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Abstract

The PICO-N system automatically synthesizes embedded nonprogrammable accelerators to be
used as co-processors for functions expressed as loop nests in C. The output is synthesizable VHDL
that defines the accelerator at the register transfer level (RTL). The system generates a synchronous
array of customized VLIW (very-long instruction word) processors, their controller, local memory,
and interfaces. The system also modifies the user's application software to make use of the gen-
erated accelerator. The user indicates the throughput to be achieved by specifying the number of
processors and their initiation interval. In experimental comparisons, PICO-N designs are slightly
more costly than hand-designed accelerators with the same performance.

1. Introduction

An ever larger variety of embedded ASICs is being designed and deployed to satisfy the ex-
plosively growing demand for new electronic devices. Many of these devices handle demanding
multi-media computations. In many such ASICs, specialized nonprogrammable hardware accel-
erators (NPAs) are used for parts of the application that would run too slowly if implemented in
firmware on an embedded programmable processor. Rapid, low-cost design, low production cost,
and high performance are all important in NPA design. In order to reduce the design time and
design cost, automated design of NPAs from high-level specifications has become a hot topic.

One of the principal goals of the HP Labs Program-In-Chip-Out (PICO) project is to automate
the design of NPAs. The PICO-N user identifies a performance bottleneck and isolates it in the form
of a loop nest. The source code for this key loop nest is used as a behavioral specification of an NPA.
To obtain significant performance on this nest, PICO-N generates a highly parallel, special-purpose
systolic array. The system produces the RTL design for the systolic array, its control logic, its
interface to memory, and its control and data interface to a host processor. The design is expressed
in synthesizable, structural VHDL. The original source is rewritten to make use of the hardware
accelerator.

The current version of PICO-N has some limits on the acceptable input. The loop bounds must
be constant and the array references, except for references to lookup tables, must be affine. The
data-flow dependences between iterations must be uniform – they must have constant distances
independent of the size of the iteration space.

Automatic synthesis of efficient general-purpose, programmable VLIW architectures is another
aspect of the PICO research program that has been reported previously [13].
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Figure 1. NPA Design System Components

PICO-N fully automates the design task for NPA realizations of affine loop nests with uniform
flow dependences. The designs generated are competitive with hand-made designs. We believe it is
the first such system that is complete, fully automated, and effective in creating cost-competitive ar-
chitectures. The remainder of this paper describes the NPAs that PICO-N generates and its methods
of generating them, and gives experimental results.

2. Overview of the PICO-N System

The components of the PICO-N system are shown in Figure 1. The user provides the loop nest
in C as well as a range of architectures to be explored. A spacewalker is responsible for finding the
best (i.e., the Pareto optimal1) NPA architectures in this design space. The spacewalker specifies a
processor count, a performance per processor, and a global memory bandwidth to the NPA com-
piler. The NPA compiler is responsible for creating (and expressing in VHDL) an efficient, detailed
NPA design for the given loop nest, consistent with the abstract architecture specification provided
by the spacewalker. It also generates an accurate performance measurement and an estimated gate
count for the NPA.

The NPA compiler transforms the loop nest into an RTL architecture via a compilation process
consisting of:

1. An analysis phase in which array accesses and value-based flow dependences are found;
2. A tiling/mapping/scheduling phase in which the tile shape and the mapping of iterations to

processors and to clock cycles are determined;
3. A loop transformation phase in which the loop nest is first tiled, the outer loops over tiles are

sequential, and the inner loops over iterations within a tile are rewritten into parallel form. This
form mirrors the hardware's structure, as specified in the abstract architecture specification —
the parallel loops are loops over the processor indices. The loop body is also made to reflect
the hardware implementation, through explicit register promotion, load-store minimization, ex-
plicit interprocessor communication, explicit data location in global or local memory, and a
temporal-recurrence scheme for computing iteration space coordinates, memory addresses, and
predicates;

4. An operation-level analysis and optimization phase in which classical optimizations and word-
width minimization are done to the loop body;

5. A processor synthesis phase in which the processor's computation assets are allocated, the op-

1A design is Pareto optimal if no explored design has both lower estimated cost and better estimated performance.
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erations and the data of the loop body are bound to these assets and scheduled relative to the
start time of the loop (software pipelining), and the processor storage assets and intra- and
inter-processor interconnects are created;

6. A system synthesis phase in which multiple copies of the processor are allocated and intercon-
nected, and the controller and the data interfaces are designed;

7. A VHDL output and cost estimation phase.

The parallel form of the scheduled, mapped, register promoted, recurrenced loop nest is regenerated
as C after Step 3, for examination and possibly modification by the user and for verification at the
C level.

