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Automated agents are increasingly being used by organisations 
and individuals trading in electronic markets. Agents are 
particularly useful in markets where trade might not have been 
possible otherwise, for example because a lot of information 
must be processed quickly, or because employing human 
traders in 24-hour, small transactions markets is not cost-
effective. Markets for communication bandwidth, where 
organisations trade the rights to transmit data over a network, 
are one such application. Because demand fluctuates 
considerably every few seconds agent-based spot markets 
provide extra liquidity.  

This paper considers the design of agents which automatically 
trade in a k-double auction market for communication 
bandwidth. We suggest criteria and a general framework for 
building adaptive agents based on ideas from statistical 
decision theory. In particular our agents are designed to 
differentiate stable from unstable market conditions and to 
best-respond to these changes. 
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(1)  Introduction 

 

With the increasing spread of the Internet, more and more commercial transactions are 

taking place electronically. Consumers purchase books and CDs, and businesses 

conduct electronic auctions of supply contracts. Electronic double auctions, such as 

Fastparts (http://www.fastparts.com/), allow buyers and sellers to negotiate with each 

other. Some goods, such as software, can also be delivered via the net. The Internet, 

particularly the World Wide Web, is emerging as one of the most efficient media for 

carrying out business-to-consumer and business-to-business transactions. The 

competitiveness of the internet is likely to further increase: Agent technology could 

become for e-commerce what Windows was for PCs - a relatively simple and user-

friendly way of using the new technology. In this framework individuals and 

organisation interact via the network using software agents. A software agent (also 

automated, or autonomous agent) is a program that acts independently on behalf of its 

user and in of its interests. The main characteristic of these interactions is that the user 

delegates the authority to search, match, and even to transact business to the agent. 

See [11] Vulkan(1999) for a discussion of the economic implications of this. 

 

An interesting recent development in electronic commerce is the buying and selling 

electronically of the right to transmit data over the net and the telecommunications 

infrastructure. Organisations like Band-X (http://www.band-x.com/), RateXchange 

(http://www.ratexchange.com/) and Min-X (http://pulver.com/min-x/) provide bulletin 

boards and double auctions to buy and sell bandwidth and connection time. Currently, 

these transactions are wholesale, between large operators. However, we could imagine 

such transactions taking place far more frequently. 

 

If negotiation were cheap and easy, and appropriate billing infrastructure was in place, 

re-negotiation of connection contracts could take place every few seconds. This would 

allow sources of traffic (such as local Internet service providers) to dynamically switch 

between long distance carriers in response to price fluctuations. In this way, a spot 

market for bandwidths could develop. For an overview of the current and future state 

of Internet bandwidth markets, see [3] Lehr and McKnight (1999). 
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One of the keys to making this happen is the ability to negotiate automatically. If 

negotiations are to take place constantly it would be expensive for people to perform 

the task. Furthermore, they will not always be able to react fast enough to changes in 

market conditions. For this reason, communications bandwidth has inspired work on 

automated negotiation from its inception [6] Rosenschein and Zlotkin (1994). 

 

One approach to automate negotiations is to consider the structure of the market 

game-theoretically, and treat the choice of what bid/offer to make at any given time as 

the selection of a strategy (for example, using the framework of Harsanyi,  [8] 

Rustachini et al. (1994), study the equilibria of k-double auctions. Game theory and 

economic theory provide us with tools that allow us to analyse the relationship 

between market structures and efficiency of outcomes. The design of an automated 

market for self-interested agents is that respect no different from any other market. 

Companies which set up electronic markets, on the Internet or elsewhere, want them 

to maximise their future profits through efficiency and competitiveness. Similarly, 

organisations want agents which maximise their profits, given the communication 

protocol (or “the market design”, as an economist will put it). 

