

Achieving Load Balancing and
Efficient Memory Usage in A
Web Hosting Service Cluster

Ludmila Cherkasova, Shankar Ponnekanti*
Computer Systems and Technology Laboratory
HP Laboratories Palo Alto
HPL-2000-27
February, 2000

E-mail:cherkasova@hpl.hp.com
 pshankar@cs.stanford.edu

web hosting
service,
web server
cluster,
web traffic
characteristics,
load balancing,
scalability,
performance
analysis.

FLEX is a new scalable "locality aware" solution for achieving
both load balancing and efficient memory usage on a cluster of
machines hosting several web sites [C99]. FLEX allocates the
sites to different machines in the cluster based on their traffic
characteristics. Here, we propose a set of new methods and
algorithms (Simple, Simple+, Advanced, and Advanced+) to
improve the allocation of the web sites to different machines.
We also design algorithm "Closest" which creates a new
partition for the given sites' requirements which is "closest" to a
specified "previous" sites' partition. "Improved" FLEX
outperforms traditional load balancing solutions 50% to 100%
(in throughput) even for a four node cluster. Miss ratio is
improved 2-3 times. These figures increase with the size of the
cluster. Ease of deployment and low cost are the other
attractions of FLEX.

* Stanford University, Dept of Computer Science, Stanford, CA, 94305, USA
 Copyright Hewlett-Packard Company 2000

Internal Accession Date Only

Contents

1 Introduction 3

2 Working Set and Access Rate Evaluation Methods 4

2.1 Basic De�nitions and Denotations : 5

2.2 Four Di�erent Methods to Compute Working Set and Access Rate Requirements

for Replicated Sites : 7

2.2.1 Simple : 7

2.2.2 Simple+ : 7

2.2.3 Advanced : 8

2.2.4 Advanced+ : 9

3 Algorithm for Generating the \Closest" Balanced Partition 11

3.1 Algorithm Inputs : 11

3.2 Basic De�nitions and Notation Used in the Algorithm : : : : : : : : : : 12

3.3 Algorithm closest : 13

4 Simulation Results 16

5 Conclusions and Future Work 22

6 References 22

2

1 Introduction

Demand for Web hosting and e-commerce services continues to grow at a rapid pace. In Web

content hosting, providers who have a large amount of resources (for example, bandwidth to the

Internet, disks, processors, memory, etc.) o�er to store and provide Web access to documents

for institutions, companies and individuals who lack the resources, or the expertise to maintain

a Web server, or are looking for a cost e�cient, \no hassle" solution.

A shared Web hosting service creates a set of virtual servers on the same server. This supports

the illusion that each host has its own web server, when in reality, multiple \logical hosts" share

one physical host. Web server farms and clusters are used in a Web hosting infrastructure as a

way to create scalable and highly available solutions. Good surveys of most typical architectural

solutions may be found in [B97, R98, C99]. In this paper, we assume that each web server in

a cluster or web server farm has access to all the web content. Therefore, any server can satisfy

any client request.

Ideally, a cluster (farm) of N web servers should be N times more powerful than one web server.

However, to realize this, one has to achieve the two often conicting goals: load balancing and

e�cient memory usage. Traditional load balancing solutions (both hardware and software) for

a web server cluster try to distribute the requests uniformly on all the machines. However, this

adversely a�ects e�cient memory usage because content is replicated across the caches of all

the machines. With this approach, a cluster having N times bigger RAM (which is a combined

RAM of N nodes) might e�ectively have almost the same RAM as one node due to replicated

popular content throughout the RAMs in the cluster.1

A better approach is to partition the content so that memory is used more e�ciently. However,

static partitioning will inevitably lead to an ine�cient, suboptimal and inexible solution, since

the changes in access rates as well as access patterns tend to vary dramatically over time, and

static partitioning does not accommodate for this.

The observations above led researchers to design \locality aware" balancing strategies [LARD98]

which aim to avoid unnecessary document replication to improve the overall performance of

the system. In [C99], FLEX - a new scalable \locality aware" solution for the design and

management of an e�cient Web hosting service, was introduced. For each web site hosted on

a cluster, FLEX evaluates (using web server access logs) the system resource requirements in

terms of the memory (site's working set) and the load (site's access rate). The sites are then

partitioned into N balanced groups based on their memory and load requirements and assigned

to the N nodes of the cluster respectively. Since each hosted web site has a unique domain name,

the desired routing of requests can be easily achieved by submitting appropriate con�guration

�les to the DNS server.

One of the main attractions of this approach is economy and ease of deployment. This solution

requires no special hardware support or protocol changes. The resources required for special

1We are interested in the case when the overall �le set is greater than the RAM of one node. If the entire �le set

completely �ts to the RAM of a single machine, any of existing load balancing strategies provides a good solution.

3

hardware based solution can instead be invested in adding more machines to the cluster. There

is no single front end routing component. Such a component can easily become a bottleneck,

especially if content based routing requires it to do such things as tcp connection hand-o�s etc.

Further, most web hosting systems have built in facilities for web server log analysis for various

other reasons. Our solution can thus be integrated very easily into the current infrastructure.

