsin.)

[3] Archibald, J. and Baer, J.-L. “Cache Coherence Protocols: Evaluation Using a Multiproc

Simulation Model”,ACM Trans. on Computer Systems, Vol.4, No4, Nov. 1986, pp. 273-298.

[4] Amza, C., Cox, A. L., Dwarkadas, S., Keleher, P., Lu, H., Rajamony, R., Yu, W. and Zwa

poel, W., “TreadMarks: Shared Memory Computing on Networks of Workstations”,IEEE Com-

puter, pp. 18-28, Feb. 1996.

[5] Browne, M.C., Clarke, E.M. and Grumberg, O., “Reasoning about Networks with Many Id

tical Finite State Processes”,Information and Computation81, 1989, pp. 13-31.

[6] Censier, L.M. and Feautrier, P., “A new solution to coherence problems in multicache

tems”,IEEE Trans. on Computers, Vol. C-27, No. 12, Dec. 1978, pp. 1112-1118.

[7] Clarke, E. M., Grumberg, O. and Long, D. E., “Model Checking and Abstraction”,ACM

Transaction on Programming Languages and Systems, Vol. 16, No. 5, Sep. 1994, pp. 1512-1542

[8] Cousot P. and Cousot, R., “Abstract Interpretation Frameworks”,Journal of Logic and Com-

putation, Vol. 2, No. 4, Aug. 1992, pp. 511-547.

[9] Dubois, M., Scheurich, C. and Briggs, F.A. “Memory Access Buffering in Multiprocesso

Proceedings of the 13th International Symposium on Computer Architecture, June 1986, pp. 434-

442.

[10] Dubois, M., et al. “Delayed Consistency and Its Effects on the Miss Rate of Parallel

grams”,Supercomputing,Nov. 1991, pp. 197-206.

[11] Dubois, M., et al., “The Detection and Elimination of Useless Misses in Multiprocesso

Proceedings of the 20th International Symposium on Computer Architecture, May 1993, pp. 88-

97.

[12] Dahlgren, F., and Stenström, P., “Using Write Caches to Improve Performance of C

Coherence Protocols in Shared-Memory Multiprocessors”, Technical Report, Department of

puter Engineering, Lund University, April 1993.
40

of

ul-

ro-

ted

om-

for

ro-

oto-

d

oto-
[13] Galles, M. and Williams, E.,”Performance Optimizations and Verification Methodology

the SGI Challenge Multiprocessor”,Hawaii International Conference on System Sciences, Jan

1994.

[14] Gharachorloo, K., et al. “Memory Consistency and Event Ordering in Shared-Memory M

tiprocessors”,Proceedings of the 17th International Symposium on Computer Architecture, May

1990, pp. 15-26.

[15] Holzmann, G.J. “Algorithms for Automated Protocol Verification”,AT\&T Technical Jour-

nal, Jan./Feb., 1990.

[16] Ip, C.N. and Dill, D.L., “Better Verification Through Symmetry”,Proc. 11th Int’l Symp. on

Computer Hardwae Description Languages and Their Applications, pp. 87-100, Apr. 1993.

[17] Ip, C.N. and Dill, D.L., “Verifying Systems with Replicated Components in Murϕ”, Int’l

Conf. on Computer-Aided Verification, 1996.

[18] Lamport, L., “How to Make a Multiprocessor Computer that Correctly Executes Multip

cess Programs”,IEEE Trans. on Computers, Vol. C-28, No.9, Sept. 1979, pp. 690-691.

[19] Lynch, Nancy A. and Tuttle, Mark R., “Hierarchical Correctness Proofs for Distribu

Algorithms”, Proceedings of the 6th Annual ACM Symposium on Principles of Distributed C

puting (PODC'87), pp. 137-151, August 1987.

[20] Nanda, A.K. and Bhuyan, L.N. “A Formal Specification and Verification Technique

Cache Coherence Protocols”,Proceedings of the 1992 International Conference on Parallel P

cessing, pp. I-22-I-26.

[21] Pong, F. and Dubois, M., “A New Approach for the Verification of Cache Coherence Pr

cols”, IEEE Trans. on Parallel and Distributed Systems, Vol. 6, No. 8, Aug. 1995, pp. 773-787.