 

Accumulated knowledge from economic theory and mechanism design can be applied 

to these goals. Over the last three decades, rapid progress in implementation theory 

(mechanism design), had brought the subject to an engineering-like state, where a large 

number of well understood mechanisms can be prescribed for participants with a given 

set of preferences. However, human agents often find ways to outsmart the designers 

of these mechanisms. Markets for automated agents can therefore be a much more 

suitable application for implementation theory. An automated agent is a pre-

programmed algorithm, very much like the game-theoretical concept of strategy. In 

this sense, game theory (and mechanism design) seems more suitable for automated 

agents than it is for humans. 

 

For agents to be fully autonomous, they must be able to learn and adjust to changing 

circumstances. Agents will choose their bids on-line based on current information from 

the user (e.g. maximal willingness to pay, priority of achieving trade) and on past 

observations. Designing adaptive agents which trade in spot markets is a difficult task - 
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to some extent this is similar to trying to quantify the work of financial traders - but 

one for which a practical solution must be found in order for such applications to be 

implemented. 

 

There is a large literature on learning in games, and in auctions in particular.3 

Experimental game theory, behavioural economics, and evolutionary economics all 

focus on the learning process and on the effects it might have on behaviour in the 

steady state. Many models in which an individual learner is faced with an uncertain 

environment have been developed recently (e.g. [5] McKelvey & Palfrey (1995), [3] 

Fudenberg & Levine (1997), [1] Erev & Roth (1997),  [7] Roth & Erev (1995)). 

These are motivated by question such as: Under what conditions will players converge 

to an equilibrium? What degree of rationality should players posses in order to reach 

an optimum? And which rules best resemble how real people behave? 

 

Although we are also interested in the adaptive process and its possible affects on 

outcomes, our motivation is different: We look for conclusions that could be used by 

the engineers who design artificial traders. Moreover, we are not interested in 

equilibrium as such, because in the market for communication bandwidth there is no 

“stable” stage game: The number and identity of players change constantly. In fact, the 

number of players at any trading period will typically not be known in advance. 

Moreover, exogenous shocks to demand and supply will be indistinguishable from 

changes in aggregated behaviour, which complicates the prospect of formal analysis 

even further. Even the agents that remain in the market for a number of periods may 

change their utility model because their users’ requirements change.  

 

Our concerns about rationality are also different from those of experimental 

economists in that complexity should only matter if it is on-line. Off-line, the agent can 

be as complex as necessary, as long as it is able to quickly and efficiently process the 

available information on-line and decide its bid. In this sense complex algorithms, 

which seem very unlike real people’s decision rules, can be considered as long as they 

                                                        
3 There is also a large literature on learning in financial markets. However, this literature focuses on 
the transmission of private information via the price mechanism. Since we treat bandwidth as a 
perishable good, this issue is not relevant in our setting.  
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(a) perform well, and (b) require only a reasonably limited computational effort to 

produce a bid at period t, given the history at t-1, and the new reserve price. 

 

It should be clear from our description so far that the bandwidth-trading environment 

requires new conceptual thinking about learning. The first contribution of this paper is 

to normatively express the requirements of a “good” learning algorithm in this setting. 

Because there is no “game” as such, learning takes place in a stochastic environment, 

where each action (i.e. a bid) is associated with a success probability and a payoff. If 

these success probabilities are fixed over time the environment can be described as a 

multi-arm bandit (where each bid value correspond to an arm). If the environment is 

stochastically stable, then there exists one strategy (i.e. a function mapping from 

reservation prices to bids), which statistically dominates all other strategies. If this is 

indeed the case, then a “good” learning algorithm will converge to playing this 

dominant strategy. However, the environment will not always be (stochastically) 

stable, and we require that the learning algorithm will be responsive to such changes in 

the underlying structure. A “good” learning algorithm will quickly adapt to such 

changes. 