FLEX depends on (fairly) accurate evaluation of the sites' working sets and access rates, es-

pecially in the presence of sites with large working set and access rate requirements. A large

site needs to be allocated to (\replicated" on) more than one server when a single server does

not have enough resources to handle all the requests to this site. Several questions have to be

answered when dealing with large sites that need to be replicated: how many servers should be

assigned to a particular large site? What are the memory requirements and the load due to this

site on each of the assigned servers? Evaluation of the memory requirements for the replicated

site on each of the assigned servers is a non-trivial task.

FLEX also modi�es and adjusts the allocation of the sites to the nodes of the cluster when

tra�c patterns change. FLEX monitors the sites' requirements periodically (at some prescribed

time interval: daily, weekly, or monthly). If the sites' requirements change, the old allocation

(partition) may not be good anymore and a new allocation (partition) of sites to machines has

to be generated. If a new partition does not take into account the existing \old" partition, it

could lead to temporary system performance degradation till the cluster memory usage stabilizes

under the new partition. This is because when a site is allocated to be served by a new server,

none of the content of this site is available in the RAM of this new server, and hence all the

�les would have to be downloaded from the disk. Thus, we need to generate a new balanced

partition which changes the assigned server for a minimal number of sites from the existing,

\old" partition.

In this paper, we propose a set of methods and algorithms (of varying complexity and expected

accuracy) to solve the following problems that were raised above:

� computing the site's working set and access rate requirements when the site is replicated

across several servers;

� creating a new partition for the given sites' requirements which is \closest" to a speci�ed

\previous" sites' partition.

The �rst problem is addressed in Section 2. The solution of the second problem is described in

Section 3. Section 4 analyze the simulation results for the proposed methods.

2 Working Set and Access Rate Evaluation Methods

All the methods described in this Section are entirely based on information that can be extracted

from the web server access logs of the sites. For each hosted web site s, we build the initial \site

pro�le" by evaluating the following characteristics:

4

� A(s) - the access rate to the content of a site s (in bytes transferred during the observed

period P);

� W (s) - the combined size of all the accessed �les of site s (in bytes during the observed

period P , so-called \working set");

� FR(s) - the table of all accessed �les with their frequency (number of times a �le was

accessed during the observed period P) and size, i.e., a set of triples (f , frf , sizef), where

frf and sizef are the frequency and the size of the �le f respectively.

Unless speci�ed, our methods are independent of what the period P is (one day, one month etc).

The access rate A(s) is the principal factor that characterizes the load on a system due to the

tra�c to site s. The working set W (s) characterizes the memory requirements of the site s.

These parameters provide a high level characterization of the hosted web sites and their system

resource requirements.

Let N be the number of nodes in the web server cluster. Our goal is to partition all the hosted

web sites in N \equally balanced" groups: C1; :::; CN such that the cumulative access rates and

cumulative working sets of each of these N groups is approximately the same.

An important issue that needs to be addressed is dealing with large sites. These are sites with

large working set and access rate requirements. A large site has to be served by more than one

server when a single server does not have enough resources to handle all the requests to this site.

In what follows, we assume that all the machines are identical. However, our approach can be

extended to the case where machines have di�erent capacities.

2.1 Basic De�nitions and Denotations

Let the working set and access rate requirements of a site s be W (s) and A(s). When the site

s is replicated on k servers, we replace the site s by k identical logical sites s#k, where each of

these sites is assigned to a di�erent server. Note that s#1 is the same as s.

When a site is replicated on k servers, the working set of this site on each of these k servers may

not be the same as W (s). In fact, we expect the working set on each of the servers to be less

than the working set of the unreplicated site W (s), because some �les of this site might never

be accessed on some of these k servers. Similarly, we expect the access rate to this site on each

of the k servers to be k times smaller than the original access rate, A(s). We denote the working

set on each of the k servers of a site s replicated on these k servers by W (s#k). Similarly, we

denote the access rate of each of these k logical sites by A(s#k). Thus, the total working set

and access rate of a replicated site s on all the k servers is given by k �W (s#k) and k �A(s#k).

Note that all the expressions involving s#k that appear in this and later Sections are consistent

for the case k = 1. However, in most expressions, at the expense of some redundancy, we

mention the case when the site is put on a single server separately, for the sake of clarity. This

also helps the reader take better notice of the consequences of replication on more than one

5

server.

The new working set and the new access rate for each site s are thus de�ned de�ned as

NewW (s) =

(
W (s) if the site is put on one server

k �W (s#k) if the site is put on k > 1 servers

Similarly,

NewA(s) =

(
A(s) if the site is put on one server

k � A(s#k) if the site is put on k > 1 servers

The total working set and the total access rate of all the sites is computed as follows:

TotalW =
X

all sites s

NewW (s) and TotalA =
X

all sites s

NewA(s)

Thus, the mean working set and access rate per server are given by:

MeanW =
TotalW

N

and MeanA =
TotalA

N

where N is the number of servers in the cluster.

Next, we describe when and on how many servers a site is replicated. We replicate a site s when

its working set W (s) or access rate A(s) exceeds a certain limit. Speci�cally, we replicate a site

s when either

W (s) > alpha �MeanW or A(s) > beta �MeanA;

where alpha and beta are two thresholds in the range between 0 and 1. Typical values of alpha

and beta to create a good balanced solution are in the range of 0.7.

Let Copies(s) denote the number of times a site is replicated. Further, recall that s#1 is the

same as s. Initially, we have Copies(s) = 1 for all the sites s.

