

Performance Analysis of Scalable
Web Hosting Service with Flex:
Two Case Studies

Ludmila Cherkasova, Mohan DeSouza1,
Shankar Ponnekanti2
Computer Systems and Technology Laboratory
HP Laboratories Palo Alto
HPL-2000-28
February, 2000

E-mail: cherkasova@hpl.hp.com
 mdesouza@cs.ucr.edu
 pshankar@cs.stanford.edu

web hosting
service,
web server
cluster,
load balancing,
scalability,
super linear
speedup,
performance
analysis

FLEX is a new cost effective, "locality aware" load balancing solution for a
shared web hosting service implemented on a cluster of machines [C99].
FLEX allocates hosted web sites to different machines in the cluster based on
the sites' processing and memory requirements which are estimated using
the site logs.

Appropriate routing of requests can be achieved by using the DNS
infrastructure, since each hosted web site has a unique domain name. FLEX
is simple, inexpensive and can be easily implemented on top of the current
infrastructure used by Web hosting service providers. The performance
benefits achieved by FLEX from both load distribution and efficient memory
usage make it a viable solution for low-end shared web hosting services.

Using two case studies (based on real traces), we evaluate the potential
benefits of the new solution. We compare the performance of FLEX against
Round-Robin and Optimal strategy. FLEX significantly outperforms Round-
Robin (up to 130% in average server throughput), getting within 5%-15% of
optimal performance achievable for those traces. Miss ratio is improved 2-6
times. FLEX solution shows superliner speedup when the number of nodes is
increased from four to eight because it takes advantage of both the doubled
processing power and memory.

1 University of California, Dept of Computer Science, Riverside, CA 92521, USA
2 Stanford University, Dept of Computer Science, Stanford, CA 94305, USA
 Copyright Hewlett-Packard Company 2000

Internal Accession Date Only

Contents

1 Introduction 3

2 Load Balancing Solutions 4

2.1 DNS Based Approaches : 4

2.2 IP/TCP/HTTP Redirection Based Approaches : : : : : : : : : : : : : : 5

2.3 Locality Aware Balancing Strategies : 8

3 New Scalable Web Hosting Solution: FLEX 8

3.1 Motivation for FLEX : 8

3.2 FLEX system : 9

4 Simulation Results: First Case Study 11

5 Simulation Results: Second Case Study 16

6 Conclusions and Future Research 21

7 References 21

2

1 Introduction

Demand for Web hosting and e-commerce services continues to grow at a rapid pace. In Web

content hosting, providers who have a large amount of resources (for example, bandwidth,

disks, processors, memory, etc.) store and provide Web access to documents for institutions,

companies and individuals who lack the resources, or the expertise to maintain a Web server,

or are looking for a cost e�cient, \no hassle" solution. According to Forrester Research Inc,

more than two-thirds of all corporate web sites are now hosted (outsourced).

The shared hosting market targets small and medium size businesses. It is a robust, high

volume, low-unit cost business. The most common purpose of a shared hosting Web site is

marketing. In this case, many di�erent sites are hosted on the same hardware. A shared

Web hosting service creates a set of virtual servers on the same server. This supports the

illusion that each host has its own web server, when in reality, multiple \logical hosts" share

one physical host. Web server farms and clusters are used in Web hosting infrastructures for

scalability and availability.

Traditional load balancing solutions try to distribute requests uniformly across all nodes

regardless of the content. This interferes with e�cient use of RAM in the cluster. The

popular �les tend to occupy RAM space in all the nodes. This redundant replication of

content across the RAM of all the nodes leaves much less RAM available for the rest of the

content, leading to a worse overall system performance. With these approaches, the e�ective

net RAM of the cluster is much less than the combined RAM of all the machines. Further,

some of these solutions also interfere with HTTP sessions.

A better approach would be to partition the content among the machines thus avoiding doc-

ument replication in the RAMs. However, static partitioning will inevitably lead to an ine�-

cient, suboptimal and inexible solution, since the access patterns tend to vary dramatically

over time, and static partitioning does not accommodate for this.

The observations above have led to the design of \locality aware" balancing strategies [LARD98]

which aim to avoid unnecessary document replication across the RAM's of the nodes to im-

prove the overall performance of the system. These are also known as content based routing

strategies.

In this paper, we analyze a new scalable, \locality aware" solution FLEX for load balancing

and management of an e�cient Web hosting service [C99]. For each web site hosted on a

cluster, FLEX evaluates (using web server access logs) the system resource requirements in

terms of the memory (site's working set) and the load (site's access rate). The sites are

then partitioned into N balanced groups based on their memory and load requirements and

assigned to the N nodes of the cluster respectively. Since each hosted web site has a unique

domain name, the desired routing of requests can be easily achieved by submitting appropriate

con�guration �les to the DNS server.

Using two case studies (based on real traces), we evaluate the potential bene�ts of the new

3

solution. We compare the performance of FLEX against Round-Robin for a cluster with

four nodes. We also compare FLEX with an Optimal strategy (which avoids all document

replication and does perfect load balancing (at per-request granularity). FLEX signi�cantly

outperforms Round-Robin (up to 130% in average server throughput), getting within 5%-15%

of optimal performance achievable for those traces. Miss ratio is improved 2-6 times. To

study the scalability issues of Round-Robin versus FLEX strategy, we performed simulations

for four- and eight-node clusters. The \speedup" under Round-Robin strategy for an eight-

node cluster is only due to doubled \processing" power. FLEX solution shows superliner

speedup when the number of nodes is increased from four to eight because it takes advantage

of both the doubled processing power and memory.