 

We provide a high-level specification for an on-line algorithm (an agent) for trading in 

communication bandwidth. The algorithm uses the tools of statistical learning theory to 

test on-line whether the trading environment is consistent with the agent’s model of the 

world. If the environment is stable and is consistent with the agent’s model, then the 

agent best responds to its beliefs (i.e. chooses the bid which maximises the user’s 

expected utility). If the trading environment is not stable then the algorithm switches to 

its transitory mode where the next period’s bid is selected. Finally, the algorithm 

allows for new models of the environment to replace old ones. We show that our 

algorithm achieves the two requirements described above, by testing its own success in 

predicting what happens next at any given stage, but only changing its learning mode 

when sufficient evidence exists to suggest its learning is not consistent with recent 

outcomes. 

 

We show that the suggested algorithm satisfies both requirements of convergence and 

responsiveness. We show also that it combines rapid convergence with maximum 
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responsiveness to changes. We provide a set of simulations which demonstrate the 

performance of the agent in a number of trading environments. 

 

(2) Double Auction Markets for Automated Agents 

 

In this section, we introduce some economic terminology, and describe the k-double 

auction marketplace that is used subsequently in this paper. 

 

Buyers and sellers meet to trade goods and services in a market. Buyers may bid to 

buy a good at a given price, and sellers may offer to sell a good at a given price. The 

market consists of a clearing mechanism, which determines how bids, offers and other 

messages can be exchanged to determine a trade. In a k-double auction, buyers 

announce their maximal willingness to pay, and sellers the minimal price they are 

willing to accept. Sorting out the buyers bids in increasing order, and the sellers in 

decreasing order, denote by [a,b] the interval between the buyer’s bid with the highest 

index (in the sorted list) which is still smaller than the corresponding seller’s bid with 

the same index.4 A k-double auction mechanism selects the clearing price p=ka+(1-

k)b, where k∈ (0,1). All buyers who bid at least p trade with all sellers which bid no 

more than p. All those who trade, trade at the clearance price, and all others do not 

trade. Note that, since the number of bidders is finite, there is a positive probability that 

a given buyer or seller enters the marginal bid (i.e. a or b). Hence, bidders can gain 

from setting their bids strategically (i.e. for a seller this is the real value under which it 

is not worth trading, and for a buyer a price above which trade is no longer profitable). 

For the case where the number of buyers and sellers, and the distribution of reserve 

prices are commonly known, the exact formulae for optimal bidding strategies can be 

found in [8] Rustachini et al (1994). 

 

In this paper, we consider a repeated k-DA for trading instantly perishable goods. A 

good is instantly perishable if it ceases to be useable soon after it becomes available for 

sale. The right to transmit on a network at a given time is an example of such a good; a 

                                                        
4 Alternatively, bids can be aggregated into supply and demand curves. The interval [a, b] now 
correspond to the intercepting section of the two graphs. 
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network provider can offer connection time now, but if it is not used now, it ceases to 

be available. You can't store up connection time for sale later. (Though, of course, new 

connection time becomes available.) 

 

Such a good suggests a marketplace where trades are taking place continuously, and 

buyers and sellers are continuously adjusting their price in response to the activities of 

others. Each buyer and seller has a certain good (or need for a good) at any given 

trading round, and announces the price they are willing to trade at. In the next round, 

any goods/needs from the previous round expire, but they receive new goods/needs. 

Hence goods are constantly flowing into the market, and traders are modifying their 

bids/offers to attempt to trade successfully. 

 

At each trading period users communicate privately to their trading agent their 

reservation price, i.e. the maximal (alt. minimal) price it is willing to pay (alt. accept) 

without making a loss. These reservation prices originate from fixed marginal costs 