Our algorithm for deciding the amount of replication for each site s is as follows:

find MeanW and MeanA

do

done = true

for s = 1 to NumSites

if ((W(s#Copies(s))>alpha*MeanW or A(s#Copies(s))>beta*MeanA) and Copies(s)<N){

Copies(s) = Copies(s) + 1;

done = false;

recompute NewW(s), NewA(s), MeanW and MeanA;

}

while done = false

6

Note that when the algorithm is �nished, the following condition is met:

For each site s, either s is replicated across all the N servers or

W (s#Copies(s)) < alpha �MeanW and NewA(s#Copies(s)) < beta �MeanA:

To simplify our algorithms and get a better representation of the working sets and access rates

for each site, we \normalize" the working sets and access rates as given below.

If a site s is put on a single server, we set

W (s) =
W (s) �N � 100

TotalW

:

If a site s is replicated across k servers, we set

W (s#k) =
W (s#k) �N � 100

TotalW

:

Similarly,

A(s) =
A(s) �N � 100

TotalA

and A(s#k) =
A(s#k) �N � 100

TotalA

:

With the normalization, both the total access rate and the total working set of all the sites

is equal to N � 100. Thus, our task is to partition the web sites in N balanced groups with

cumulative (normalized) working sets and access rates of 100 units each. Each of these balanced

group is then assigned to a server.

2.2 Four Di�erent Methods to Compute Working Set and Access Rate Re-

quirements for Replicated Sites

2.2.1 Simple

The simplest but least accurate method is to simply set:

A(s#k) =
A(s)

k

and W (s#k) =W (s)

where the k is the number of servers the site s is replicated across.

Intuitively, it means that each of k servers experiences 1
k
-th of the total load (tra�c) to the site

s. However, the working set (memory requirements) of the site s for each of k servers is the

same (i.e., the original working set with no reduction).

2.2.2 Simple+

This method is similar to the Simple method. However, unlike in Simple method, we estimate

the possible reduction of the working sets caused by replication. Intuitively, if some �les of the

site s are accessed only a few times, then the probability that these �les are accessed on all

the k servers the site s was replicated across diminishes as k increases. This leads to a smaller

working set on each of the k servers.

7

In this method, for each of the replicated sites s, we use additional information - the frequency

for all accessed �les. That is, for each �le f of site s, we know the access frequency frf (the

number of times this �le was accessed during the observed period P) and the �le size sizef in

bytes, as described at the beginning of Section 2.

Let a site s be replicated across k servers. In order to estimate W (s#k), we evaluate the

probability p(k; f) that the �le f is accessed at least once on one of these k servers in the period

P . (Intuitively, if the �le f is accessed at least once on a given server, this �le \contributes" its

size to the site working set on this server).

Assuming independence of accesses and that all accesses are equally likely to go to any server,

this probability is given by

p(k; f) = 1� (1�
1

k

)frf :

Thus, we calculate the working set as

W (s#k) =
X

all �les f of site s

[1� (1�
1

k

)frf] � sizef

and we have

A(s#k) =
A(s)

k

:

Thus, we estimate the possible reduction in working set size due to the site's replication. This

improves the accuracy of the working set estimates and hence, the accuracy and precision of the

site allocation method as well.

2.2.3 Advanced

Methods Simple and Simple+ can be further improved, if the memory (RAM) size of each node

in the cluster is available.

Let ram be the size of the memory (RAM) in each node. Recall that there are N nodes in a

cluster. We have, total cluster memory Ram = ram �N .

Let B(s; fr) be the number of bytes of site s that are accessed with frequency fr in the period

P . In other words, B(s; fr) is the sum of sizes of �les that are accessed with frequency fr in

period P .

Let C(s; fr) =
P

all fr 0�fr B(s; fr
0):

We can compute C(s; fr) for all the sites and frequencies. In practice, we compute C(s; fr) only

till some frequency limit fr large.

Then, we �nd the smallest frequency fr
opt such that

P
all sites sC(s; fr

opt) � Ram: Essentially,

by computing fropt, we have identi�ed the \most popular Ram bytes" from all the sites.

We then make the following assumptions:

� Best performance is achieved when the \most popular bytes" reside in memory.

8

� The OS replacement policy ensures that the most popular bytes are the ones that are kept

in memory at all times.

REMARK: In principle, these assumptions are not true. Replacement policies, such as LRU,

etc., do not ensure the second assumption. Moreover, the best performance can be achieved

from the (ideal, unpractical) policy where a �le that is accessed furthest in future is the one that

is evicted, regardless of the popularity of the �le. However, we believe that these assumptions

are good approximations to the best practical policies.

Given these assumptions, it can be easily seen that when the sites are distributed on a cluster

of identical nodes with total memory Ram, the best performance is achieved when the most

popular Ram bytes are distributed equally on all nodes.

Thus, we evaluate the working set requirement of a site s as W (s) = C(s; fropt).