[22] Pong, F., Browne, M., Aybay, G. Nowatzyk, A. and Dubois, M., “Verifying Distribute

Directory-based Cache Coherence Protocols: S3.mp, a Case Study”,Proc. of the First Int’l EURO-

PAR Conf.,Aug. 1995, pp. 287-300.

[23] Pong, F. and Dubois, M., “Formal Verification of Delayed Consistency Protocols”,Proc. of

the 10th Int’l Parallel Processing Sym., Apr. 1996, pp. 124 - 131.

[24] Pong, F. and Dubois, M., “A Survey of Techniques for Verifying Cache Coherence Pr

cols”, ACM Computing Surveys, Vol. 29,Mar. 1997, pp. 83-126.
41

nce

hern

ym-

Uni-

their
[25] Pong, F., “Symbolic State Model; A New Approach for the Verification of Cache Cohere

Protocols”, Ph.D. Dissertation, Dept. of Electrical Engineering-Systems, University of Sout

California, Aug. 1995.

[26] Pong, F., and Dubois, M., “The Verification of Relaxed Consistency Protocols with the S

bolic State Model,” USC Computer Engineering Report 97-12, Department of EE-Systems,

versity of Southern California, July 1997.

[27] Sweazey, P. and Smith, A.J., “A Class of Compatible Cache Consistency Protocols and

Support by the IEEE Futurebus”,Proc. of the 13th Int’l Symp. on Computer Architecture, pp. 414-

423, 1986.
42

	Formal Automatic Verification of Cache Coherence in Multiprocessors with Relaxed Memory Models
	Fong Pong and Michel Dubois*
	1 Introduction
	Figure 1. Explicit Synchronization in a Relaxed Memory Model.
	Figure 2. Illustration of System Architecture for Delayed Consistency.

	2 The Delayed Protocol
	2.1 System Configuration
	2.2 Cache states and Algorithm
	Definition 1 (Cache Misses and Hits) Cache misses and hits are defined on the local cache state a...
	1. A read misses when B is invalid in the cache and d is not valid in the local ISB,
	2. A read hits when B is valid in the cache or d is valid in the local ISB,
	3. A write misses when B is invalid in the cache and B is not in the local ISB, and
	4. A write hits when B is valid in the cache or B is in the local ISB.
	1. Read hit. No coherence action is taken.
	2. Read miss. If Cj has a data copy in the Owner state, it must update memory with its data copy....
	3. Write hit. If Ci is the Owner, the write is performed to the cache only. (A cache line in the ...
	4. Write miss. Ci requests a copy with ownership from memory, which then sends invalidations to a...
	5. Lock (Remove IRB). Before a lock (lock_acquire), the invalidations buffered in Ci’s local IRB ...
	6. Unlock (Remove ISB). Before an unlock (lock_release), all entries in Ci’s local ISB must be fl...
	7. Replacement. A cache block must be replaced (victimized) when the cache needs room for data re...

	3 Verification of the Explicit Model
	Definition 2 (Finite State Transition System) With respect to a cache block, the behavior of a me...
	3.1 Execution Model
	1. Semi-Critical Section Mode (SCS). In this mode, the processor may execute read accesses only. ...
	2. Critical Section Mode (CS). A processor in mode CS is the only processor allowed to read or mo...
	3. Out Mode (OUT). When a processor is in the CS mode, all other processors must be in the OUT mo...
	Figure 3. Processor Execution Modes from the Standpoint of Local Processor pi

	3.2 Modeling Data Words and Automaton States
	3.3 Overview of the Global State Machine M
	1. The cache state (c), where c Œ{Owner, Keeper, Stale, Invalid}.
	2. The Invalidation Send Buffer (isb) state, where isb Œ{isb00, isb01, isb10, isb11}. Each of the...
	3. The processor mode (ps), where ps Œ{OUT, SCS, CS}. Mode CS indicates that the local processor ...
	1. cwd1 keeps track of the value of wd1 in the cache copy.
	2. isbwd1 keeps track of the value of wd1 in the ISB.
	1. read and write accesses to wd1 (wd2),
	2. lock and unlock synchronization accesses,
	3. remisb (removal of the block from the ISB),
	4. remirb (removal of the entry in the IRB and invalidation the block in the cache), and
	5. repl (block replacement).