The main attractions of the FLEX approach are ease of deployment and an extremely at-

tractive cost/performance tradeo�. This solution requires no special hardware support or

protocol changes. There is no single front end routing component. Such a component can

easily become a bottleneck, especially if content based routing requires it to do such things

as tcp connection hand-o�s etc. FLEX can be easily implemented on top of the current

infrastructure used by Web hosting service providers.

The paper is structured as follows. Section 2 outlines typical architecture platforms used for

web hosting services and provides a detailed survey of existing load balancing strategies and

solutions. Section 3 describes FLEX. Sections 4, 5 present simulation results and analysis for

two di�erent sets of traces.

2 Load Balancing Solutions

Di�erent architectures have been used for multi-node web servers. One popular architecture

is a farm of web servers with replicated disk content. Another popular architecture is the

clustered architecture, which consists of a group of nodes connected by a fast interconnection

network, such as a switch. It assumes some underlying software layer (e.g., virtual shared

disk) which makes the interconnection architecture transparent to the nodes. The NSCA

prototype of the scalable HTTP server based on two-tier architecture is described and studied

in [NSCA96]. In all architectures, each web server has the access to all the content. Therefore,

any server can satisfy any client request.

Traditional load balancing solutions can be partitioned in two major groups:

� DNS Based Approaches;

� IP/TCP/HTTP Redirection Based Approaches;

{ hardware load-balancers;

{ software load-balancers.

2.1 DNS Based Approaches

Round-Robin DNS [RRDNS95] is built into the newer versions of DNS. Round-Robin DNS

4

distribute the requests among the nodes in the cluster using the following technique: for a

name resolution, the DNS server returns the IP address list (for example, list of nodes in a

cluster which can serve this content, see Figure 1), placing the di�erent address �rst in the

list for each successive request. Thus, di�erent clients are mapped to di�erent server nodes

in the cluster.

......

.........���
���
���
���

���
���
���
���

Shared File System

Subdomain
High Speed InterconnectCluster

Cluster

Web
Server

Web
Server

Web
Server

����
����
����
����

Web
Server

����
����
����
����

����
����
����
����

����
����
����
����

���
���
���
���

���
���
���
���

Client

RR-DNS

DNS Gateway

Web Server

Figure 1: Web Server Cluster Balanced with Round-Robin DNS.

Round-Robin DNS is widely used: it is easy to set up and provides reasonable load balancing.

Further, it uses the existing DNS infrastructure, i.e., there is no additional cost.

The Round-Robin schema has at least two drawbacks: it simply posts packets to the next

server on the chain { without verifying whether it is already overloaded. The second drawback

is that in the event of one of the nodes becoming unavailable, the DNS server still keeps sending

the requests to this node as it has no way of detecting this. There are at least two commercial

products that attempt to solve these problems associated with DNS load balancing: Cisco

DistributedDirector [Cisco] and HP Network Connection Policy Manager.

2.2 IP/TCP/HTTP Redirection Based Approaches

There are several commercial hardware/software load-balancer solutions that can distribute

incoming stream of requests among a group of Web servers. Load-balancing boxes are basically

IP routers.

Hardware load-balancing servers are typically positioned between a router (connected to

the Internet) and a LAN switch which fans tra�c to the Web servers. Typical con�guration

5

is shown in Figure 2.

In essence, they intercept incoming web requests and determine which web server should get

each one. Making that decision is the job of the proprietary algorithms implemented in these

products. This code takes into account the number of servers available, the resources (CPU

speed and memory) of each, and the number of active TCP sessions being serviced. The

algorithms also monitor each web server by time-stamping the packets and noticing how long

it takes to for a request to be handled by the server and returned. In theory, faster servers

are sent more requests than their slower counterparts. The balancing methods vary across

the di�erent load-balancing servers, but in general, the idea is to forward the request to the

least loaded server in the cluster.

Load-balancing server acts as a fast regulating valve between the Internet and the pool of

servers. The load balancer uses a virtual IP address to communicate with the router, masking

the IP addresses of the individual servers. Only the virtual address is advertised to the

Internet community, so the load balancer also acts as a safety net.

Switch
LAN

Firewall

Router

Request

Response

Internet

Web
Servers

Hardware
Load-Balancing
Server

Web

Browser1
Web

Browser2

TCP/IP

Figure 2: Web Server Farm with Hardware Load-Balancing Server.

The IP addresses of the individual servers are never sent back to the Web browser. If they

were, the browser would try to establish a session with a speci�c Web server, rather than with

the load-balancing server. This would defeat the entire purpose of deploying a load-balancing

server to distribute the requests. Both inbound requests and outbound responses must pass

through the balancing server, causing the load-balancer to become a potential bottleneck.

Four of the six commercial hardware load balancers we surveyed are built around Intel pentium

processors: LocalDirector from Cisco Systems [Cisco], Fox Box from Flying Fox [FlyingFox],

BigIP from F5 Labs [F5Labs], and Load Manager 1000 from Hydraweb Technologies Inc. [HydraWEB].

6

The other two load balancers employ a RISC chip: Web Server Director from RND Networks

Inc. [RND] and ACEdirector from Alteon [Alteon]. All these boxes but for Cisco's and RND's

run under Unix. Cisco's LocalDirector runs a derivative of the vendor's IOS software; RND's

Web Server Director also runs a proprietary system.

