

Enabling QoS via Interception in Middleware

Jim Pruyne
Software Technology Laboratory
HP Laboratories Palo Alto
HPL-2000-29
February, 2000

E-mail: pruyne@hpl.hp.com

QoS,
middleware
systems

Middleware systems are commonly used for building
distributed systems, but they provide little, if any support for
altering the quality of services aspects of an application. We
wish to structure middleware so that QoS development can be
carried out independently from application development.
Separation allows experts in QoS fields to apply their work to
any application developed for the middleware. Our approach is
based on the notion of interceptors that are dynamically added
to running applications. These interceptors are allowed to
observe and modify application middleware calls to implement
desired QoS functionality. We have developed a programming
model for interceptors that supports development of a variety of
QoS functionality, and have implemented this model in the
context of the e-speak middleware platform.

 Copyright Hewlett-Packard Company 2000

Internal Accession Date Only

 Enabling QoS via Interception in Middleware Page 1

Enabling QoS via Interception in Middleware

Jim Pruyne (pruyne@hpl.hp.com)
Hewlett-Packard Laboratories

Middleware systems are commonly used for building distributed
systems, but they provide little, if any support for altering the
quality of service aspects of an application. We wish to structure
middleware so that QoS development can be carried out
independently from application development. Separation allows
experts in QoS fields to apply their work to any application
developed for the middleware. Our approach is based on the
notion of interceptors that are dynamically added to running
applications. These interceptors are allowed to observe and
modify application middleware calls to implement desired QoS
functionality. We have developed a programming model for
interceptors that supports development of a variety of QoS
functionality, and have implemented this model in the context of
the e``speak middleware platform.

1 INTRODUCTION

Middleware systems have helped to make distributed computing a reality. They succeed in

hiding distribution concerns so that developers are able to build distributed applications almost as

easily as they do non-distributed applications. This simplification has been the primary goal of

middleware, and in particular, it has concentrated on the functional aspects of a distributed

application. The functional aspects are those concerned with purely providing a service such as

what data must be exchanged between client and server components to carryout a service request.

In the widely used, off-the-shelf middleware systems, little effort has been made to accommodate

the non-functional or Quality of Service (QoS) aspects of developing a distributed application.

Because middleware does not explicitly support them, non-functional properties are commonly

left to developers to implement within their applications. Therefore, these important properties

are often either ignored, or, when they are deemed important enough, the subject of a large,

 Enabling QoS via Interception in Middleware Page 2

custom effort to provide the required non-functional properties for a specific application.

Unfortunately, the result is that the QoS aspects end-up being closely tied to the application, and

therefore the results cannot be readily re-used in another application.

Supporting QoS demands in middleware has been the focus of many research efforts. This has

been a good fit because middleware is logically positioned very close to applications, providing

nearly an end-to-end view. Additionally, a large amount of semantic information (such as pairing

of request and response messages) is available.

Efforts to support QoS in middleware have largely fallen into one of two categories. The first is

modifications or extensions to middleware to enhance specific QoS properties. Examples of

these include the TAO [Sch97] real-time CORBA ORB, and OMG specifications for real-time

and fault-tolerance services [OMG98], [OMG99a]. The second is extensions to the middleware

programming model to make QoS concerns explicit. Projects following this approach include

Quality Objects (QuO) [Van98], the Management Architecture for Quality of Service (MAQS)

[Bec98], and the Squirrel project [Kra98]. These approaches have similarities with aspect

oriented programming. A QoS specification is written in parallel to the application specification,

and the middleware merges these to create a QoS aware application.

As an alternative to these approaches, we have developed a programming model for adding

explicit support for non-functional aspects to middleware based applications. The model is based

on the notion of an interceptor, which can inspect every interaction between application

components. As it inspects the call, it may alter or customize the interactions to satisfy a

particular QoS goal. Interceptors are available in some middleware systems, such as CORBA,

but as we discuss later, existing interception models are not well suited for implementing QoS

related functionality.