	3.4 Model for Data Consistency and Detection of Inconsistency
	Definition 3 (Detection of Data Inconsistency) By tagging all data copies with values in the set ...
	1. If pi’s cache copy is valid, then the copy must have the value fresh.
	2. If pi ‘s cache copy is invalid but a valid ISB entry exists, the ISB copy must be fresh.

	4 Verification by Symbolic State Model (SSM)
	1. The behavior of every cache is specified by the same finite state machine (Therefore, caches i...
	2. When contending writes are posted, only one can progress at a time, but multiple concurrent re...
	4.1 Correspondence of State Transition Systems
	Definition 4 (Correspondence) Given two state transition systems M: (s0, A, S, S, d) and Mr: (s0r...
	1. s0r corresponds to s0 as denoted by s0rjs0,
	2. For each , at least one state corresponds to s, i.e., srjs.
	3. If M in state s makes a transition to state t on an enabled operation t, and state sr of Mr co...
	4. With respect to the correctness properties, Mr’s states corresponding to error states in M mus...
	Figure 4. Correspondence Relation.

	4.2 SSM Abstraction
	4.2.1 Abstract State Representation
	Definition 5 (Repetition Constructors)
	1. Null (0) indicates zero instance.
	2. Singleton (1) indicates one and only one instance, which can be omitted in the notation.
	3. Star (*) indicates an unknown number of instances (i.e., greater than or equal to 0).
	Definition 6 (Composite State) A composite state is the composition of local automaton states in ...

	4.2.2 State Containment Relation
	Definition 7 (Containment) Composite state S2 contains composite state S1, or S1 Õ S2, if

	4.2.3 State Expansion Rules and Algorithm
	1. Aggregation: (Q, q0, qr) º (Q, qr), (Q, q1, q1/*) º (Q, q*),and (Q, q*, q*) º (Q, q*).
	2. Coincident Transition: q1rÆt q2r, where r Œ[1, *]. All automata in the same state will move to...
	3. One-step Transition:
	4. N-steps Transitions: This rule specifies the repetitive application of the same transition N t...
	5. Progress Transitions:
	Figure 5. Illustration of State Transitions in SSM.

	4.3 Monotonicity
	Proof: The proof follows from the ordering relation among the repetition constructors and from ch...
	Lemma 2. The immediate successor S1 originated from state

	Proof: We only need to consider the effect of applying t to machines in state qi in S1 and S2. To...
	Lemma 3. The claim S1 Õ S2 holds if S1 Õ S2, that is, rj £ rj �for all j.

	Proof: Because the aggregation process is monotonic by lemma 1, lemma 3 simply extends the result...
	Theorem 1. (Monotonicity) If S1 Õ S2, then for every S1 reachable from S1 there exists S2 reachab...

	Proof: This is an immediate result of lemma 3. q
	Definition 8 (Essential State) Composite state S is essential if and only if there does not exist...

	4.4 Correspondence Between State Enumeration and SSM Model
	Definition 9 (Correspondence Relation) State corresponds to state , i.e. srjs, if s is one of the...
	Theorem 2. Given s0, we can easily construct s0r such that s0rjs0.
	Theorem 3. Consider the state transition system M:(s0, A, S, S, d) of an explicit model with (unr...

	Proof: Because s is one of the states represented by sr (srjs), the monotonic operation of SSM gu...
	Theorem 4. Suppose that the abstract state transition model Mr: (s0r, A, Sr, S, dr) in the SSM co...

	Proof: According to the definition of data consistency (section 3.4), it is a safety property for...

	4.5 Discussion

	5 The SSM Verification System
	Figure 6. Example Code in the SSM System.
	Figure 7. SSM Environment.
	Figure 8. An Example Procedure for Checking Data Consistency.

	6 Verification at the Behavioral Level
	6.1 Behavioral Correctness of the Delayed Protocol
	1. Initially, cache C1 is in the Stale state and cache C2 is the Owner. Moreover, C1 is in the cr...
	2. When C1 exits its critical section, the value of wd1 in ISB1 is sent to memory, which is updat...
	3. When C2 receives the invalidation, it writes its copy back to memory.
	4. Upon receiving the write-back message, memory is updated. Thus, the most recent value of wd1 f...
	1. . This property partially proves that the delayed protocol preserves data consistency. If proc...
	2. When there is a modified copy stored in the local ISB, all other copies are obsolete. We have
	3. . This invariant states that if the local cache is the Owner, there must be no corresponding e...
	4. . This means that, if there is an Owner, no other caches may be an Owner or a Keeper. This pro...
	5. The final property we proved shows that a correct path leading to a fresh data copy always exi...