(for sellers), or from contracts with end users (for ISP providers, who are buyers in 

this setting). In addition to these constraints, users may choose to communicate to 

their agents a high priority of trading in the next period (for example continuous 

bandwidth may be required when transmitting voice or video, as opposed to 

transmitting data, which could wait until the ISP provider gets a better deal on 

bandwidth rates). There are a number of ways to implement priorities. First, the 

priority of trade can be taken into account by the program that sets the reservation 

price: A seller who desperately needs to trade will accept lower prices, and similarly, 

the buyer will pay more. A second possibility is for the agent to be given a general 

function of two variables, the reservation price and priority (that is, when the user 

install its agents she is asked to express her utility from combinations of price and 

priority). However, there are many difficulties in characterising an optimal strategy in 

multidimensional settings (the first-order conditions are not always well defined in this 

case, especially if the utility function is not a straight forward weighting of the two 

parameters).  
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A third possibility is for the user to indicate a high priority using the weight attached to 

the probability of trading. Note that by entering a bid, the user is effectively 

participating in a lottery: He trades with probability less than one. A user with a high 

priority of trade is therefore more risk averse in economic terms. We propose a 

method where this risk aversion is explicitly entered into the agent’s decision choice. 

To illustrate how this can be done, consider a seller with a reservation price (excluding 

any priority considerations) r. The monetary payoff for this seller from trading at price 

p is p-r (Similarly, the payoff for a buyer is r-p). Remember that since the number of 

bidders is finite, p will depend on posted bids i.e., agents are not price takers. Denote 

by P(b) the ex-ante probability of trading in the next period as a function of the posted 

bid, b. A reasonable objective function for a risk neutral agent with no special priority 

is therefore likely to be of the form P(b)⋅(p-r). A higher bid can increase the payoff 

from trading (because there is a positive probability that this agent will happen to be 

one of the two agents whose bids determine the clearance price), but decreases the 

probability of trading. A lower bid does the converse, meaning the agent is more likely 

to trade but will make less profit. We can generalise the risk-neutral objective function 

to include a measure of risk, α. Given α, the agent chooses the bid which maximises 

P(b)⋅(p-r)⋅(1-αP(b)⋅(1-P(b)). If α=0, the agent is risk neutral. If α is positive, the agent 

is risk averse, and prioritises getting a trade over making a large profit. If α is negative, 

the agent is risk seeking. This method of representing priorities has several advantages: 

First, it allows for a separate representation of reservation prices and priorities. 

Reservation prices are normally associated with the physical costs and constraints from 

fixed-price contracts with end-customers of telecommunication services, while 

priorities result from shorter-term consideration like the nature of current transmission. 

On the other hand, agents still maximise a single dimension function, hence they can 

compute the (typically unique) optimal bid quickly. 

 

 

(3) Learning in a double auction for bandwidth 

 

In this section we consider the normative aspects of trading in double auction markets. 
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A history-independent strategy (HIS)5 is a function from the set of reservation prices 

to the set of possible bids. Normalising bids to [0,1], an HIS for the buyer is therefore 

a function B:[0,1]→ [0,1], and S:[0,1]→ [0,1] for the seller, where B[r] returns the 

bid corresponding to a reserve price of r. We restrict attention only to strategies which 

do not use dominated (loss-making) bids, i.e. for sellers S(r)≥r, and for buyers B(r)≤r. 

An additional reasonable assumption is that B’(r)≥0 that is, bids are not a decreasing 

function of the reserve price (and similarly, S’(r)≤0). Notice that even if the number of 

possible bids is finite, the number of bidding strategies is O(nn)=O(2n), where n is the 

number of possible bids. Learning algorithms that consider and compare all possible 

strategies are therefore not feasible. 

 

Suppose that the number of bidders is first drawn according to NBIDS, and that then 

all these bids are independently drawn according to a distribution BIDS, with support 

on the unit interval. Suppose both distributions were known. Then it is possible to 

compute the optimal bid, given the reservation price. For the case when the number of 

bidders in known, the exact formula determining the optimal bid, see [8] Rustachini et 

al (1994).  

 

Denote now by Opt(r) the function which, for any given reservation price, returns the 

optimal bid (in a stochastically stable world). Let L be a learning algorithm, where L(rt, 

ht-1) returns period t’s bid given a history. Following (but slightly abusing) the 

terminology of [2] Friedman and Shenker (1998), we can now introduce the following 

definitions: 

 

Optimality: Suppose that the world is stochastically stable. Then we say that a 

learning algorithm L is optimal if and only if limt|L(rt, ht-1)-Opt(rt)| = 0. 