By introducing a new programming model, we completely separate development of applications

and non-functional logic. This allows us to re-use our QoS implementations with any application

 Enabling QoS via Interception in Middleware Page 3

including those previously developed on the middleware platform. The decision to separate

applications and QoS functionality will not be universally correct. In some cases, the QoS

functionality must be intertwined with applications. However, experience has shown it works in

many situations, and has a number of benefits. Separation permits us to defer decisions on

including QoS components until run-time when they may be dynamically loaded into

applications. We may then customize based on new environments, and as conditions change. We

feel these features provide some benefit over other approaches, but also may complement them as

a means of implementing and deploying the enhancements developed within the other

frameworks.

The remainder of the paper is organized as follows. Section 2 describes how interceptors fit into

middleware, and our goals in defining an interception model powerful enough to enable QoS

customization. Section 3 provides a detailed description of APIs for performing interception, and

how they fulfill our goals of QoS customization. The next section briefly outlines how

interceptors might be used to implement some basic QoS properties. Section 5 describes related

work in the area of middleware-level interception, and their shortcomings for customization. The

final section provides current status of this work, possible future directions, and concluding

remarks.

2 OVERVIEW OF MIDDLEWARE INTERCEPTION FOR QOS

 Enabling QoS via Interception in Middleware Page 4

Figure 1 shows the components involved when invoking a service in a typical middleware

system. The components provided by the middleware are the stubs and skeletons and the

communication infrastructure. The stubs and skeletons are usually generated using an Interfcae

Definition Language (IDL) compiler, and implement the logic needed to distribute the functional

aspects of the application. The stub is invoked directly by a client to initiate a remote call. The

stub, in turn, marshals the data associated with the request into a message, and transfers the

message using a communication infrastructure to the site of the remote service. There, the

skeleton takes the data out of the message, and directly invokes the actual service. This structure

effectively transfers the functional requests between a client and a server, but it does not directly

permit a method of handling the non-functional aspects. There is simply no place in the system

where non-functional components can be written without changing the applications or the

middleware.

Client

Application

Middleware
Stub

Middleware Communication
Infrastructure

Server
Application

Middleware
Skeleton

Figure 1 – Component interactions in an RPC-
based middleware system

 Enabling QoS via Interception in Middleware Page 5

In Figure 2, we show an augmented middleware system that includes interceptors. This structure

also contains IDL-generated stubs and skeletons. However, rather than having them pass

messages directly two and from the communication layer, we introduce a set of interceptor

modules. The interceptors receive the request prior to passing it to the communication system on

the client side, and prior to the request being passed to the skeleton that invokes the service. The

final interceptor on the client side, and the first interceptor on the server side perform the actual

marshalling of a request’s data for transfer across the network. This general structure permits the

requests to be inspected by the interceptors, and altered as needed to perform customization.

2.1 Design Goals for Interceptors

The structure shown above provides a mechanism for performing customization via interceptors,

but it does not provide many guidelines on what specifically interceptors must be able to do. We

have laid out a set of design goals for interceptors to permit them to implement a variety of non-

functional customizations in many environments.

Client

Application
Server

Application

Middleware Communication Infrastructure

Stub
Interceptor

Skeleton
Interceptor

Interceptor 1

Interceptor N

Interceptor M

Interceptor 1

Figure 2 – Component interactions with interceptors

 Enabling QoS via Interception in Middleware Page 6

1. No use of application specifications such as IDL – Interceptors are most valuable when

they are re-useable, and are thus developed independently from applications. Therefore,

we cannot assume that any application specific information, such as interface definitions

will be available.

2. A powerful and easy-to-use programming model – The ability to perform useful

customizations comes from the power of the interceptor programming model. It must be

general enough to enable a variety of customizations without becoming so complex or

specific that it is difficult to use.

3. Composability of interceptors – Interceptors should be composable in the sense that

multiple interceptions should be applicable to a single application or single interface

concurrently without interfering with one another assuming the goals of the interceptors

themselves are not contradictory. Determining what interceptors or goals may conflict

with one another is a hard problem in general, and is beyond the scope of this paper. This

goal is implied by the structure shown in Figure 2, but is called out explicitly to

emphasize the point.