The software load balancers take a di�erent tack, handing o� the TCP session once a

request has been passed along to a particular server. In this case, the server responds directly

to the browser (see Figure 3). Vendors claim that this improves performance: responses don't

have to be rerouted through the balancing server, and there's no additional delay while an

internal IP address of the server is retranslated into the advertised IP address of the load

balancer.

Switch
LAN

RouterFirewall

Internet

Request

Response

Response
bypasses
software
load-balancing
server

Load-Balancing
Software
Running on a Server

Web
Servers

Web

TCP/IP

Browser1
Web

Browser2

Figure 3: Web Server Farm with Load-Balancing Software Running on a Server.

Actually, the translation is handled by the Web server itself. Software load balancers are sold

with agents that must be deployed on the Web server. It's up to the agent to put the right

IP address on a packet before it's shipped back to a browser. If a browser makes another

request, however, that's shunted through the load-balancing server.

Three commercial software load-balancing servers are available: ClusterCATS from Bright

Tiger Technologies [BrightTiger], SecureWay Network Dispatcher from IBM [IBM-SWND],

and Central Dispatch from Resonate Inc [Resonate]. These products can be used with Unix

or Windows NT servers.

More complete survey on load balancing solutions can be found in [Bruno97, Roberts98, C99].

7

2.3 Locality Aware Balancing Strategies

Traditional load balancing solutions (both hardware and software) for a web server cluster

try to distribute the requests uniformly on all the machines. As mentioned earlier, this ad-

versely a�ects e�cient memory usage because content is replicated across the caches of all the

machines.1 This may signi�cantly decrease overall system performance. These observations

have led the researchers to propose new \locality aware" balancing strategies [LARD98].

In the LARD approach, the cluster nodes are partitioned into two sets: front ends and back

ends. Front ends act as smart routers or switches: their functionality is similar to load-

balancing software servers described above. Front end nodes implement LARD to route

the incoming requests to the appropriate node in a cluster. LARD takes into account both

document locality and the current load. They show that on workloads with working sets that

do not �t in a single node's RAM, LARD improves throughput by a factor of two to four for

a 16 node cluster (for the traces they experimented with).

The elements of \content aware" strategies can be found in the commercial products of Alteon

Networks Inc. (San Jose, Calif.) and Arrowpoint Communications Inc. (Westford, Mass).

3 New Scalable Web Hosting Solution: FLEX

3.1 Motivation for FLEX

The load balancing solutions surveyed in Section 2.2 are expensive, complicated, often require

additional hardware and introduce additional latency. Some of these solutions also hinder http

sessions which are an integral part of modern web applications. Almost all of them have a front

end routing/ switching component that can become a bottleneck as the cluster size increases.

Further, most of them do not take into account request locality. For a cluster of machines

serving a single web site, taking request locality into account would require tcp connection

hando�s or other such equivalent complicated techniques because the actual requests are seen

only after the tcp connection is established and redirecting the request at this stage involves

a lot of work to transfer the state associated with the tcp connection.

On the other hand, for a shared web hosting service where a cluster of machines serve a

number of sites each with a di�erent domain name, a locality aware solution can be achieved

in a much simpler manner. Partitioning of content based on sites rather than �les allows us to

achieve content based routing (using DNS infrastructure) without the need for tcp connection

hando�s.

The motivation for FLEX was to design a simple, inexpensive, easy to deploy, scalable, locality

aware load distribution scheme for web hosting services. Such a scheme can also be used for

serving content with di�erent domain names within the same corporation. We compared the

performance of FLEX with an ideal Round-Robin scheme to demonstrate the importance of

1We are interested in the case when the overall �le set is greater than the RAM size of one node. If the entire �le set

completely �ts to the RAM of a single machine, any of existing load balancing strategies provides a good solution.

8

e�cient memory usage. We also compare FLEX with an optimal strategy that does perfect

load balancing (at per request granularity) and most e�cient memory usage. Results show

that FLEX is not far o� from the optimal strategy indicating that it does a very good job of

load distribution and e�cient memory usage.

3.2 FLEX system

The goal of FLEX is to assign sites to the nodes in the cluster to achieve both load balancing

and e�cient memory usage. Because di�erent sites have di�erent amounts of tra�c, we need

an intelligent algorithm for allocating sites to machines such that the load on each of the nodes

is approximately the same. Our approach is to allocate sites to the nodes such that memory

and processing requirements are approximately same on all the nodes. We use the working

set sizes and access rates of sites as a metric for judging their memory and load requirements.

Let there be a total of S sites hosted on a cluster of N web servers. For each web site s, we

build the initial \site pro�le" SP s by evaluating the following characteristics:

� A(s) - the access rate to the content of a site s (in bytes transferred during the observed

period P);

� W(s) - the combined size of all the accessed �les of site s (in bytes during the observed

period P, so-called \working set");

This site pro�le is entirely based on information which can be extracted from the web server

access logs of the sites.

Next, we partition all the sites into N \equally balanced" groups: S 1, ..., S N such that the

cumulative access rates and cumulative working sets in each of those N groups are approxi-

mately the same. Finally, we assign one server for each group of sites S i.

As mentioned earlier, static partitioning won't work because tra�c patterns of sites change

over time. FLEX monitors the sites' requirements periodically (at some prescribed time

interval: daily, weekly etc). If the sites' requirements change, and the old allocation (partition)

isn't good anymore { a new allocation (partition) of sites to machines has to be generated.

If a new partition does not take into account the existing \old" partition, it could lead to

temporary system performance degradation till the cluster memory usage stabilizes under the

new partition. This is because when a site is allocated to be served by a new server, none

of the content of this site is available in the RAM of this new server, and hence all the �les

would have to be downloaded from the disk. Thus, it is desirable to generate a new balanced

partition which changes the assigned servers for a minimal number of sites from the existing,

\old" partition.