PICO-N synthesizes all the needed components of the NPA: the processor array, the array con-
troller, local memories, an interface to global memory, and a control and data interface to the host.
Both intra- and inter-processor interconnects are fully specified. Figure 2 illustrates the generic
NPA architecture, which is discussed further in Section 4.

3. From Iteration Space to Space-Time

Input: Loop Nest and Required Throughput. The user provides a perfect loop nest in a subset
of C. (A nest is perfect if there is no code other than a single embedded for loop in the body of
any but the innermost for loop.) The language restrictions enable an exact dependence analysis
and efficient hardware implementation. Salient restrictions include: no pointer dereference, affine
array indices (except for read-only arrays that occur only on the right-hand side in the loop body),
and constant loop bounds. If-then-else constructs are allowed and are removed by if-conversion.
For violation of some of these rules, the current version of the system gives understandable error
messages; for others it misbehaves. But all the rules are in principle capable of being checked and
enforced by the compiler.

In addition, the spacewalker specifies parameters of the NPA that cannot be inferred from the
code. These are: the number of processors in the NPA; their arrangement as a one or two di-
mensional mesh; the throughput of each processor in the form of the initiation interval (II); and
the global memory bandwidth allocated to the NPA. The II is the number of clock cycles between
the start times of successive loop iterations. The system designer may give the spacewalker an
allowable range for each of the independent parameters, thereby delimiting the design space to be
explored.



The source language has some extensions, in the form of pragmas. These allow the user to
declare nonstandard data widths; to indicate that certain global variables are not live-in or not live-
out (so that we do not have to depend on whole-program analysis); and to advise PICO-N to create
local memory for certain arrays (lookup tables, for example).

Output: Synchronous Parallel Nest. The goal of the loop-transformation phase is a synchronous
parallel nest, semantically equivalent to the original, that fully and explicitly defines the behavior
of the NPA at the level of whole loop iterations and processors. It plays this role by virtue of the
following characteristics: (i) The outer loop is a loop over clock cycles at which the inner loop is
scheduled; (ii) The inner loops are parallel loops over the physical processor axes; (iii) Registers
within the accelerator are expressed in the form of arrays indexed by clock cycle and processor.
References to these make temporal delay and interprocessor communication explicit; for example:

X[t][p1][p2] = X[t - 5][p1][p2 + 1]

is a communication of the value of X computed five cycles earlier on a neighboring processor. These
spatio-temporally indexed arrays, referred to as extended virtual registers (EVRs) [10], are realized
as synchronous register FIFOs in the generated processors; (iv) References to main memory (for
live-in and live-out data) are indicated by dereference of global pointers.

The processor synthesis phase (number 5 in the list above) derives a more detailed machine
description, at the level of individual operations, machine cycles, and function-units.

Dependence Analysis. In the first compilation phase, a full value-based analysis of true dependence
is done. The loop nest is first put into static single assignment form. For every right-hand side
occurrence of an array element, the left-hand side occurrence that writes this element is identified,
and the difference between the reader's and the writer's loop index vectors is the distance vector
of this true dependence. We require that all true dependences have constant inter-iteration distance
vectors.

Dependence analysis is simplified by the restriction that we make on the form of the affine
references to an array. All references to an array that occurs on the left-hand side must have an
affine map from loop iteration coordinates to array indices, and all references to a given such array
must share the same linear form. Only the constants are allowed to differ. Thus, a[i][j] and
a[i+1][j-1]may coexist, but a[i][j] and a[i][0] or a[j][i] cannot. We have found it
possible to enforce this rule on a wide variety of interesting embedded loop nests (but not, however,
on FFT).