4. Dynamic inclusion of interceptors – We typically cannot know a priori what non-

functional properties will be required for particular deployments or instances of services,

clients or client-service pairs. We therefore require a method of deploying and inserting

interceptors dynamically, while the clients and servers are already running, and perhaps

already communicating with one another.

5. Client/server neutrality – A single model should be used for developing interceptors for

use on either the client or the server side of a distributed interaction. A single interceptor

implementation should be applicable on either side, as long as it can practically be

applied on either side.

 Enabling QoS via Interception in Middleware Page 7

6. Middleware neutrality – We want our interceptor programming model to be

independent of any particular middleware so that interceptors need not rely on any

particular middleware functionality. Ideally, we will provide an abstraction layer on top

of middleware so interceptors never access any middleware platform specific

functionality. This facilitates building an environment where interceptors can be

designed once and applied to applications running in a variety of middleware

environments.

3 A PROGRAMMING MODEL FOR MIDDLEWARE INTERCEPTION
In the previous section, we discussed interception in general and our goals for our interception

programming model and environment. In this section, we define a specific programming model

for interception. This model is based on the goals described previously, as well as particular

requirements we’ve developed through experience using interception to implement non-

functional properties in the past. The resulting programming model developed to meet these

requirements has three abstractions. The first, the “request”, is used to represent a remote

invocation made by a client application. This abstraction permits us to inspect a call, and to add

to or extract data from the request. The second is an interface definition to be implemented by

developers of interceptors. This interface permits developers to manage exceptions, inspect or

alter middleware calls, or access other middleware functions. The final, “control,” abstraction is

used for controlling the use of interceptors such as installing or removing individual interceptors.

This interface satisfies our high-level goal of making interceptor inclusion or removal dynamic.

In the following sections, we describe interfaces for each of these abstractions.

 Enabling QoS via Interception in Middleware Page 8

3.1 The IceptorRequest Class

public class IceptorRequest
{
 public IceptorRequest(String interfaceName,
 String methodName);
 public String getInterfaceName();
 public String getMethodName();
 public Object addParam(String paramName, Object val);
 public Object setParamValue(String paramName,
 Object val);
 public Object getParamValue(String paramName);
 public Object setReturnValue(Object val);
 public Object getReturnValue();
}

The IceptorRequest class is used to represent a method invocation as it passes from the client,

through various interceptors, and finally to the server (as show in figure 2). The client stub

generates an instance of IceptorRequest for each application level call. Interceptors use the

IceptorRequest object to inspect, alter or propagate the application’s middleware calls. Each

instance of an IceptorRequest is associated with a specific interface and method to be invoked on

the server. This information is typically available in the stub because stubs are generated on a

per-interface basis in most middleware systems. Each parameter for the call is added by name

using the addParam method. Including the name permits interceptors to inspect a call for

particular parameters by name, and change their values if needed. Once added to the parameter

list for the call, parameter values are inspected or set using the getParamValue and

setParamValue methods.

Return values are handled in much the same way as parameter values. There are explicit calls for

setting and retrieving return values. Typically, only skeleton code that actually invokes the server

object would call the setReturnValue method, however some sophisticated interceptors may be

able to divine a return value without calling the server object, so interceptors are not explicitly

prevented from calling this method.

 Enabling QoS via Interception in Middleware Page 9

3.2 The Iceptor Class

public abstract class Iceptor
{
 public abstract void register(Object params);
 public abstract void unregister();
 public abstract void invoke(IceptorRequest req)
 throws Exception;

 public void invokeNext(IceptorRequest req)
 throws Exception;
}

The Iceptor class defines the interface that must be implemented by authors of interceptors.

When an Iceptor instance is inserted into a middleware call-chain, its register method is executed,

and is passed data to be used during initialization. As an example, this data might contain a

reference to another service this interceptor will need to communicate with. The unregister

method is called when the interceptor has been removed from the system, or when the client or

server object it is intercepting calls on is removed by the application.