FLEX depends on (fairly) accurate evaluation of the sites' working sets and access rates,

especially in the presence of sites with large working set and/or high access rate requirements.

A large site needs to be allocated to (\replicated on") more than one server when a single

9

server does not have enough resources to handle all the requests to this site. Thus, we need

algorithms for:

� Estimating the working sets and access rates of all the sites from the access logs.

� Finding the number of servers each site should be allocated to. Small sites may be put

on a single server but larger sites might have to be put on multiple servers.

� Finding the new working sets and access rates for sites put on multiple servers. When

a site is put on k servers, the working set and access rate for this site on each of these k

servers are (obviously) di�erent from the total working set and access rate of this site.

� Finding a balanced allocation of sites to servers. The goal is to ensure that cumulative

memory requirements and load are approximately same on each server. Further, the

allocation must change the site-to-server mapping for a minimal number of sites. If a

total remapping is done, there is heavy performance degradation during the switch from

the old to new allocation.

In [CP2000], we presented heuristic algorithms for solving these problems. For the details, we

refer the readers to [CP2000].

FLEX makes use of the DNS infrastructure to achieve the desired routing. Once the allocation

of sites to machines is done, the corresponding information is submitted to the DNS server.

All the sites in group S i are mapped to the IP address of node i. Latest version of BIND 8.1.2

supports Dynamic Update standard described in RFC 2136. This allows authorized agents

to update zone data by sending special update messages to add or delete resource records

(without restarting DNS server). For a large site replicated on more than one node, DNS

Round-Robin is used for routing requests to that site to the servers allocated to that site.

This solution is exible and easy to manage. Tuning can be done on a daily or weekly basis. If

server logs analysis shows enough changes in the working sets and access rates, the "Closest"

algorithm �nds a better partitioning of the sites to the nodes in the cluster (with minimal

number of sites changed routing), and new DNS con�guration �les are generated. Once DNS

server has updated its con�guration tables, new requests are routed according to the new

con�guration �les, and this leads to more e�cient tra�c balancing on the cluster. The entries

from the old con�guration tables can be cached by some servers and used for request routing

without going to the primary DNS server. However, the cached entries are valid for a limited

time dictated by the TTL (time to live). Once the TTL expires, the primary DNS server is

requested for updated information. During the TTL interval, both types of routing: old and

a new one, can exist. This does not lead to any problems since all servers have accesses to

the whole content and can satisfy any request. The smaller the TTL, the more dynamically

adaptive is the system.

FLEX system architecture is shown in Figure 4.

10

 Web Sites-to-Servers
Assignment

 Web Sites-to-Servers
Log Collection Assignment

 Web Sites

with corresponding

Log Analysis

AlgorithmTraffic Monitoring "Closest"Traffic Analysis

 Web Sites

DNS Server

Figure 4: FLEX Strategy: Logic Outline.

Such a self-monitoring solution helps in observing changing site tra�c patterns and helps

predict future trends and plan for them. During special advertisement, promotional campaigns

or events, when one could expect very high tra�c rates for a certain site, the mappings can

be manually changed (by the service administrator) such that the sites expecting much higher

tra�c are served by an increased number of servers. The algorithm can be easily made to

generate an allocation such that a particular site is allocated to a certain minimum number

of servers regardless of its requirements predicted from the logs.

4 Simulation Results: First Case Study

For our �rst experiment, we used the traces of the HP Web Hosting Service (provided to

internal customers). We used the traces for a four-month period: from April 1999 to July

1999. In April, the service had 71 hosted sites. By the end of July, the service had 89 hosted

web sites. The next table presents aggregate statistics characterizing the general memory and

load requirements for the traces. We also estimate memory requirements for \one-timers"

- �les accessed only once. Note that \locality-aware" strategies give no bene�t for a trace

containing only one-timers.

April May June July

Number of Requests 1,674,215 1,695,774 1,805,762 1,315,685

Working Set (MB) 994.2 MB 878.4 MB 884.9 MB 711.6 MB

Working Set of \Onetimers" 370.0 MB 374.5 MB 311.2 MB 298.3 MB

Access Rate (MB) 14,860 MB 14,658 MB 13,909 MB 8,713 MB

Number of Targeted Files 17,955 16,305 17,915 20,341

(1)

To characterize the \locality" of the traces, we create a Freq-Size �le: for each �le in the

trace, we store the number of times the �le was accessed (frequency) and its size. Freq-Size

�le is sorted in the order of decreasing frequency. We then compute the cumulative fraction

of requests and �le sizes, normalized to the total number of requests and total data set size,

respectively. The next table shows the locality characteristics of the trace:

11

Working Set for Working Set for

Month 97/98/99% of all 97/98/99% of all

Requests (in MBytes) Requests (as % of Total WS)

April 242.7 MB / 362.1 MB / 556.3 MB 24.4% / 36.4% / 56.0%

May 249.2 MB / 296.3 MB / 419.9 MB 28.4% / 33.7% / 47.8%

June 196.1 MB / 304.8 MB / 475.1 MB 22.2% / 34.4% / 53.7%

July 155.1 MB / 276.1 MB / 487.9 MB 21.8% / 38.8% / 68.6%

(2)

Smaller numbers for 97/98/99% of the working set indicate higher tra�c locality: this means

that a larger percentage of the requests target a smaller set of documents. These numbers

help us characterize the possible bene�ts of locality-aware strategies in general. The more

locality the trace has { the less bene�ts one could expect. This is because the main advantage

of locality aware strategies is to increase the e�ective RAM size. The more the locality, the

larger is the percentage of requests that can be satis�ed from a smaller RAM and thus the

bene�ts of a larger e�ective RAM are smaller.