Let Y (s) be the total number of bytes of site s transferred during period P . Recall that we set ac-

cess rate A(S) to this value in Methods Simple and Simple+. Note that Y (s) =
P

fr fr �B(s; fr)

According to our assumptions, we have C(s; fropt) bytes of site s in memory while the rest of

the bytes of this site come from disk. Thus the number of bytes of site s that would come from

disk is

D(s; fr opt) =
X

fr<fropt

fr � B(s; fr):

In this method, we make a distinction in estimating the site load depending on whether the

accessed bytes come from memory or disk. Accesses from the disk cause more load on the system

that accesses from memory. So, we weigh the accesses from the disk by a factor DiskWeight. In

other words, for the accesses coming from the disk, we add an additional cost of (DiskWeight�1)

per byte.

Thus, we set A(s) = Y (s) + D(s; fr opt) � (DiskWeight � 1). Note that A(s) = Y (s) when

DiskWeight = 1.

If a site s is replicated on k servers, we set the number of bytes accessed with frequency greater

than or equal to fr on each server as

C(s#k; fr) = C(s; k � fr)

and we have

B(s#k; fr) = C(s#k; fr)� C(s#k; fr + 1):

We use the above equations to calculate fropt, D(s; fropt) and the working sets and access rates

for all the sites in cases where one or more sites are replicated.

2.2.4 Advanced+

This method is essentially identical to Method 2, except for the details of modeling.

Here again, we compute B(s; fr) for each site s and all frequencies fr .

9

We design a simple analytical model to calculate a time period T such that the sum of sizes

of distinct �les accessed (from all the sites) in time T is equal to Ram bytes. In other words,

this is the period for one LRU cycle. That is, a �le that is accessed at time t is expected to be

evicted at time t+ T if it is not accessed again.

In order to calculate T , we assume that the arrival distribution is Poisson. That is, for the

B(s; fr) bytes of site s that were accessed with frequency fr , we assume that their arrival rate

is Poisson with fr expected arrivals in period P .

The probability that a byte, that is accessed fr times (expected) in period P , is accessed at least

once in period T is given by

1� e
�

fr�T
P

So, we have X
s;fr

B(s; fr) � (1� e
�

fr�T
P) = Ram:

Using the above formula , we can �nd T=P .

Note that a byte of site s is expected to be in memory if it is accessed at least once in the period

T . So, we compute the working set of site s as

W (s) =
X
fr

B(s; fr) � (1� e
�

fr�T
P)

Again, let Y (s) be a total number of bytes of site s transferred during period P . Recall that

Y (s) =
P

fr fr � B(s; fr):

All the bytes of site s that are not in W (s) come from the disk. The number of bytes of the site

s transferred from disk is given as:

D(s) =
X
fr

fr � B(s; fr) � e�
fr�T
P

Another way of looking at this is the following: consider a reference to a �le f at time t. File f is

in memory if it was at least accessed once in the time interval (t�T; t) and has to be downloaded

from the disk otherwise. Thus, we assume that the probability that a �le is accessed from the

disk is equal to the probability that it is not accessed in time T .

We de�ne the site s access rate as: A(s) = Y (s) + (DiskWeight � 1) �D(s):

If a site s is replicated across k servers, we simply set

W (s#k) =
X
fr

B(s; fr) � (1� e
�

fr�T
k�P)

D(s#k) =
X
fr

B(s; fr) � e�
fr�T
k�P

Y (s#k) =
Y (s)

k

10

A(s#k) = Y (s#k) + (DiskWeight � 1) �D(s#k)

In other words, when a site s is replicated across k servers, if a byte of site s was accessed an

expected fr�T
P

times in time T , the same byte of each replica site (s#k) is accessed an expected
fr�T
k�P

times in time T .

3 Algorithm for Generating the \Closest" Balanced Partition

As stated earlier, FLEX monitors the sites requirements periodically (at some prescribed time

interval: daily, weekly, or monthly). Because of changed site requirements, the old allocation

(partition) may not be good anymore and a new allocation (partition) of sites to machines might

be needed. Further, as seen earlier, the new partition must move a minimal number sites to

new servers to avoid temporary performance degradation during the reassignment of sites to

servers. In this Section, we propose a heuristic approximate algorithm closest (exact algorithm

is unlikely to be polynomial as this problem can be proved to be NP-complete) for the following

problem:

� create a new balanced partition R for the given sites requirements Reqs which is \closest"

to a speci�ed \previous" sites' partition Rold

where \closest" means that minimal number of sites are moved to new servers.

While the algorithm closest doesn't guarantee the \best" balancing or the \closest" partition to

the previous partition, it does pretty well in practice.

3.1 Algorithm Inputs

The algorithm closest generates a new balanced partition R for the given sites' requirements

Reqs such that R is the \closest" to a speci�ed\previous" sites' partition Rold.

ALGORITHM closest(Partition Rold, Requirements Reqs)

where

1. Partition Rold is speci�ed as follows:

� For each server S, it contains sites(S)- the list of sites assigned to this server;

� Similarly, for each site s, it contains

{ servers(s) - the list of servers on which this site s is replicated, and

{ count(s) - the number of servers on which site s is replicated, i.e. count(s) =

Copies(s).

2. Sites' requirements Reqs contain the following information for each site s:

� count(s) - the number of servers on which site s is replicated;

� W (s#k), where k = count(s);

� A(s#k), where k = count(s).

11

3.2 Basic De�nitions and Notation Used in the Algorithm

Let R be a partition, and Reqs be the given sites' requirements.

We use capital letters X, Y , etc, to refer to servers and small letters p; q; r; s etc to refer to sites.