For every application level request made, the Iceptor object’s invoke method is called. It receives

the IceptorRequest object associated with this call. In the invoke method, the interceptor may

inspect the interface and method names, the names and values of call parameters, add new

parameters, and do any other processing it desires prior to propagating the call to the service.

When this pre-processing is complete, the interceptor must call invokeNext with the (possibly

modified) IceptorRequest object. InvokeNext simply passes control on to the next Iceptor object

in the logical chain. The end of the chain is the service object itself. When invokeNext returns,

the interceptor can assume that the application’s service has been invoked. We also permit the

invocation to return an exception of some sort. This is typically used in distributed middleware to

indicate a failure or some other unexpected outcome of an invocation. The interceptor may catch

this exception and attempt to handle it itself, or it may simply re-throw this exception. If all

 Enabling QoS via Interception in Middleware Page 10

interceptors re-throw the exception, it will propagate back to the client just as if no interceptors

were installed at all.

3.3 The IceptorControl Class

public class IceptorControl
{
 public id addInterceptor(Iceptor icept,
 Object params);
 public boolean removeInterceptor(id);
 public void removeAllInterceptors();

 public void invokeFirst(IceptorRequest re q);
}

The IceptorControl class performs two basic functions. First, it does record keeping on the chain

of interceptors associated with a client or server. The addInterceptor, removeInterceptor and

removeAllInterceptors methods are used for doing this bookkeeping. The addInterceptor takes an

instantiated Iceptor object and inserts it on the end of the current chain of interceptors, and calls

its register method with the provided parameter object. Interceptors are removed via the

removeInterceptor method by using the identifier returned by addInterceptor. Likewise, the

removeAllInterceptors call will remove every interceptor in the call-chain. As presently defined,

the IceptorControl interface is available only within a client or server process. In a more

complete implementation, this interface could be exposed externally, permitting management of

interceptors, and the QoS properties associated with them to be manipulated by a third-party. We

briefly discuss issues in this area later.

The final piece of interceptor management handled by the IceptorControl class is executing the

interceptor chain. This is accomplished by calling the invokeFirst method with a completed

IceptorRequest object. Middleware stubs use this call to initiate processing of an application

level request.

 Enabling QoS via Interception in Middleware Page 11

3.4 Summary of the Features of the Interceptor Programming Model

The primary value of our interceptor model comes from its ability to permit a variety of non-

functional properties to be implemented using it. The features listed below describe specific

functionality our programming model provides to enable this. In some respects, these features

demonstrate how we satisfy our previously stated goals. They provide specific attributes of the

programming model where the previous list gave abstract goals for a middleware system that

includes interception.

1. Exception catching – By explicitly invoking handling of the application call,

interceptors can catch exceptions thrown by either the middleware or the application.

2. Exception throwing – An interceptor’s invoke method may throw an exception,

simulating or propagating an application or middleware request, or may introduce new

exceptions.

3. Parameter inspection – Interceptors receive the request object associated with each

middleware call that allows inspection of all the parameters associated with the call.

4. Inserting and extracting extra data or parameters – The request object also provides a

way for adding and extracting extra data on the call in a manner that does not interfere

with the application level call. This permits interceptors to communicate directly among

themselves when needed.

5. Short-circuiting / local handling – An interceptor can avoid propagating a request

forward simply by not calling its invokeNext method. A common sort of customization

that may use this facility is one that does client-side caching of results.

6. Access to other middleware services – Interceptors are not in any way limited by the

programming model from calling middleware services. In our current implementation,

we even provide additional middleware information via the IceptorControl interface. This

 Enabling QoS via Interception in Middleware Page 12

functionality is largely in opposition to our goal of middleware neutrality, but is

important from a pragmatic sense of permitting interceptors to truly perform useful

functions.