In our simulations for the HP Web hosting service, we assumed that the sites are served by a

web server cluster with four nodes. We normalize the requirements of the sites such that the

total requirements of all the sites are 400 units of memory and 400 units of access rate. With

the normalization, each machine has to be allocated a set of sites whose combined access rate

and working set both total to 100 units each. Tables 3, 4, 5, 6 show �ve sites with the largest

working sets and with the largest access rate for April, May, June, and July, respectively.

April: Web Hosting Service had 71 hosted sites

Site Largest Working Access Site Working Largest Access

Number Set (units) Rate (units) Number Set (units) Rate (units)

62 213.9 40.2 57 56.8 95.6

57 56.8 95.6 20 2.7 46.7

17 14.3 3.43 62 213.9 40.2

42 12.2 10.0 67 2.4 34.2

60 12.1 9.8 51 2.7 28.3

(3)

It is interesting to note that the site 62 has a very high working set and accounts for 213 units

out of the total of 400 units for all 71 sites! However, the site 62' accounts for only 40.2 units

of access rate. Further, there are sites, such as site 20, which have a very small working set

(2.7 units of total) but \attract" a large number of accesses (40.2 units of access rate). Such

sites have a small number of extremely \hot" �les.

May: Web Hosting Service had 74 hosted sites

Site Largest Working Access Site Working Largest Access

Number Set (units) Rate (units) Number Set (units) Rate (units)

62 135.8 28.4 10 37.7 50.7

57 68.7 47.3 57 68.7 47.3

10 37.7 50.7 20 7.6 43.8

60 19.0 10.7 67 3.2 28.8

31 13.1 22.9 62 135.8 28.4

(4)

12

Data for May shows that the service' aggregate pro�le had changed: some of the larger sites

in April account for less memory and load requirements, while a few other sites require more

system resources.

June: Web Hosting Service had 84 hosted sites

Site Largest Working Access Site Working Largest Access

Number Set (units) Rate (units) Number Set (units) Rate (units)

62 136.4 35.4 57 74.5 50.6

57 74.5 50.6 20 4.6 42.7

10 18.6 41.0 10 18.6 41.0

60 14.1 10.4 62 136.4 35.4

13 12.9 25.6 67 2.9 32.0

(5)

Data for June shows further trends in the changing site tra�c patterns: the memory and load

requirements for sites 10 and 20 continue to grow steadily while some other sites disappear

from the list of \leaders".

July: Web Hosting Service had 89 hosted sites

Site Largest Working Access Site Working Largest Access

Number Set (units) Rate (units) Number Set (units) Rate (units)

10 64.2 43.6 20 8.1 46.1

57 49.4 12.6 10 64.2 43.6

5 38.7 6.3 13 12.4 34.5

34 28.4 5.0 1 0.7 34.1

60 19.6 16.6 21 3.1 17.1

(6)

Data for July shows a clear change of \leading sites": sites 10 and 20 became the largest sites

with respect to working set and access rate requirements respectively. Site 62's contribution

diminishes (it does not appear among the �ve \leading sites"). In July, the whole service

pro�le became more balanced: there were no sites with excessively large working sets (memory

requirement) or access rates (load on the system).

Our simulation model was written using C++Sim [Schwetman95]. The model makes the

following assumptions about the capacity of each web server in the cluster:

� Web server throughput is 1000 Ops/sec (or requests/sec) when retrieving �les of size

14.6Kbytes from the RAM (14.6Kbytes is the average �le size for the SpecWeb96 bench-

mark, which is an industry standard for measuring web server performance).

� Web server throughput is 10 times lower (i.e., 100 Ops/sec) when it retrieves the �les

from the disk rather than from the RAM.2

2We measured web server throughput (on HP 9000/899 running HP-UX 11.00) when it supplied �les from the RAM

(i.e., the �les were already downloaded from disk and resided in the File Bu�er Cache), and compared it against the web

server throughput when it supplied �les from the disk. Di�erence in throughput was a factor of 10. For machines with

di�erent con�gurations, this factor can be di�erent).

13

� The service time for a �le is proportional to the �le size.

� The cache replacement policy is LRU.

Using our partitioning algorithm, a partition was generated for each month. The requests from

the original trace for the month were split into four sub-traces based on the strategy. For

Round-Robin, the �rst sub-trace had requests 1, 5, 9 etc, the second sub-trace had requests

2, 6, 10 etc and so on. For FLEX, the �rst sub-trace had all the requests to all the sites

allocated to the �rst server in that month's partition etc. FLEX might replicate a large site

onto several servers. In this case, each request to this site was randomly assigned to one of

the servers assigned to this site. The four sub-traces were then \fed" to the respective servers.

Each server picks up the next request from its sub-trace as soon as it is �nished with the

previous request. We measured two parameters: 1) throughput (averaged across 4 servers) in

processing all the requests; and 2) miss ratio.

 16MB 64MB 128MB RAM

 200

 400

 600

 800

T
hr

ou
gh

pu
t

in
 R

eq
ue

st
s/

Se
c

 RR
 FLEX
 Optimal

Figure 5: Average Server Throughput in a Four-Node Cluster for April.