 

Responsiveness: Suppose that a stable stochastic structure starts at period t’. Then L 

is responsive if limt|L(rt, ht-1)-L(rt, ht-1/t’)| = 0, where ht-1/t’ denotes the history from t’ 

to t-1. 

 

                                                        
5 That is, a strategy in the one-shot double auction game. 
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Degree of Convergence: We say that L1 converges faster than L2 if |L1(rt, ht-1)-

Opt(rt)| <  |L2(rt, ht-1)-Opt(rt)| almost always. 

 

Degree of Responsiveness: We say that L1 is more responsive than L2 if |L1(rt, ht-1)- 

L(rt, ht-1/t’)| < |L2(rt, ht-1)- L(rt, ht-1/t’)| almost always. 

 

(5) High Level Spec of the On-line Trading Algorithm 

 

The procedures used by the main algorithm are explained in sufficient details for a 

programmer to create a working code, although “fine tuning” of some of the 

parameters (e.g. the degree of statistical confidence with which the Null hypothesis are 

accepted) is deliberately left unspecified. A trail-and-error process is required to set the 

actual values of these parameters. We come back to this point towards the end of this 

paper.  

 

The top-level algorithm is defined in pseudocode as follows; 

 

For each time period t: 

IF model of the world is stable 

THEN 

 Generate bid by maximising the given utility function subject to the  

 current estimates of the model 

Update the estimates of the model 

 

 

ELSE 

 Use transitory mode to generate a bid 

 Update the transitory bidding rules (optional) 

 IF model of the world was stable at time t-1 THEN re-initialise estimates 

 

At t=0, model of the world is unstable. 
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Model of the world becomes stable at time t if observed data is continuously consistent 

with the model of the world. 

Model of the world becomes unstable at time t if observed data is continuously 

inconsistent with the model of the world. 

 

(5.1) Components of the model 

 

The design consist of the following 4 components: 

 

1. The model of the world and updating 

2. Consistency test for observed data 

3. Test for continuous inconsistency  

4. Transitory bidding rules and updating 

 

The Model of the World and Updating 

 

If the world is stochastically stable, in the sense that the relevant underlying are fixed 

over time, then the agent can estimate these probabilities using available data. If the 

agent can observe the actual bids, then it can estimate the distributions NBIDS and 

BIDS. For example, NBIDS is estimated by an array NBIDSt[⋅], initialised as zero 

everywhere, and updated using: NBIDSt[i]= NBIDSt-1[i] for all i≠nt, and NBIDSt[i]= 

NBIDSt-1[i]+1  for i=nt, where nt denotes the number of bids observed at period t. 

 

If bids cannot be observed directly, then the agent can estimate Trd(⋅), the probability 

that a given bid is smaller than the market clearing price. The empirical distribution 

Trdt(s) is used to measure the proportion of time, in the previous t trading periods 

since Trdt was last initialised, where the bid s would have been accepted. Denote by pt 

the equilibrium price at period t. This implies that a seller bidding any price s ≤ pt 

would have succeed at trading at period t. (Similarly, any buyer bidding b ≥ pt would 

trade). Sellers start off with Trdt(s) initiated as zero everywhere and updated using: 
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One can imagine more sophisticated forms of beliefs: For example, beliefs about 

possible patterns in the market (e.g. “market are bearish in January”). That is, the 

distribution of trading prices is stable, but time dependent. In any case, estimating and 

updating of the model will take a similar form (only the agent will be updating more 

sophisticated data structures). 

 

The agent then solves its maximisation problem replacing the real distributions with its 

empirical estimates. Since, in a stochastically stable world, these empirical distributions 

converge to the real distributions (according to the law of large numbers), the outcome 

of this maximisation problem will also converge to Opt(r). 

 

Consistency Tests 

 

At any stage of trading, except the first few rounds, the agent is able to compare its 

current model of the world (e.g. the empirical distribution Trdt(s)), with recent data. 