4 USING INTERCEPTORS TO IMPLEMENT QOS PROPERTIES
We have described our desire to support QoS properties in middleware, and our programming

model for doing so. To demonstrate the power of interceptors, and illustrate the importance of

the features described above, we provide outlines of interceptors that achieve two properties:

availability and admission control. Our goal in these sections is not to attempt complete

solutions, but to give a flavor of what must be done to provide this functionality, and how the

interception programming model supports these needs. Clearly, complete solutions in these areas

are beyond the scope of this article.

4.1 High Availability via Interception

Failures of hardware and software components are inevitable, so the goal of a high availability

system is to mask or hide failures as often as possible so that they do not interfere with the tasks

users wish to perform. In a distributed system the goal is for remote services to appear to be

operating continually even when the reality is that components that make up the service are not

functioning. A crucial part of achieving this is detecting when a failure occurs, discovering an

alternate server, and continuing operations with this new server. We refer to this process as

failover. If we assume that servers are stateless between client invocations, and that they have no

side-effects (e.g. database interactions), a collection of servers and basic failover may be all that

is needed for a service to become highly available. Below is pseudo-code for a client-side

interceptor that performs basic failover.

 Enabling QoS via Interception in Middleware Page 13

public class FailOverIceptor extends Iceptor
{
 public void register(Object params)
 {
 store a “description” of the service
 }

 public void invoke(IceptorRequest req) throw s Exception
 {
 for (I = 0; I < retryLimit; I++) {
 try {
 return invokeNext(req);
 } catch (FailedServiceException e) {
 use the “description” to query for a
 replacement service;
 if (query returns a new service) {
 re-bind the client to the new service;
 } else {
 re-throw the exception;
 }
 }
 }
 throw FailedServiceException;
 }
}

In the register method, we save a description of the current server. This description will be

dependent on the middleware system in use. It may, for example, contain a query string to be

passed to a trading service of some kind.

In the invoke method, we start by setting a loop for the maximum number of times to re-try a

request. In some cases, it truly will not be possible to find a functioning service replica, so we

should only try a few times. We then set-up to catch an exception thrown by the middleware

indicating that a service has failed. Note that in the normal case, we simply call invokeNext and

return without performing any additional processing. However, when the failure occurs (as

indicated by a caught exception), we attempt to find a replica using the description stored during

initialization to form a new query. If the query succeeds in finding a replica, we re-bind the client

to the new server so that all subsequent calls will go to the new server. After re-binding, we loop

back to the top to re-invoke the call on the new server. If we fail to find a replica, all we can do is

re-throw the exception to the higher layers indicating this unrecoverable failure.

 Enabling QoS via Interception in Middleware Page 14

This example makes a lot of simplifying assumptions, but it shows the potential for performing

tasks needed to achieve high availability in the middleware. It relies heavily on the ability to

catch exceptions, handle them, and reissue a call to a new server. In a more practical example,

we would have to concern ourselves with the state of the new server as compared to the old

server, and what other side-effects the service call may have. In any case, failover will be one of

the crucial components of a high availability solution, and synchronization with a newly selected

server could also be handled in the interceptor.

4.2 Admission Control via Interception

Admission control is used in computer networks to limit congestion within a network. By

denying some packets admittance to the network, we prevent them from interfering with other

packets, and possibly degrading performance for other users. A similar technique can be used in

higher-level computer services. By denying access to the service for some users, we can improve

the QoS delivered to others. Here, we sketch an approach for implementing server-side

admission control via an interceptor. In practice, we may wish to have a complementary

interceptor on the client-side that delays requests to reduce the number that are rejected by the

server.

 Enabling QoS via Interception in Middleware Page 15

public class AdmitControlIceptor extends Iceptor
{
 void register(Object params)
 {
 Use the params information to determine user groups
 and their permitted request rates;
 }

 boolean invoke(IceptorRequest req) throws Exception
 {
 extract the identity of the client from the request
 or other middleware-provided information;
 compute new request rate for client’s group;
 if (request rate < allowed request rate) {
 return invokeNext(req);
 } else {
 throw RequestRejectedException;
 }
 }
}

In this example, we assume that a description of user groups will be provided during

initialization. This would be a list that would permit the server to categorize each user as a

member of one of these groups. We also receive an allowed request rate for each group.