 16MB 64MB 128MB RAM

 200

 400

 600

 800

1000

T
hr

ou
gh

pu
t

in
 R

eq
ue

st
s/

Se
c

 RR
 FLEX
 Optimal

Figure 6: Average Server Throughput in a Four-Node Cluster for May.

To better appreciate the results, we decided to get an upper-bound on the best achievable

performance for the particular trace we had. We implemented the \optimal" strategy Optimal

which has the four servers operating with their RAMs combined. Each request from the

14

original trace can be served by any server (or rather CPU, since memories are now combined).

Optimal sets an absolute performance limit for the given trace and the given cache replacement

policy because it has perfect load balancing and no replication of content in memory.

Figures 5, 6, 7, 8 show the average server throughput for Round-Robin, FLEX and Optimal

and di�erent RAM sizes (the RAM sizes shown are per server).

 16MB 64MB 128MB RAM

 200

 400

 600

 800

1000

1200

T
hr

ou
gh

pu
t

in
 R

eq
ue

st
s/

Se
c

 RR
 FLEX
 Optimal

Figure 7: Average Server Throughput in a Four-Node Cluster for June.

 16MB 64MB 128MB RAM

 200

 400

 600

 800

1000

1200

T
hr

ou
gh

pu
t

in
 R

eq
ue

st
s/

Se
c

 RR
 FLEX
 Optimal

Figure 8: Average Server Throughput in a Four-Node Cluster for July.

Note that when a large site is assigned to multiple servers, there is some loss of memory usage

e�ciency because the content of this site is now replicated on multiple servers. Thus, FLEX

performs best when there are no large sites and each site is allocated to exactly one server.

The performance of FLEX is comparatively poorer than Optimal in April, May and June

because one or more sites (site 62 in all three months and 57 in April) have to be necessarily

replicated in these months to achieve balanced partitions. On the other hand, no site had

to be replicated in July and the performance of FLEX is much better. In general, FLEX

outperforms Round-Robin in all cases, and for larger RAM, the bene�ts in throughput range

from 50% to 100%. For May, June, and July, performance of FLEX strategies is within 5-18%

of Optimal.

For the traces of April and RAM sizes of 16 MB and 64 MB, FLEX's performance bene�ts are

15

modest. One of the reasons for this is a number of accesses to very large �les (sizes of 10MB

to 15MB) in April. We plan to repeat these simulations for di�erent replacement policies (for

example, not caching �les larger than a certain size) to study the impact of large �les.

Due to the lack of space, we omit the graphs showing the miss ratios: in all cases, miss ratio

(FLEX vs Round-Robin) is improved dramatically, by a factor of 2-3. Optimal strategy shows

the minimummiss ratio, and miss ratios for FLEX strategies are very close to that of Optimal.

All our results were for a cluster of four nodes. As the cluster size increases, locality aware

strategies like FLEX do even better compared to non-locality aware strategies like Round-

Robin. The next case study examines the scalability of FLEX.

5 Simulation Results: Second Case Study

In our second experiment, we used the traces of the busy HP's external web site. These traces

represent a large, single web site. To create a web hosting like service, we treat the set of

�rst level directories of this single site as independent web sites. Traces were collected during

four days in October, 1999. During these days, the \web hosting service" had 145 hosted

\sites". The next table presents aggregate statistics characterizing the general memory and

load requirements for the traces.

Day 1 Day 2 Day 3 Day 4

Number of Requests 6,893,537 6,709,091 6,822,680 6,591,683

Working Set (MB) 1,249.1 MB 1,072.5 MB 1,177.0 MB 1,242.8 MB

Working Set of \Onetimers" 381.6 MB 359.2 MB 404.4 MB 390.9 MB

Access Rate (MB) 17,774 MB 17,056 MB 17,356 MB 17,080 MB

Number of Targeted Files 60,203 50,004 60,707 54,887

(7)

These traces have much higher number of requests (two orders of magnitude higher compared

to the �rst trace), and represent a much busier service. The next table shows the locality

characteristics of the traces:

Working Set for Working Set for

Month 97/98/99% of all 97/98/99% of all

Requests (in MBytes) Requests (as % of Total WS)

Day 1 213.4 MB / 341.3 MB / 595.0 MB 17.1% / 27.3% / 47.6%

Day 2 175.5 MB / 265.5 MB / 420.9 MB 16.4% / 24.8% / 39.2%

Day 3 216.8 MB / 322.3 MB / 541.3 MB 18.4% / 27.4% / 46.0%

Day 4 204.3 MB / 292.3 MB / 532.5 MB 16.4% / 23.5% / 42.8%

(8)

These traces have more locality than the traces in the �rst case study. One of the reasons

could be that these traces belong to a single large web site (although arti�cially partitioned

into multiple sites) and not multiple sites as in the �rst trace. As explained earlier, \locality"

is an important characteristic which helps us estimate in advance the potential bene�ts of

locality-aware strategies. In this case, we might expect a lower \return" from FLEX due to

16

the high locality inherent in the traces. However, the second case study is still very interesting

because of higher tra�c rate which gives us an opportunity to study the performance bene�ts

of FLEX for di�erent (larger) cluster sizes.

The other distinct feature is that the overall service is more balanced: there are no \sites"

with excessively large working sets (memory requirement) or access rates (load on the system).

We performed simulations for two di�erent cluster sizes to study the impact of increasing

cluster size. First, we assume that the sites are served by a web server cluster with four nodes.

In this case, we normalize the requirements of the sites such that the total requirements of all

the sites are 400 units of memory and 400 units of access rate. With the normalization, each

machine has to be allocated a set of sites whose combined access rate and working set both

total to 100 units each. Next Table 9 show �ve sites with the largest working sets and with

the largest access rate for Day 1.