An occurrence on the right-hand side can alias with one on the left-hand side and a dependence
can exist only if the difference in the constant vectors of their index maps is in the lattice gener-
ated by the linear part of the affine index map. For example, a[i+j][i-j] cannot alias with
a[i+j][i-j+1] because the difference in the constants in these affine maps (the vector (0;�1))

is not in the lattice generated by the linear form (the matrix

�
1 1
1 �1

�
). We say that two oc-

currences are alias equivalent if their constants differ by a vector in the generated lattice. This is
an equivalence relation on occurrences of an array, and it is easy to check. We allocate one EVR
for each equivalence class present in the program. This method generalizes recent work on load
elimination by Weinhardt and Luk [16].

We also perform an analysis of input dependences for read-only arrays: we find a set of integer
vectors that generates the lattice of iterations that read the same array element (the lattice of integer
null vectors of the linear form of the affine index map). We use this basis to generate code that
pipelines array elements (using an EVR per equivalence class of references) through the set of loop



iterations that read them, performing loads of these values from memory only at iterations on the
edge of the iteration space.

Scaling the Memory Wall. Limited memory bandwidth severely restricts the performance of most
architectures, especially for data-intensive kernels. The NPAs synthesized by PICO-N overcome
the memory wall by a combination of local memories and optimal register promotion. The user may
annotate an array with a pragma directing PICO-N to keep that array in a dedicated local memory.
In addition, no global-memory-resident datum generated in the loop nest is ever written to and then
later re-read from global memory: it resides in a register throughout its lifetime. No live-in datum
is ever read more than once from global memory. No datum is written to and later overwritten in
global memory. Global memory traffic is therefore minimized. PICO-N manages this by using full
dependence information to identify and eliminate all unnecessary memory traffic, and by allocating
a sufficient set of processor registers to hold all live values without spill.

Clearly, eliminating inessential memory traffic through register promotion costs hardware for
registers. We minimize this cost by tiling the iteration space. (Tiling was introduced in systolic
computation by Moldovan and Fortes [7].) Tiling adds additional outer loops to a nest. PICO-N
generates an accelerator for the inner loop nest over the iterations within a tile. The outer loops
over tiles run sequentially on a host. The key issue is the rectangular tile shape t = [ti] (a vector
giving the n extents of the tile.) PICO-N uses the array references that occur in the loop body to
calculate the memory traffic M(t) per tile. From the tile volume K(t) �

Q
ti and the specified

throughput (the processor count (P ), and initiation interval I) it calculates the processing-based
bound T (t) � (K(t)I=P ) on execution time for the tile. It then estimates the memory bandwidth
needed to sustain this performance as U(t) � (M(t)=T (t)). PICO-N uses constrained combina-
torial optimization to minimize the tile volume subject to the constraint U(t) � B where B is the
memory bandwidth allocated to the NPA. Of course, it must choose a tiling that conforms to the
Irigoin-Triolet conditions on the tile shape and the dependence distance vectors [5]. There may
therefore be dimensions in which the tile extent must be the full iteration space extent.

Iteration Mapping and Scheduling. Iterations are the primary objects that we map and schedule.
For an n-deep nest we identify each iteration with an integer n-vector~j, the vector of its loop
indices. The schedule is a shifted-linear schedule: iteration~j will be started at time � �~j where � is
an integer vector that we must choose, and � represents dot product. Let O be the set of operations
found in the loop body. Then the instance of an operation o 2 O at iteration~j will be started at time
� �~j + �o, where the scalars � will later be determined by a modulo scheduler.

The mapping from iterations to processors is done by orthogonal projection and clustering. We
choose to map iterations first to an (n � 1)-dimensional array of virtual processors by projecting
out one of the iteration space dimensions. Next, we assign a cluster (a rectangular subset) of virtual
processors to each physical processor. The projections we allow are parallel to the original axes
of the iteration space. We allow the spacewalker to try all n projection directions, and use Pareto
filtering to find the good choices. (We do not allow oblique projections: so far, we have not seen
examples in which this limitation leads to serious inefficiency.)

We have discussed iteration scheduling in detail in another report [2]. We summarize the basic
points here:

� The iteration schedule (� ) can be determined first, without knowledge of the operation schedule
(i.e., of �).

� Loop-carried dependences constrain the iteration schedule: � must lie in a polyhedron A� � b

where A is determined by dependence analysis and b depends on the latencies of the available
hardware function units. Any schedule � in this polyhedron schedules dependent iterations to



begin after their dependence predecessors.
� From among the legal iteration schedules, we must choose one that is consistent with the clus-

tering of virtual processors to physical processors. In particular, we want the schedule to assign
one iteration to each physical processor every II cycles. We call such a schedule a tight schedule.