Note that \site s" is used here for either s or s#k.

1. For a partition R, site p and server X,

R:contains(X; p) = true

if and only if server X is one of the servers allocated to the site p.

2. Let R:W (X) denote the total memory needed for all the sites assigned to server X, and

R:A(X) denote the sum of access rates of all the sites assigned to server X.

R:W (X) =
X

all s such that R:contains(X;s)

Reqs:W (s#count(s)):

R:A(X) =
X

all s such that R:contains(X;s)

Reqs:A(s#count(s)):

3. For servers X and Y , the R:Deviation(X;Y) is de�ned as follows

jR:W (X)�R:W (Y)j+ jR:A(X) �R:A(Y)j:

4. For servers X;Y and sites p; q, R:swap(p; q;X; Y) is the new partition obtained by swap-

ping the sites p and q between servers X and Y .

This operation is valid only if

R:contains(X; p) = true and R:contains(X; q) = false

and

R:contains(Y; q) = true and R:contains(Y; p) = false

(see case 4 below for an exception).

To understand the conditions

R:contains(X; q) = false and R:contains(Y; p) = false;

note that a site s could be replicated on k > 1 servers, and each of the k logical \subsite"

s#k has to be kept on a di�erent server.

5. Additionally, R:swap(p; q;X; Y) is also a valid operation if:

� p = 0 and site q is on server Y; in this case, R:swap(p; q;X; Y) refers to the partition

obtained by moving site q from server Y to server X.

12

� q = 0 and site p is on server X; in this case, R:swap(p; q;X; Y) refers to the partition

obtained by moving site p from server X to server Y .

6. For servers X;Y and sites p; q on servers X and Y respectively, the function Bene�t is

de�ned as follows:

R:Bene�t(p; q ;X ;Y) = R:swap(p; q;X; Y):Deviation(X;Y)�R:Deviation(X;Y)

This de�nition also holds if one of p or q is 0 (refer to case 4 above).

7. For partitions R and Q

distance(R;Q) = cardinality(M) where

M = f(p;X)j such that Q:contains(X; p) = true and R:contains(X; p) = falseg:

In words, distance(R;Q) measures the number of times a site is present on a server in

partition R such that the same site is not present on the same server in partition Q.

8. For a partition R and a real number dev, we de�ne a relation satis�es as follows:

R satisfies dev = true if 100 � dev � R:W (X) � 100 + dev and

100� dev � R:A(X) � 100 + dev for all servers X in a cluster:

This means that allocation to all servers is within dev% of their quotas. Recall that the

working sets and access rates were normalized such that each server has a quota of 100 for

both access rate and working set.

9. SET contains the set of all \good" partitions found so far. Its meaning will be clear from

the algorithm pseudocode given below.

3.3 Algorithm closest

The informal, short description of the algorithm is as follows.

The algorithm makes NumSolutions iterations to �nd partitions satisfying deviation dev and

then picks that partition among the found ones that has the least distance from the existing

partition.

In each iteration to �nd a partition satisfying dev, the algorithm starts with the existing partition

and swaps sites (at most NumAttempts times) across servers trying to obtain a partition that

satis�es dev. If, in less than or equal to NumAttempts swaps, a partition is obtained that satis�es

dev, then this iteration is successful. Otherwise, this iteration is a failure.

After NumSolutions iterations, say K partitions satisfying dev are found. Note that K �

NumSolutions . If K = 0 (that is, no partition satisfying dev was found), then dev is increased

and the whole process is repeated.

The pseudocode for the algorithm closest is given below:

13

begin Algorithm

dev = 0

SET = NULL

while (SET == NULL)

dev += 5;

for i=1 to NumSolutions do

R = P; /* make a copy of P */

if (Reqs.count(p) != R.count(p) for some site p)

randomly add/drop servers from R.servers(p) to make

R.count(p) = Reqs.count(p);

for j=1 to NumAttempts do

if i <= NumSolutions/10

pick X and Y such that R.Deviation(X,Y) is maximum;

pick two sites p and q (one of them could be 0) such that

R.benefit(p,q,X,Y) is maximum;

R = R.swap(p,q,X,Y);

else if (i <= 4 * NumSolutions)/10)

pick X and Y such that R.Deviation(X,Y) is maximum;

pick two sites (one of them could be 0) such that

probability of picking p and q is proportional

to R.benefit(p,q,X,Y) ;

R = R.swap(p,q,X,Y);

else if (i <= 7 * NumSolutions/10)

pick two servers such that the probability of picking X and Y

is proportional to R.Deviation(X,Y);

pick two sites p and q (one of them could be 0) such that

R.benefit(p,q,X,Y) is maximum;

R = R.swap(p,q,X,Y);

else

rand = random number in 0..1;

if (rand > 0.9)

pick X and Y such that R.Deviation(X,Y) is maximum

else

pick two servers such that the probability of picking

X and Y is proportional to R.Deviation(X,Y);

14

if (rand > 0.9)

pick two sites p and q (one of them could be 0)

such that R.benefit(p,q,X,Y) is maximum;

R = R.swap(p,q,X,Y);

else

pick two sites (one of them could be 0) such that

probability of picking p and q is proportional to

R.benefit(p,q,X,Y)

R = R.swap(p,q,X,Y)

endfor

if (R satisfies dev)

SET = SET union {R}

endfor

endwhile

R' = {R | R belongs to SET and distance(R_old,R) is minimum}

end Algorithm

There are few places in the pseudocode above which need additional explanation:

� The pseudocode has some \magic" numbers. For example \NumSolutions=10",

\4�NumSolutions=10" etc. These magic numbers are not very important. We have simply

described the exact algorithm we used.