This can be done by defining and testing the appropriate Null hypothesis. That is, the 

agent should be able to conclude that “There is, or is not, sufficient evidence with 

which to reject the hypothesis that the data is consistent with the model”. This test is 

then carried out to a pre-specified error measure.  

 

The agent does not have a pre-conceived idea about the nature of the distribution it is 

estimating. In practice, these distributions can take any form. Therefore a non-

parametric test should be carried out. There are a number of such tests: For example, 

the Kolmogorov-Smirnov test considers the absolute value of the difference between 

the sample and the model.  It turns out that this difference is distribution-free (see, for 

example, [9] Silvey (1975)). The null hypothesis is then accepted if the difference is 

below a pre-specified threshold, and rejected otherwise.  
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There are many other non-parametric tests. In our simulations, we use convergence of 

means. Here, the null hypothesis is expressed in terms of the difference in means 

between the sample and the model. We come back to this issue in more details, when 

we describe our simulations. Whichever test is used, the user must specify (a) the size 

of the buffer which defines the sample size, and (b) the acceptance threshold.  

 

Tests for Continuos Inconsistencies: Detecting Structural Breakdowns 

 

If the Null hypothesis is rejected once, then this could be because of “bad” sample. Of 

course, the larger the sample size, the less likely this is to happen. Still, our simulations 

suggest that even for finely tuned learning parameters, bad data will occur. We 

therefore take the approach that a small number of rejections should be tolerated by 

the algorithm before past history is thrown away. 

 

More specifically, we check whether the null hypothesis is consequently rejected a 

fixed number of times. Only if this happens, we conclude that a structural breakdown is 

likely, and therefore re-initialise beliefs (effectively throwing away old data). In 

general, the user may specify a different test to determine when to throw old data 

away.  When data is discarded in this way, the model of the world is considered 

unstable, and the algorithm moves to its transitory mode. It is considered to return to 

stability when the null hypothesis is accepted a fixed number of times, and the 

algorithm becomes belief-based once more. 

 

Transitory bidding rules and updating 

 

The purpose of this learning mode is to choose bids in those cases where the agent’s 

current model of the world is not consistent with recent data. Since the world is not 

stochastically stable, and the number of players is not known, there is no theory of 

optimal trading in these cases. Moreover, reinforcement-type learning, where all 

strategies are played with positive probability, and where these probabilities are 

updated according to some measurement of “fitness” (i.e. how well each strategy 

performs), are not a realistic option either. As we explained above, the number of 

strategies (i.e. functions from reservation prices to bids) is exponentially large. 
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Reinforcement learning theories were originally introduce to capture specific features 

of human learning (and in particular “bad learning”, like the probability matching 

affect, see [10] Vulkan (1998)). Hence they provide very little insight to the design of 

robot-traders. However, some of these models (e.g. Q-learning, Generic Algorithm) 

proved successful is unstable environments, where the predictability of any theory 

based on past-performance is normally very low. Since the model never converges (in 

finite time) to a probability mass of one (i.e. to playing a single rule), any of a number 

of rules can be selected. Moreover, the accumulated weights placed on these rules 

provide the agent with a reference base to those rules that have proven successful in 

the past, under similar unstable circumstances. 

 

There are several possibilities on how to design the transitory learning mode. First, one 

could follow the approach taken in financial markets, where technical rules are used to 

generate bids when fundamental trading (i.e. where economic reasoning is used to 

generate expectation on what is likely to happen next) fails. However, since little is 

known on the behaviour of spot markets for bandwidth, there is very little to base 

these rules on. Second, it is possible to specify a small number of rules-of-thumb, S, 

and use a reinforcement mechanism to select amongst these rules. Here are a few 

examples of such rules for a seller agent:  

 

1. Maximal Likelihood Rule: Ask for the reservation price, s(r)=r. This rule 

maximises the likelihood of trade, but at the expense of abandoning profits. 