� We have developed an efficient algorithm for enumerating all of the tight schedules for a given
cluster shape [2]. Using this technique, we are able to quickly find legal, tight schedules. We
then choose the schedule from among these by applying a goodness criterion that measures
total schedule length and an estimate of the gate count of the accelerator as a function of the
schedule.
Let us be a bit more precise. We have found a formula for tight schedules that is necessary and
sufficient. For example, consider a three-deep loop nest, with iterations indexed~j = (j1; j2; j3)
and with loop bounds 0 � ji < 20; i = 1; 2; 3. Let iteration~j be mapped to virtual processor
(j1; j2). Cluster the 20� 20 array of virtual processors on a 4� 2 array of physical processors
with a cluster shape of C = (C1; C2) � (5; 10). Then the schedule

� = (�1; C1�2; C1C2�3)

is tight if �i and Ci are relatively prime for i = 1 and 2, and �3 = �1. This formula yields all
the tight schedules if we allow first a permutation of the cluster axes; in other words, we include
as well the schedules

� = (C2�1; �2; C1C2�3) :

Recurrence-Based Control. In its final form, the transformed parallel loop body contains gener-
ated code that we call housekeeping code. On a given processor at a given clock, this code computes
the coordinates (the loop indices) of the iteration being started, the addresses to be used in global
memory accesses, the position of the active virtual processor within the cluster, and some compar-
isons to determine if a datum is to be read or written to global memory or communicated from a
neighboring processor. Iteration coordinates are a well-defined function of the processor and time
coordinates, and all the other quantities mentioned can in turn be computed from the iteration co-
ordinates. But a straightforward computation in this manner is very expensive and can often dwarf
the cost of the original loop body. This problem is well known in loop parallelization.

We have reduced the cost of computing coordinates, addresses, and predicates by using a tem-
poral recurrence mechanism to update their values rather than compute them from first principles.
Their values for the first few clock cycles (usually three cycles) are live-in and must be downloaded.
At each clock, the update requires just one addition for each coordinate and memory address of in-
terest. In addition, one comparison must be performed for each axis in which the cluster shape is
greater than one. The values of almost all predicates are periodic with period equal to the cluster
size , so they may be obtained by downloading the first  of their values into a ring buffer [2]. In
particular, an affine inequality in the iteration space coordinates that does not involve the mapped
out dimension will be periodic.

Chen [1] and Rajopadhye [9] also proposed propagation rather than recomputation as a means
of computing predicates (which they call control signals.) They do not address the computation of
coordinates and addresses. They look at predicates generated by linear inequalities in the original
iteration coordinates, which can be transformed into equivalent linear inequalities in the time and
virtual processor coordinates. Such predicates remain constant in a hyperplane of virtual space-
time, and so they can be computed at the boundary (which may be at the start, or at a boundary
processor) and propagated through the interior, in much the same way that we treat affine, read-
only input data. Our periodicity approach for predicates is quite different, and is not applicable



to as large a class as theirs. For periodic predicates, it does all computation in the host processor
(before the start of the systolic computation) and so it requires not comparison hardware in the array
at all. It does no spatial propagation. On the other hand, it requires a fixed storage cost of  bits
for each prediate. As an additional optimization, we probably should use the scheme of Chen or
Rajopadhye for nonperiodic affine predicates.

4. From Parallel Program to Hardware

The iteration-level transformations bring the loop nest to a form ready for hardware synthesis.
In the next steps, the computation within each transformed iteration is mapped and scheduled to a
single non-programmable processor with the desired II. Multiple instances of such processors are
then interconnected into a systolic array. The various steps of this process are briefly described
below.

Word Width. The first step towards hardware realization is to minimize the width of each operator
and operand. We allow user annotation of the widths of variables via pragmas. Compiler-generated
variables are similarly sized according to the range of values they must hold. We use this informa-
tion to infer width requirements for all program data, both named variables and compiler-generated
temporaries, and all operations. We may discover that the user has been overly conservative, and
that some variables may not need all of the bits that the user has allowed. The analysis derives
reduced widths for each program variable, temporary variable, and operator within the application.
We describe our method of width inference and the cost reduction we derive from it in another
report [6]. 2

Initial Function Unit Allocation. This step selects a least-cost set of function units (FUs) that
together provide enough throughput for each opcode occurring in the transformed loop iteration.
This problem is formulated as a mixed integer linear programming (MILP) problem as follows.