� In principle, we could have used any optimization algorithm, such as a genetic algorithm

or hill climbing etc. However, we found that the above algorithm was good enough for our

purposes.

� When the pseudocode says:

\probability of picking sites p and q is proportional to R:Bene�t(p; q ;X ;Y)",

it means that the probability of picking sites p and q is given by

P (p; q) =
R:Bene�t(p; q ;X ;Y)

R:TotalBene�t(X ;Y)
:

Here

R:TotalBene�t(X ;Y) =
X

all site pairs r;s

R:Bene�t(r ; s;X ;Y)

where sites r and s are such that R:swap(r; s;X; Y) is valid.

15

� When the pseudocode says :

\probability of picking X and Y is proportional to R:Deviation(X;Y)",

it means that the probability of picking servers X and Y is given by

P (X;Y) =
R:Deviation(X;Y)

R:TotalDeviation

where

R:TotalDeviation =
X

all server pairs X;Y

R:Deviation(X;Y):

Note that X and Y cannot be the same server.

4 Simulation Results

For our experiments, we used the traces of the HP Web Hosting Service (provided to internal

customers). We used the traces for a four-month period: from April 1999 to July 1999. In April,

the service had 71 hosted sites. By the end of July, the service had 89 hosted web sites. The next

table presents aggregate statistics characterizing the general memory and load requirements for

the traces. We also estimate memory requirements for \one-timers" - �les accessed only once.

Note that \locality-aware" strategies give no bene�t for a trace containing only one-timers.

April May June July

Number of Requests 1,674,215 1,695,774 1,805,762 1,315,685
Working Set (MB) 994.2 MB 878.4 MB 884.9 MB 711.6 MB
Working Set of \Onetimers" 370.0 MB 374.5 MB 311.2 MB 298.3 MB
Access Rate (MB) 14,860 MB 14,658 MB 13,909 MB 8,713 MB
Number of Targeted Files 17,955 16,305 17,915 20,341

(1)

To characterize the \locality" of the traces, we created a Freq-Size �le: for each �le in the trace,

we store the number of times the �le was accessed (frequency) and its size. Freq-Size �le is sorted

in the order of decreasing frequency. We then compute the cumulative fraction of requests and

�le sizes, normalized to the total number of requests and total data set size, respectively. The

next table shows the locality characteristics of the trace:

Working Set for Working Set for
Month 97/98/99% of all 97/98/99% of all

Requests (in MBytes) Requests (as % of Total WS)

April 242.7 MB / 362.1 MB / 556.3 MB 24.4% / 36.4% / 56.0%

May 249.2 MB / 296.3 MB / 419.9 MB 28.4% / 33.7% / 47.8%

June 196.1 MB / 304.8 MB / 475.1 MB 22.2% / 34.4% / 53.7%

July 155.1 MB / 276.1 MB / 487.9 MB 21.8% / 38.8% / 68.6%

(2)

Smaller numbers for 97/98/99% of the working set indicate higher tra�c locality: this means

that a larger percentage of the requests target a smaller set of documents. These numbers help

us characterize the possible bene�ts of locality-aware strategies in general. The more locality

the trace has { the less bene�ts one could expect. This is because the main advantage of locality

aware strategies is to increase the e�ective RAM size. The more the locality, the larger is the

16

percentage of requests that can be satis�ed from a smaller RAM and thus the bene�ts of a larger

e�ective RAM are smaller.

In our simulations for the HP Web hosting service, we assumed that the sites are served by a

web server cluster with four nodes. As stated earlier, we normalize the requirements of the sites

such that the total requirements of all the sites are 400 units of memory and 400 units of access

rate. With the normalization, each machine has to be allocated a set of sites whose combined

access rate and working set both total to 100 units each. Tables 3, 4, 5, 6 show �ve sites with the

largest working sets and with the largest access rate for April, May, June, and July, respectively.

April: Web Hosting Service had 71 hosted sites

Site Largest Working Access Site Working Largest Access
Number Set (units) Rate (units) Number Set (units) Rate (units)

62 213.9 40.2 57 56.8 95.6
57 56.8 95.6 20 2.7 46.7
17 14.3 3.43 62 213.9 40.2
42 12.2 10.0 67 2.4 34.2
60 12.1 9.8 51 2.7 28.3

(3)

It is interesting to note that the site 62 has a very high working set and accounts for 213 units

out of the total of 400 units for all 71 sites!. However, the site 62' accounts for only 40.2 units

of access rate. Further, there are sites, such as site 20, which have a very small working set (2.7

units of total) but \attract" a large number of accesses (40.2 units of access rate). Such sites

have a small number of extremely \hot" �les.