On each call to the invoke method, we start by determining the identity of the client. This

information is available directly from some middleware systems, but in others we could introduce

a client-side interceptor that adds identity information (perhaps including a digital signature) into

the request. We use this identity to determine the client’s group membership, and to compute the

current rate of requests for that group. Then, we simply compare the observed rate to the

permitted rate, and process the request if it is acceptable. If it is not, we reject the invocation by

throwing an exception.

As with the availability example, this is a greatly simplified view of the problem. However, it

once again shows that the interception model permits us to implement a useful customization to

an arbitrary service. It is also worth noting that these customizations could be used in tandem. It

is entirely possible to have both the availability and the admission control customizations in use

at the same time without interference.

 Enabling QoS via Interception in Middleware Page 16

5 RELATED WORK
The notion of intercepting application-level operations, whether middleware related or not is well

known. Indeed, various interception techniques have been used in the past. Typically, they

involve modifying an application executable on disk or in memory such that procedure calls are

routed to newly inserted code rather than the original procedure entry address. These techniques

have been used for a variety of purposes including debugging, application instrumentation and

monitoring and so forth. More recently, middleware systems have embraced interception, and

exposed it directly. Here, we describe basic methods used for interception in middleware, and

how they relate to our goal of using interception for QoS customization.

5.1 Callbacks

One of the common methods for providing a form of interception is via a “callback.” Callbacks

are typically established by informing a lower layer of a system, such as middleware, of a

procedure that should be called when a particular event occurs. For middleware, the events are

usually messages being sent or received. Callbacks are used in both CORBA and Microsoft’s

DCOM for monitoring messages between clients and servers.

In CORBA [OMG99b], two interfaces are defined for interceptors: one for “request level”

interception, and one for “message level” interception. The request level interception interface

consists of two callback functions, one called prior to the service executing, and one called after

the service has been executed. Each of these is provided with a request object similar to the one

we described. The message level interceptors are provided with an array of bytes into which the

request data as been marshaled prior to the message being sent, or just after it has been received

but not yet unmarshaled into the request object that represents the call.

DCOM [Edd98] provides a similar callback mechanism referred to as “channel hooks” that are

very much like the message level interceptors in CORBA. A channel hook registers with DCOM

by providing a unique identifier for itself. When the hook is invoked, it may add extra data into a

 Enabling QoS via Interception in Middleware Page 17

message, and that data is tagged with the hook’s unique identifier. When a DCOM message is

received that contains data with that tag, it is provided to the channel hook in a callback.

Callbacks prove to be difficult to use in many customization scenarios. Consider the high-

availability example above. In it, we maintain some state (the retry count), catch exceptions,

throw exceptions, and re-issue failed calls. Each of these things is difficult to perform in a

callback environment. State must be maintained in a globally accessible location so that it can be

used in the multiple-callbacks. Exceptions cannot be thrown directly to a callback, so it is not

possible to catch them in a callback-based interceptor. It may be possible to generate an

exception in the callback, though the existing models do not explicitly support it. Finally, with

callbacks, there is no possibility of re-issuing an application level call. The middleware itself

performs these calls when the callback returns. A further complication of this model is that it

splits the logic of the interceptor. The pre-call and post-call logic are placed in separate

procedures, so there’s no single place where all of the logic that makes up the interceptor can be

seen. This complicates debugging, and other issues generally related to code maintenance.

5.2 Wrappers

Another approach to interception is to provide “wrappers” in the middleware that receive calls

prior to the application. This approach is very similar to ours in that new code receives a call

prior to the application. Unfortunately, none of the standard middleware seems to provide an

extensible infrastructure for writing wrappers. That is, the wrappers are built into the

middleware, and third parties cannot directly write new wrappers.