Site Largest Working Access Site Working Largest Access

Number Set (units) Rate (units) Number Set (units) Rate (units)

24 35.5 18.1 82 0.1 40.8

98 25.9 4.7 33 24.5 37.4

33 24.5 37.4 108 18.5 30.4

63 21.4 19.2 41 14.2 26.2

135 19.3 9.9 63 21.4 19.2

(9)

Due to space limitations, we show the statistics for Day 1 only. The statistics for the other

days di�er slightly (by around 5-10 units).

For example, site 24 had the largest working set requirement for Day 1: 35.5 units (with 18.1

units of access rate). During the observed four day period, these requirements varied between

34 units (with 19.9 units of access rate) and 39.8 units (with 17.2 units of access rate).

Site 82 was responsible for highest access rate: 40.8 units (with working set of 0.1 units).

During the observed four day period, these requirements varied between 40.1 units (with

working set of 0.3 units) and 45.1 units (with working set of 0.09 units).

REMARK: For a cluster with eight nodes, similar analysis holds. However, we normalize the

total requirements of all the sites to 800 units. Thus, the numbers from Table 9 are doubled

for the eight-node case.

Using our partitioning algorithm, a partition was generated for each day based on the tra�c

in the previous day. For example, the partition used for Day 2 was based on the tra�c

patterns of Day 1, etc.

Figures 9, 10 show the average achievable server throughput for Round-Robin, FLEX and

Optimal strategies for Days 1-2 and Days 3-4 respectively for di�erent RAM sizes (per server

RAM sizes).

The results are consistent across all the four days. The performance improvements due to

FLEX over Round-Robin are 30%-80% depending on the server RAM size (larger RAM gives

17

 32MB 64MB 128MB 32MB 64MB 128MB RAM

 500

 1000

 1500

 2000

 2500

 3000

T
hr

ou
gh

pu
t

in
 R

eq
ue

st
s/

Se
c.

Day 1 and Day 2

 RR
 FLEX
 Optimal

Figure 9: Average Server Throughput in a Four-Node Cluster for Days 1 and 2.

 32MB 64MB 128MB 32MB 64MB 128MB RAM

 500

 1000

 1500

 2000

 2500

 3000

T
hr

ou
gh

pu
t

in
 R

eq
ue

st
s/

Se
c.

Day 3 and Day 4

 RR
 FLEX
 Optimal

Figure 10: Average Server Throughput in a Four-Node Cluster for Days 3 and 4.

greater performance improvements, because FLEX bene�ts from more e�cient memory us-

age). FLEX is within 1%-17% of the Optimal strategy for all RAM sizes for the given traces.

For a RAM size of 128 MBytes, FLEX achieves near optimal performance.

For the second set of experiments on the same traces, we assume that the sites are served

by a web server cluster with eight nodes. Using our partitioning algorithm, a partition was

generated for a cluster of eight nodes, again based on the previous day's tra�c patterns.

Figures 11, 12 show the average achievable server throughput for Round-Robin, FLEX and

Optimal strategies for Days 1-2 and Days 3-4 respectively for di�erent RAM sizes (per server

RAM sizes)

Performance improvements of FLEX over Round-Robin are much higher for an eight-node

cluster than for a cluster with four nodes. Average web server throughput with FLEX is 85%-

130% higher compared to the average web server throughput with Round-Robin strategy.

FLEX is within 1%-15% of the Optimal strategy for the given traces for various RAM sizes.

For a RAM size of 128 MBytes, FLEX again achieves nearly optimal performance.

18

 32MB 64MB 128MB 32MB 64MB 128MB RAM

 500

 1000

 1500

 2000

 2500

 3000

 3500

T
hr

ou
gh

pu
t

in
 R

eq
ue

st
s/

Se
c.

Day 1 and Day 2

 RR
 FLEX
 Optimal

Figure 11: Average Server Throughput in an Eight-Node Cluster for Days 1 and 2.

 32MB 64MB 128MB 32MB 64MB 128MB RAM

 500

 1000

 1500

 2000

 2500

 3000

 3500

T
hr

ou
gh

pu
t

in
 R

eq
ue

st
s/

Se
c.

Day 3 and Day 4

 RR
 FLEX
 Optimal

Figure 12: Average Server Throughput in an Eight-Node Cluster for Days 3 and 4.

Next, we analyze the performance of Round-Robin and FLEX for di�erent cluster sizes. The

average per-server throughput with Round-Robin strategy for an eight-node cluster is almost

same as (in fact, slightly worse than) that of a four-node cluster. Thus a cluster with eight

nodes processes the same trace about twice as fast as a cluster with four nodes. However,

a cluster with eight nodes has twice the memory in addition to twice the processing power

compared to a cluster with four nodes. The speedup under Round-Robin strategy is due

to doubled processing power only. FLEX takes advantage of both the doubled memory and

processing power and thus demonstrates a superlinear speedup as the cluster size increases

from four to eight nodes.

The following Figures 13, 14 show the average miss ratio per node with Round-Robin and

FLEX strategies in clusters with four and eight nodes. (We omit miss ratio �gures for Days 3

and 4, because the results are very similar to Days 1 and 2).