May: Web Hosting Service had 74 hosted sites

Site Largest Working Access Site Working Largest Access
Number Set (units) Rate (units) Number Set (units) Rate (units)

62 135.8 28.4 10 37.7 50.7
57 68.7 47.3 57 68.7 47.3
10 37.7 50.7 20 7.6 43.8
60 19.0 10.7 67 3.2 28.8
31 13.1 22.9 62 135.8 28.4

(4)

Data for May shows that the service' aggregate pro�le had changed: some of the larger sites

in April account for less memory and load requirements, while a few other sites require more

system resources.

June: Web Hosting Service had 84 hosted sites

Site Largest Working Access Site Working Largest Access
Number Set (units) Rate (units) Number Set (units) Rate (units)

62 136.4 35.4 57 74.5 50.6
57 74.5 50.6 20 4.6 42.7
10 18.6 41.0 10 18.6 41.0
60 14.1 10.4 62 136.4 35.4
13 12.9 25.6 67 2.9 32.0

(5)

17

Data for June shows further trends in the changing site tra�c patterns: the memory and load

requirements for sites 10 and 20 continue to grow steadily while some other sites disappear from

the list of \leaders".

July: Web Hosting Service had 89 hosted sites

Site Largest Working Access Site Working Largest Access
Number Set (units) Rate (units) Number Set (units) Rate (units)

10 64.2 43.6 20 8.1 46.1
57 49.4 12.6 10 64.2 43.6
5 38.7 6.3 13 12.4 34.5
34 28.4 5.0 1 0.7 34.1
60 19.6 16.6 21 3.1 17.1

(6)

Data for July shows a clear change of \leading sites": sites 10 and 20 became the largest

sites with respect to working set and access rate requirements respectively. Site 1 still has

a very small working set (0.7 units) but now accounts for 34 units of the load! Site 62's

contribution diminishes (it does not appear among the �ve \leaders"). In July, the whole

service pro�le became more balanced: there were no sites with excessively large working sets

(memory requirement) or access rates (load on the system).

Our simulation model was written using C++Sim [Schwetman95]. The model makes the follow-

ing assumptions about the capacity of each web server in the cluster:

� Web server throughput is 1000 Ops/sec (or requests/sec) when retrieving �les of size 14.5K

from the RAM (14.5k is the average �le size for the SpecWeb96 benchmark, which is an

industry standard for measuring web server performance).

� Web server throughput is 10 times lower (i.e., 100 Ops/sec) when it retrieves the �les from

the disk rather than from the RAM.1

� The service time for a �le is proportional to the �le size.

� The cache replacement policy is LRU.

Using our partitioning algorithm, a partition was generated for each month. The requests from

the original trace for the month were split into four sub-traces based on the strategy. For Round-

Robin, the �rst sub-trace had requests 1, 5, 9 etc, the second sub-trace had requests 2, 6, 10 etc

and so on. For FLEX, the �rst sub-trace had all the requests to all the sites allocated to the

�rst server in that month's partition etc. FLEX might replicate a large site onto several servers.

In this case, each request to this site was randomly assigned to one of the servers assigned to

1We measured web server throughput (on HP 9000/899 running HP-UX 11.00) when it supplied �les from the RAM

(i.e., the �les were already downloaded from disk and resided in the File Bu�er Cache), and compared it against the web

server throughput when it supplied �les from the disk. Di�erence in throughput was a factor of 10. For machines with

di�erent con�gurations, this factor can be di�erent).

18

this site. The four sub-traces were then \fed" to the respective servers. Each server picks up the

next request from its sub-trace as soon as it is �nished with the previous request. We measured

two parameters: 1) throughput (averaged across 4 servers) in processing all the requests; and 2)

miss ratio.

 RAM=16MB RAM= 64MB RAM=128MB

 200

 400

 600

 800

T
hr

ou
gh

pu
t

in
 R

eq
ue

st
s

pe
r

Se
co

nd
 (

%
)

APRIL

 RoundRobin
 Simple
 Simple+
 Advanced
 Advanced+
 Optimal

Figure 1: April.

 RAM=16MB RAM= 64MB RAM=128MB

 200

 400

 600

 800

1000

T
hr

ou
gh

pu
t

in
 R

eq
ue

st
s

pe
r

Se
co

nd
 (

%
)

MAY

 RoundRobin
 Simple
 Simple+
 Advanced
 Advanced+
 Optimal

Figure 2: May.

We also implemented the \optimal" strategy Opt which has the four servers operating with their

RAMs combined. Each request from the original trace can be served by any server (or rather

CPU, since memories are now combined).2 Figures 1, 2, 3, 4 show the maximum achievable

throughput for Round-Robin, di�erent FLEX strategies and Opt for di�erent RAM sizes (the

RAM sizes shown are per server).

2Opt sets an absolute performance limit for the given trace and the given cache replacement policy because it has perfect

load balancing and no replication of content in memory.

19

 RAM=16MB RAM= 64MB RAM=128MB

 200

 400

 600

 800

1000

1200
T

hr
ou

gh
pu

t
in

 R
eq

ue
st

s
pe

r
Se

co
nd

 (
%

)

JUNE

 RoundRobin
 Simple
 Simple+
 Advanced
 Advanced+
 Optimal

Figure 3: June.

 RAM=16MB RAM= 64MB RAM=128MB

 200

 400

 600

 800

1000

1200

T
hr

ou
gh

pu
t

in
 R

eq
ue

st
s

pe
r

Se
co

nd
 (

%
)

JULY

 RoundRobin
 Simple
 Simple+
 Advanced
 Advanced+
 Optimal

Figure 4: July.