The FUs are drawn from a macrocell library and are classified into several types. Each FU type
has a per-unit cost represented by the real cost vector c = [cf ], and it has a repertoire of operation
types (i.e. opcodes) that it can handle. The boolean variable rof is true if the FU type f can handle
operation type o. We assume all FUs are pipelined and can accept one new operation every cycle;3

the operation latency need not be one.
The transformed loop body is characterized by a count vector k = [ko] giving the number of

operations of each type.
The goal is to allocate zero or more FUs of each type, expressed as an integral allocation vector

n = [nf ]. We would like to minimize the price c � n paid for these. But we must require that the
cycles available on the allocated FUs can be distributed to cover the operations that occur in the
loop body. We introduce nonnegative auxiliary variables x = [xof ] that represent the number of
operations of type o assigned to FUs of type f . This leads to the following MILP:

minimize c � n subject to

X
o

xof � nfI

X
f

xofrof � ko

where I is the initiation interval.
2Very similar analyses and optimizations have recently been reported by Stephenson, Babb, and Amarasinghe [14].
3This assumption is easily relaxed to include block-pipelined units that may accept a new operation every n cycles.
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Each of the first constraints bounds the number of cycles used (for all operations) on an FU type
by the number available. The second set of constraints guarantees that the required throughput (for
each opcode type) can be achieved by the contributions from the allocated FUs.

We have found that it is easier to solve this MILP when x is allowed to be real; the FU allocation
is essentially as good as when x as well as n is constrained to be integer. This formulation is small
and inexpensive to solve, since its size depends only on the number of opcode and FU types and
not on the size of the loop nest. For example, CPLEX takes about 16 seconds on a Pentium PC to
solve a problem with 40 FU types and 30 operation types.

Operation Mapping and Scheduling. The next step is to extract a compiler-oriented view of the
allocated hardware in the form of a machine-description [11]. Even though the final hardware is
supposed to be non-programmable, at this stage we assume a fully interconnected abstract archi-
tecture which is completely programmable. This allows our re-targetable VLIW compiler, Elcor, to
be used to schedule and map the loop iteration onto the allocated function units. Once the schedul-
ing and mapping of operations to FUs is done, only the required datapath and interconnect among
the FUs is actually materialized and the rest is pruned away leaving a minimal, non-programmable
architecture.

The VLIW compiler is used to perform modulo-scheduling [10] of the transformed iteration at
the desired II using various heuristics. The width heuristic tries to reduce hardware cost by mapping
similar width operators to the same FU. The interconnect heuristic tries to reduce the fan-out and
fan-in of the FUs by co-locating operations that have co-located successors or predecessors. The
register heuristic attempts to share the same register file for multiple data items. The auxiliary
variables (x) in the MILP formulation of FU allocation may also be used to heuristically guide
operation mapping. This is an area of active investigation.

It is possible for the modulo scheduler to fail at the desired II with the initial FU allocation. In
traditional compilation the target hardware is fixed, and the fallback is to increase the II and retry.
In our setting, the right thing to do is a reallocation, in which more FU hardware is added before a
retry to schedule at the desired II.

Datapath Generation. The processor datapath schema is shown in Figure 3. The various operands
of the loop body are materialized using one synchronous register FIFO per EVR (extended virtual
register) in the loop body, one physical register per static virtual register, and hardwired literals.
When the II is greater than 1, multiple opcodes map to each of the FUs, and multiple sets of
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operands are routed to the FU input ports. The FU selects one out of II sets of opcode and operands
at each cycle using multiplexors.

The various EVR operands are read from and written to the appropriate register slot in the FIFO
according to the schedule time of the corresponding operation. This gives rise to a sparse set of
read/write ports to the various FIFOs.