	6.2 Performance Results
	TABLE 1. Performance Results of Different Methods for Verifying the Delayed Protocol (atomic tran...

	7 Verification at the Non-Atomic Transactions Level
	Figure 9. Abstract Verification Model at the Message-passing Level
	7.1 Performance Results
	TABLE 2. Performance Results of Different Methods for Verifying the Delayed Protocol (non-atomic ...
	Figure 10. Efficiency of the SSM Method.

	8 Conclusion
	[1] Adve, S.V. and Hill, M.D., “Weak Ordering--A New Definition”, Proc. of the 17th Int’l Symposi...
	[2] Adve, S.V. and Hill, M.D., “A Unified Formalization of Four Shared-Memory Models”, IEEE Trans...
	[3] Archibald, J. and Baer, J.-L. “Cache Coherence Protocols: Evaluation Using a Multiprocessor S...
	[4] Amza, C., Cox, A. L., Dwarkadas, S., Keleher, P., Lu, H., Rajamony, R., Yu, W. and Zwaenepoel...
	[5] Browne, M.C., Clarke, E.M. and Grumberg, O., “Reasoning about Networks with Many Identical Fi...
	[6] Censier, L.M. and Feautrier, P., “A new solution to coherence problems in multicache systems”...
	[7] Clarke, E. M., Grumberg, O. and Long, D. E., “Model Checking and Abstraction”, ACM Transactio...
	[8] Cousot P. and Cousot, R., “Abstract Interpretation Frameworks”, Journal of Logic and Computat...
	[9] Dubois, M., Scheurich, C. and Briggs, F.A. “Memory Access Buffering in Multiprocessors”, Proc...
	[10] Dubois, M., et al. “Delayed Consistency and Its Effects on the Miss Rate of Parallel Program...
	[11] Dubois, M., et al., “The Detection and Elimination of Useless Misses in Multiprocessors,” Pr...
	[12] Dahlgren, F., and Stenström, P., “Using Write Caches to Improve Performance of Cache Coheren...
	[13] Galles, M. and Williams, E.,”Performance Optimizations and Verification Methodology of the S...
	[14] Gharachorloo, K., et al. “Memory Consistency and Event Ordering in Shared-Memory Multiproces...
	[15] Holzmann, G.J. “Algorithms for Automated Protocol Verification”, AT\&T Technical Journal, Ja...
	[16] Ip, C.N. and Dill, D.L., “Better Verification Through Symmetry”, Proc. 11th Int’l Symp. on C...
	[17] Ip, C.N. and Dill, D.L., “Verifying Systems with Replicated Components in Murj”, Int’l Conf....
	[18] Lamport, L., “How to Make a Multiprocessor Computer that Correctly Executes Multiprocess Pro...
	[19] Lynch, Nancy A. and Tuttle, Mark R., “Hierarchical Correctness Proofs for Distributed Algori...
	[20] Nanda, A.K. and Bhuyan, L.N. “A Formal Specification and Verification Technique for Cache Co...
	[21] Pong, F. and Dubois, M., “A New Approach for the Verification of Cache Coherence Protocols”,...
	[22] Pong, F., Browne, M., Aybay, G. Nowatzyk, A. and Dubois, M., “Verifying Distributed Director...
	[23] Pong, F. and Dubois, M., “Formal Verification of Delayed Consistency Protocols”, Proc. of th...
	[24] Pong, F. and Dubois, M., “A Survey of Techniques for Verifying Cache Coherence Protocols”, A...
	[25] Pong, F., “Symbolic State Model; A New Approach for the Verification of Cache Coherence Prot...
	[26] Pong, F., and Dubois, M., “The Verification of Relaxed Consistency Protocols with the Symbol...
	[27] Sweazey, P. and Smith, A.J., “A Class of Compatible Cache Consistency Protocols and their Su...