Note that when a large site is assigned to multiple servers, there is some loss of memory usage

e�ciency because the content of this site is now replicated on multiple servers. Thus, FLEX

performs best when there are no large sites and each site is allocated to exactly one server. The

performance of FLEX is comparatively poorer than Opt in April, May and June because one

or more sites (sites 62 in all three and 57 in April) have to be necessarily replicated in these

months to achieve balanced partitions. On the other hand, no site had to be replicated in July

and the thus performance of FLEX was much better. In some cases (especially 128 MB) it was

near optimal.

For the traces of April and RAM sizes of 16 MB and 64 MB, FLEX's performance bene�ts

are modest. One of the reason for this is a number of accesses to very large �les (10MB to

15MB size) in April. We plan to repeat these simulations for di�erent replacement policies (for

example, not caching �les larger than a certain size) to study the impact of large �les.

20

In general, FLEX outperforms Round-Robin in all cases, and for larger RAM, the bene�ts in

throughput range from 50% to 100%. For May, June, and July, performance of FLEX strategies

is within 5-15% of Opt.

In all the cases, Advanced and Advanced+ outperform Simple and Simple+. Di�erence between

Simple and Simple+, as well as Advanced and Advanced+ does not seem to be signi�cant (at

least for the traces we studied).

APRIL

Round_Robin
Simple
Simple+
Advanced
Advanced+
Optimal

Miss (%)

RAM_Size (MB)
0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

26.00

28.00

30.00

0.00 50.00 100.00 150.00

MAY

Round_Robin
Simple
Simple+
Advanced
Advanced+
Optimal

Miss (%)

RAM_Size (MB)
0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

26.00

28.00

30.00

0.00 50.00 100.00 150.00

JUNE

Round_Robin
Simple
Simple+
Advanced
Advanced
Optimal

Miss (%)

RAM_Size (MB)
0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

26.00

28.00

30.00

0.00 50.00 100.00 150.00

JULY

Round_Robin
Simple
Simple+
Advanced
Advanced+
Optimal

Miss (%)

RAM_Size (MB)
0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

26.00

28.00

30.00

0.00 50.00 100.00 150.00

Figure 5: April, May, June, July.

Figure 5 shows the miss ratio of Round-Robin, di�erent FLEX strategies and Opt for di�erent

RAM sizes. As usual, the RAM sizes shown are per server.

21

In all cases, miss ratio (FLEX vs Round-Robin) is improved dramatically, by a factor of 2-3.

Opt shows the minimum miss ratio, and miss ratios for FLEX strategies are very close to that of

Opt. All our results were for a cluster of four nodes. As the cluster size increases, locality aware

strategies like FLEX do even better compared to non-locality aware strategies like Round-Robin.

5 Conclusions and Future Work

Our simulation results con�rm that FLEX achieves its twin goals of e�cient memory usage and

load balancing. Further, FLEX has the following advantages compared to other locality aware

strategies:

� Ease of deployment and low cost.

� No special hardware support needed.

� No complicated state management/connection hando�s etc.

� No front-end routing component that can become a potential bottleneck as the cluster size

increases.

The primary disadvantage of FLEX is its inability to adjust to temporary surges in request

arrivals. However, FLEX has an extremely favorable cost-bene�t tradeo�. Further, combining

the ideas of FLEX with a dynamic load balancing approach could result in a solution that has

the advantages of both worlds.

Future work will investigate above mentioned ideas and also extending the solution and the

algorithm to work with heterogeneous nodes in a cluster, SLA (Service Level Agreement), and

some additional QoS requirements.

6 References

[B97] L. Bruno: Balancing the Load On Web Servers. CMPnet, September 21, 1997. URL:

http://www.data.com/roundups/balance.html

[C99] L. Cherkasova: FLEX: Design and Management Strategy for Scalable Web Hosting Ser-

vice. HP Laboratories Report No. HPL-1999-64R1,1999.

[LARD98] V.Pai, M.Aron, G.Banga, M.Svendsen, P.Drushel, W. Zwaenepoel, E.Nahum:

Locality-Aware Request Distribution in Cluster-Based Network Servers. In Proceedings

of the 8th International Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS VIII), ACM SIGPLAN,1998, pp.205-216.

[NSCA96] D. Dias, W. Kish, R. Mukherjee, R. Tewari: A Scalable and Highly Available Web

Server. Proceedings of COMPCON'96, Santa Clara, 1996, pp.85-92.

22

[RRDNS95] T. Brisco: DNS Support for Load Balancing. RFC 1794, Rutgers University, April

1995.

[Schwetman95] Schwetman, H. Object-oriented simulation modeling with C++/CSIM. In Pro-

ceedings of 1995 Winter Simulation Conference, Washington, D.C., pp.529-533, 1995.

[SpecWeb96] The Workload for the SPECweb96 Benchmark. URL

http://www.specbench.org/osg/web96/workload.html

[R98] E. Roberts: Load Balancing: On a Di�erent Track. CMPnet, May 1998. URL:

http://www.data.com/roundups/load.html

[RRDNS95] T. Brisco: DNS Support for Load Balancing. RFC 1794, Rutgers University, April

1995.

23