Iteration Control. The schema shown above directly implements the pipeline schedule produced
by the compiler, which uses predicated operations to fill and drain the pipeline automatically. The
loop hardware is initialized for execution of a tile of data by setting loop trip count and live-in
register values within the FIFO and static registers. The setting of a start flag signifies the start of
the loop. A counter is used to count up to II, at the end of which the loop count is decremented and
all register FIFOs shift down by one slot to make room for the operands of the next iteration, and
the cycle repeats. Once the desired number of iterations has been initiated, the pipeline is drained;
it then sets a done flag. This flag can be queried from the host processor to recognize that the
execution is complete and any live-out values may be uploaded.

System Synthesis. The complete NPA system consists of multiple instances of the processor,
configured as an array with explicit communication links as shown in Figure 2. The processors may
share array-level local memory via dedicated local memory ports. Since global memory bandwidth
is constrained externally, the processors communicate with the global memory through a controller
which consists of an arbitrator and request/reply buffering logic. The entire NPA array, including
the processor registers and array-level local memories, behaves like a local memory unit to the
host processor. It may be initialized and examined using this interface. Iteration control and data
exchange commands are also encoded as local memory transactions across this interface.

5 Experimental Evaluation

We have used our system to compile over thirty C loop nests to hardware. The loops are drawn
from printing, digital photography, genomics, image compression, telephony, and scientific comput-
ing domains. Two examples illustrate some typical experiments performed and the data collected.
In the first, a design-space exploration is performed on a digital photography demosaicing applica-
tion. In this experiment, the number of processors is varied from 1 to 6 and the II of each processor



Components II = 1 II = 2 II = 4
branch 1 1 1
multiply 1 1 1
move 23 6 3
add 19 9 4
sub 3 2 0
addsub 0 0 1
shift 1 1 1
compare 14 4 2
and 3 0 0
ld st global 8 4 2
ld st local 7 4 2
register 259 135 96

Gates II = 1 II = 2 II = 4
function unit 19025 12962 9550
register 15590 13320 9970
register select 1248 893 660
multiplexor 0 3916 4375
misc. logic 806 479 425
total 36669 31571 24980

Table 1. Effect of II on Cost Breakdown

from 1 to 4. Figure 4 shows the resulting cost/performance tradeoff with the Pareto points marked
by their configuration. The II=1 designs are particularly effective for this application.

The second experiment examines in more depth the effect of increasing II on cost for an image
sharpening application. Table 1 presents cost breakdowns for three single-processor designs: II=1,
II=2, and II=4. (The throughput obtained by an HP PA-8000 class RISC on this application is
equivalent to an II of 175. Thus, one processor with a small II is an interesting design point.) The
top portion of the table presents the number of function unit and register components used for each
design. The bottom portion of the table shows the gate count breakdowns for each design. From
II=1 to II=2, a modest cost reduction is obtained by reducing the function unit and register cost
by large amounts. A side effect of increasing II is that more multiplexors are needed to gate data
into shared resources, but their cost is outweighed by the savings. The cost is further reduced when
II is increased to 4, but again the reduction is by much less than a factor of two. Note that an
expensive multiplier is allocated because of a single multiply operation, regardless of II. If slower,
less expensive multipliers were available in the macrocell library, these would be chosen at the
higher IIs.

To date, we have calibrated our automatic designs with hand generated designs for two applica-
tions. The manually designed accelerators were included in ASICs embedded in HP printers. In
both cases, for the same level of performance, our gate counts are within 10% of the hand designs.

The compile time for a single design-space point currently ranges from about 90 seconds to about
10 minutes, depending on the complexity of the loop body and the depth of the nest.

6. Related Work and Conclusions

The basic schema for systolic synthesis described by Quinton and Robert [8] underlies the archi-
tecture of PICO-N. The IRISA system [17], is a comparable system for systolic synthesis, taking



systems of affine recurrence equations written in the ALPHA language and generating a hard-
ware description. The HIFI [4] system from Delft accepts loop nest programs as we do, and does
value-based dependence analysis as well. Other systems for the automated design of embedded
multiprocessors include CATHEDRAL-II [3].

There are also some practical limitations to the working version of PICO-N. Most notably, it
requires that the flow and output dependences in its loop nest be uniform; other systolic synthe-
sis systems allow a system of affine recurrence equations as input. Techniques for conversion of
affine recurrence equations to uniform recurrence equations have been developed by several re-
searchers [15, 12]. PICO-N currently restricts loop bounds to be constant. It requires the user to
express his computation as a perfect nest.