The most widely used system based on this wrapper approach is the Microsoft Transaction Server

(MTS) [Ree97]. MTS provides a wrapper around server-side DCOM applications to generate a

transactional context around these objects. When the server is invoked, the call is intercepted by

MTS, and a transaction is started against a database. The call is then forwarded to the server, and

the transaction is then either committed or aborted based on a status set by the server.

 Enabling QoS via Interception in Middleware Page 18

While this approach is similar to ours at a basic level, it is not suitable for doing QoS

customization simply because there is no way to insert interceptors other than the one built into

MTS. Also, the DCOM/MTS system works only on the server-side of an interaction. There is no

support for interception on the server side. Microsoft is, however, evolving their use of these

techniques in newer versions of their middleware (COM+) to support integration with message

queuing and other enhancements, so it may become general and open enough to be a basis for

QoS customization in the future.

6 STATUS, FUTURES AND CONCLUSIONS
We are using the middleware interception approach described here as a basis for our on-going

work in customization of distributed systems. To support this work, we have implemented our

interception programming model in the e``speak [HP99] system. E``speak was designed at

Hewlett-Packard, and has been released in open-source as a platform for brokering, composing

and performing services on the Internet. By including interceptors in the e``speak open-source,

we hope to provide a platform for others to do QoS related work in middleware as well as make

e``speak a more robust platform.

Our current focus is on the deployment of interceptors. We are striving for a deployment method

that is flexible, scalable and secure. Flexibility implies that we want to remotely add or remove

interceptors from clients or servers based on administrative or policy based control. E``speak is

intended to run in Internet scale environments, so we must also make deployment of interceptors

work on this scale. Finally, because interceptors have complete knowledge of client-server

interactions, including access to the data in these messages, we must make deployment secure to

insure interception does not become a method easily used to compromise application level data.

Middleware provides an attractive opportunity for customizing non-functional properties of

systems. Middleware is close enough to applications so that a large amount of semantic

information, such as send/reply message pairs, and the layout of the data in those messages, is

 Enabling QoS via Interception in Middleware Page 19

available. This permits us to introduce a variety of interesting algorithms fairly easily without

changing the functional behavior of the applications. By providing a powerful interception

programming model, we hope to introduce QoS properties in environments that otherwise would

not be possible simply because it is not possible to modify the applications or the lower level

parts of the system such as the operating systems or networking infrastructure. This, in turn, will

make use of QoS mechanism more widely used, and lead to better overall performance of the

distributed applications we rely upon.

References

[Bec98] C. Becker and K. Geihs. Quality of Service - Aspects of Distributed Programs. International
Workshop on Aspect-Oriented Programming at ICSE'98, Kyoto/Japan (1998).

[Edd98] G. Eddon and E. Eddon. Inside Distributed COM. Microsoft Press, 1998.

[HP99] Hewlett-Packard Corporation. E``speak Architecture Specification. November 1999.
Available from www.e-speak.net.

[Kra98] T. Kramp, R. Koster. A Service-Centred Approach to QoS-Supporting Middleware, Work-in-
Progress Paper, Middleware '98, September 1998, The Lake District, England.

[OMG98] Object Management Group, CORBA Real-Time Service, OMG, 1998.

[OMG99a] Object Management Group, CORBA Fault Tolerance Service, OMG, April 1999.

[OMG99b] Object Management Group. CORBA 2.3.1 /IIOP Specification. OMG Document 99-10-07
(1999).

[Ree97] D. Reed, T. Trewin and M. Tomsen. Microsoft Transaction Server Helps You Write Scalable,
Distributed Apps, Microsoft Systems Journal, August 1997.

[Sch97] D. Schmidt, D. Levine, and S. Mungee. The Design of the TAO Real-Time Object Request
Broker, Computer Communications Journal, 1997.

[Van98] Vanegas R, Zinky JA, Loyall JP, Karr DA, Schantz RE, Bakken DE. QuO's Runtime Support
for Quality of Service in Distributed Objects, in Proceedings of the IFIP International Conference on
Distributed Systems Platforms and Open Distributed Processing (Middleware'98), 15-18 September 1998,
The Lake District, England.