2. Greedy Rule: A rule which asks for the highest possible price, s(r)=1. Profits are 

maximised, but the likelihood of trade is minimised (the equivalent rule for the 

buyer is b(r)=0). 

3. Linear Rules: Any combination of the above two rules: Asks for the average 

between the maximal price and the reservation price, s(r)=qr+(1-q) for q∈ (0,1) 

(equivalent rule for buyer agent is b(r)=qr).  

4. Constant bid rules: Use the same bid always, except in those cases where this bid is 

lower than the reservation price: e.g. s(r)=max(0.75, r). 
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5. Decreasing Surplus Rules: A rule whereby the demanded surplus (i.e. the ask price 

minus the reservation price), decreases with r. Any rule which satisfies the 

following three constraints: (1) s(1)=1 (2) s(r)≥r for all r ∈  (0,1), and (3) s’<1.6 

For example, s r r( ) = . (or, b r r( ) ( )= − −1 1 ) for the buyer agent). 

6. History Dependent Rules: For example s = f(eqt-1) , or s = f(eqt-1, eqt-2) and so on.7 

 

Since S is incomplete, the choice of rules in S could, in principle, affect the agents’ 

learning outcome, and payoffs. To minimise the risks from such an ad-hoc approach it 

is possible to add a rule which returns a random number between r and 1, so that the 

reinforcement mode returns any value in the interval [r, 1] with positive probability 

That is, although the set of strategies is incomplete, all (undominated) outcomes are 

supported. 

 

(5.2)  Analysis of the learning algorithm 

 

For a certain class of environments, we can prove useful properties of our algorithm. 

 

Staticity: We say that a trading environment is static at the time interval [t1, t2]  

(where t2>>t1), if for every s∈ [0,1], the Probability(st<pt), and the payoff from bidding 

st, assuming the bid is accepted, are fixed for all t ∈  [t1, t2]. 

 

Semi-staticity: We say that a trading environment is semi-static if these exists a set 

{t1, t2, ....} such that the trading environment is stable at the intervals [ti, ti+1], for 

i=0,1,.. 

 

Denote by L* any algorithm which fits the above high-level spec. Denote by α the 

probability that the model becomes unstable when the trading environment is stable 

(i.e. that the null hypothesis is continuously rejected.) Denote by β the probability that 

                                                        
6 That is, s(r)-r is a decreasing function of r. 
7 An underlying assumption of the belief model is that the events eqt are i.i.d. (although they are 
allowed to be time dependent). If, however, eqt is dependent on previous outcomes, say on eqt-1 then 
this assumption is clearly violated. The purpose of this class of rules, is therefore to detect and 
therefore capitalise on such dependencies. 
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the algorithm fails to re-set beliefs when the underlying structure changes (that is, the 

null hypothesis is not continuously rejected immediately after a change in the 

underlying probabilities). As we explain later, the tests employed by the algorithm 

should be chosen so to minimise both α and β. We are now able to prove the following 

results:  

 

Proposition 1. L* is optimal.  

 

Proof. Suppose that the trading environment is stable over [t1, t2]. Then the null 

hypothesis is accepted with probability 1-α at any stage in that interval. Hence, with 

probability 1-α L* will not re-set its empirical distributions. Because of the law of large 

numbers the empirical distributions will converge to the real distributions, and L*(rt, ht-

1) will converge to Opt(rt).  

 

Remark: Notice that the above algorithm has also a fast rate of convergence. First, 

note that the tests are chosen to minimise α, hence the probability of counting data 

which “counts” is maximised. Second, L* does not keep old history (like many other 

learning algorithms used by game theorists, like fictitious play), which is likely to be 

irrelevant to the current underlying structure. Hence, with a large probability, the 

estimates are based on all, and nothing but, relevant observations. Hence, the rate of 

convergence is maximised. The importance of throwing away old observation is 

highlighted in our simulations (and is nicely illustrated in Figure 4). 

 

Proposition 2. L* is responsive. 