The miss ratio with Round-Robin strategy doesn't improve as the cluster size increases from

four to eight nodes. This again emphasizes that Round-Robin is incapable of taking advantage

of doubled overall memory in the cluster. With an eight-node cluster, FLEX shows signif-

19

32MB 64MB 128MB RAM

 2

 4

 6

 8

 10

 12

 14

 16

M
is

s
R

at
io

 (
%

)
 RR-4Nodes

 RR-8Nodes

 FLEX-4Nodes

 FLEX-8Nodes

Figure 13: Average Miss Ratio per Server for Four- and Eight-Node Cluster during Day 1.

32MB 64MB 128MB RAM

 2

 4

 6

 8

 10

 12

 14

M
is

s
R

at
io

 (
%

) RR-4Nodes

 RR-8Nodes

 FLEX-4Nodes

 FLEX-8Nodes

Figure 14: Average Miss Ratio per Server for Four- and Eight-Node Cluster during Day 2.

icantly lower miss ratio, especially for smaller RAM sizes. It explains why FLEX achieves

superlinear speedup for larger cluster sizes.

Note that the simulation results above are based on an \ideal Round-Robin" strategy, i.e.,

we route each consecutive request from the trace to the next web server in a cluster in an

ideal round-robin manner. However, in reality once a particular client resolves the domain

name to an ip-address of some server in a cluster, all consecutive requests from this client

are sent to the same server. The HP site (which we used in our case study) runs on four

web servers with RR-DNS for load balancing. We had four traces from those servers (\real

Round-Robin") to compare against the \ideal Round-Robin" strategy we used in experiment.

Average server throughput under \real Round-Robin" was about 5%-13% worse than under

\ideal Round-Robin". These results could be interpreted twofold:

1. \Real Round-Robin" does remarkably good job of load-balancing: it is within 5%-13%

of intended load balancing which is an \ideal Round-Robin".

2. The FLEX performance bene�ts, if compared against \real Round-Robin", will be about

5%-13% higher.

20

We also did some experimentation with synthetic traces. The performance gain provided by

FLEX depends on locality characteristics of the tra�c. Preliminary analysis [C99] based on

synthetic traces with less locality demonstrated that FLEX can outperform Round-Robin by

a factor of 5 for a 16 node cluster.

6 Conclusions and Future Research

In this paper, we analyzed several commercial hardware/software load-balancing solutions

used to distribute requests among a group of Web servers. We described a low cost, easy

to deploy and scalable solution FLEX. The advantages of the FLEX can be summarized as

follows:

� FLEX is a low cost balancing solution unlike most other solutions. It does not require

installation of any additional hardware or complex software. The resources spent for

additional hardware may be spent in increasing the cluster size thus providing better

performance than special hardware based solutions.

� FLEX is a scalable solution because there is no front end switch or a centralized compo-

nent that could become a bottleneck as the cluster size increases. All the other solutions

examined earlier that did dynamic load balancing have centralized routing/ switching

components that can become a bottleneck as the cluster size increases.

� FLEX is not based on static inexible partitioning and can adapt to gradual changes in

sites' tra�c patterns.

� As emphasized earlier, it is easy to deploy.

Interesting future work will be to make the solution more dynamically adaptable, to extend

the solution and the algorithm to work with heterogeneous nodes in a cluster, to take into

account SLA (Service Level Agreement) and some additional QoS requirements.

7 References

[Alteon] URL: http://www.alteon.com/products/acelerate-data.html

[BrightTiger] URL: http://www.brighttiger.com

[Bruno97] L. Bruno: Balancing the Load On Web Servers.
CMPnet, September 21, 1997. URL: http://www.data.com/roundups/balance.html

[C99] L. Cherkasova: FLEX: Design and Management Strategy for Scalable Web Hosting
Service. HP Laboratories Report No. HPL-1999-64R1,1999.

[CP2000] L. Cherkasova, S. Ponnekanti: Achieving Load Balancing and E�cient Memory
Usage in A Web Hosting Service Cluster. HP Laboratories Report No. HPL-2000-27,
February, 2000.

[Cisco] URL: http://www.cisco.com/warp/public/751/lodir/

21

[F5Labs] URL: http://www.f5labs.com/

[FlyingFox] URL: http://www.yingfox.com/

[HydraWEB] URL: http://www.hydraweb.com/z2 index.html

[IBM-SWND] http://www.software.ibm.com/network/dispatcher/

[LARD98] V.Pai, M.Aron, G.Banga, M.Svendsen, P.Drushel, W. Zwaenepoel, E.Nahum:
Locality-Aware Request Distribution in Cluster-Based Network Servers. In Proceedings of
the 8th International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS VIII), ACM SIGPLAN,1998, pp.205-216.

[MS97] S.Manley and M.Seltzer: Web Facts and Fantasy. Proceedings of USENIX Symposium
on Internet Technologies and Systems, 1997, pp.125-133.

[NSCA96] D. Dias, W. Kish, R. Mukherjee, R. Tewari: A Scalable and Highly Available Web
Server. Proceedings of COMPCON'96, Santa Clara, 1996, pp.85-92.

[Resonate] URL: http://www.resonate.com/products/

[RND] URL: http://www.rndnetworks.com/

[Roberts98] E. Roberts: Load Balancing: On a Di�erent Track. CMPnet, May 1998. URL:
http://www.data.com/roundups/load.html

[RRDNS95] T. Brisco: DNS Support for Load Balancing.
RFC 1794, Rutgers University, April 1995.

[Schwetman95] Schwetman, H. Object-oriented simulation modeling with C++/CSIM. In
Proceedings of 1995 Winter Simulation Conference, Washington, D.C., pp.529-533, 1995.

[SpecWeb96] The Workload for the SPECweb96 Benchmark.
URL http://www.specbench.org/osg/web96/workload.html

22