While earlier systems may have individually incorporated some of its features, PICO-N goes
beyond previous efforts directed at NPA compilation in fully integrating the following characteris-
tics:

� PICO-N exploits loop-level and instruction-level parallelism; it performs both loop paralleliza-
tion and efficient pipelined datapath synthesis;

� Using advanced techniques for dependence analysis, PICO-N accepts restricted C code rather
than a system of uniform recurrence equations as input;

� PICO-N exploits both tiling for reducing required memory bandwidth and clustered mapping
of virtual to physical processors to map a computation to a fixed-size, fixed-throughput array;

� PICO-N uses advanced techniques for load-store elimination and pipelining of input data;
� PICO-N implements a new, practical method for systolic array scheduling;
� PICO-N uses a new, efficient method of code generation for parallel loops;
� PICO-N allows the user to extend C with the use of pragmas for data width specification and

for locating arrays in local memory;
� PICO-N uses new techniques for data width inference to minimize datapath cost;
� PICO-N uses a new resource allocation technique for low-cost, special-purpose datapath syn-

thesis;
� PICO-N uses new variations of modulo scheduling for hardware-cost-sensitive software pipelin-

ing.
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Appendix. The following example illustrates several steps in the compilation process.
/* Original Nest */
for (i1=0; i1<8192-16; i1++) {
y[i1] = 0;
for (i2=0; i2<16; i2++)
y[i1] = y[i1] + w[i2]*x[i1+i2];

}

/* Perfect Nest */
for (i1=0; i1<8192-16; i1++)
for (i2=0; i2<16; i2++)
y[i1] = y[i1] + w[i2]*x[i1+i2];

/* After Tiling */
for (i2T = 0; i2T <= 15; i2T += 4)
for (i1 = 0; i1 <= 8175; i1++)
for (i2P = 0; i2P <= 3; i2P++)

y[i1] = y[i1] +
w[i2T + i2P] * x[i1 + i2T + i2P];

/* After Load-Store Elimination */
for (i1 = 0; i1 <= 8175; i1++)
for (i2P = 0; i2P <= 3; i2P++)

{
i2 = i2T + i2P;
EVR_w[i1][i2P] = EVR_w[i1 - 1][i2P];
if (1 <= i2P)

EVR_tmp4[i1][i2P] = EVR_y[i1][i2P - 1];
else

EVR_tmp4[i1][i2P] = y[i1];
if (i1 <= 8174 \& 1 <= i2P)

EVR_x[i1][i2P] = EVR_x[i1 + 1][i2P - 1];
else

EVR_x[i1][i2P] = x[i1 + i2];
EVR_y[i1][i2P] = EVR_tmp4[i1][i2P] +

EVR_w[i1][i2P] * EVR_x[i1][i2P];
if (i2P == 3)

y[i1] = EVR_y[i1][i2P];
}



/* In Optimized Space-Time Form */
for (t = 0; t <= 8184; t++)
for (p = 0; p <= 3; p++)
{
i1 = 1 + EVR_i1[t - 1][p];
addr_y = EVR_addr_y[t - 1][p] + 2;
addr_x = EVR_addr_x[t - 1][p] + 1;
unif_p0 = EVR_i1_unif_p0f[t - 1][p];
unif_p = EVR_i1_unif_pf[t - 1][p];
EVR_w[t][p] = EVR_w[t - 1][p];
if (0 <= i1 \& i1 < 8176)
{
if (unif_p0)

EVR_tmp4[t][p] = EVR_y[t - 3][p - 1];
else

EVR_tmp4[t][p] = *addr_y;

if (i1 <= 8174 \& unif_p0)
EVR_x[t][p] = EVR_x[t - 2][p - 1];

else
EVR_x[t][p] = *addr_x;

EVR_y[t][p] = EVR_tmp4[t][p] +
EVR_w[t][p] * EVR_x[t][p];

if (unif_p)
*addr_y = EVR_y[t][p];

}
EVR_i1_unif_p0f[t][p] = unif_p0;
EVR_i1_unif_pf[t][p] = unif_p;
EVR_addr_x[t][p] = addr_x;
EVR_addr_y[t][p] = addr_y;
EVR_vp[t][p] = vp;
EVR_i1[t][p] = i1;

}
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