 

Proof. Let the environment be stable from period t’. With probability 1-β L* will 

throw away observations made before period t’+c (where c is a small constant 

depending on the test used for re-setting beliefs). Hence, with probability 1-β L*(rt, ht-

1) = L*(rt, ht-1/t’), for t>t’+c. Hence, L* is responsive. 

 

Proposition 3. In a semi-static environment, there is no other learning algorithm that 

is more responsive than the above algorithm. 
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Proof. Note from the proof of Proposition 2 that with probability 1-β, L*(rt, ht-1) = 

L*(rt, ht-1/t’), for t>t’+c, or |L*(rt, ht-1)-L*(rt, ht-1/t’)| = 0. Since the difference is already 

zero, and since β is minimised, L* maximises responsiveness. 

 

The responsiveness of L* is clearly demonstrated in our simulations, and is illustrated 

in Figures 1-3 below.  

 

(5) Simulations  

 

In this section we report the results of preliminary simulations we carried out to test 

the performance of agents using our top level algorithm.  

 

In these simulations, the agent trades in a semi-static environment, where the 

stochastic nature of the world remains stable for a period, before changing to another 

stable structure. 

 

To simplify matters, we assume a one dimensional distribution from which the trading 

price is taken. If our selling agent bids anything above this price, then it does not trade. 

However, if the bid is below the current price, the agent trades at its bid (this is 

somewhat similar to a 0-double auction). This provides sufficient structure on the 

agent’s decision problem (so that choosing a higher bid increases expected payoff, but 

decreases the chances of trading), while allowing us to simulate a relatively simple 

process of generating a single price (and not all the other bids). Such an assumption is 

justified when the number of agents is large, because the agent can neglect the effect of 

its own bid on the clearance price. When the number of traders is small, this is no 

longer a good approximation of the actual clearing price. 

 

We assume the agent is risk neutral. Hence it computes: Arg P s s r
s r

max ( ) ( )
[ , ]∈

⋅ −
1

   

The agent’s model of the world then takes the form of a function P(s), which returns 

the probability of the bid s being accepted. Of course if the world is stochastically 
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stable then P(s) is fixed over time for any given value of s. We start with, P s0 0( ) ≡  

and the agent updates its beliefs using: 

P s
t P s

t
p

P s
t P s

t
s p
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t
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+

= ⋅ +
+
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1

1
1

1
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      if s

      if 
 

 

At each trading round we test whether P is consistent with the last 8 observations. 

Specifically, we compute, at time t, the values x1 and x2, such that P(x1)≈0.4 and 

P(x2)≈0.6. We compute the average equilibrium price over the last 8 periods of trade, 

At. P is considered consistent if x1<At<x2. Otherwise P is inconsistent. 

 

If P has been inconsistent for 5 consecutive rounds, then P is re-initialised. In other 

words, the agent detects a structural breakdown of the underlying probability 

distribution of equilibrium prices. Old information may be harmful in that it will 

outweigh new, relevant information. Hence, the agent starts learning P from scratch. 

P will not be reinitialised again until it has regained stability; in other words, until the 

agent detects 5 consecutive periods where P is consistent. 

 

We present results in two environments. In each environment, there are 1000 trading 

periods, split into 5 blocks of  200 periods. In each block, the environment is static, 

with the equilibrium price pt being drawn each round from a uniform distribution over 

a certain range (maximum range, [0,1]). Hence, overall, the environment is semi-static. 

The distributions used are as follows; 

 

 

Rounds: 1-200 201-400 401-600 601-800 801-1000 

Environment 1: [0.9,1.0] [0.5,0.6] [0.9,1.0] [0.5,0.6] [0.9,1.0] 

Environment 2: [0.5,0.6] [0.6,0.7] [0.7,0.8] [0.8,0.9] [0.9,1.0] 

Environment 3: [0.9,1.0] [0.8,0.9] [0.7,0.8] [0.6,0.7] [0.5,0.6] 

Environment 4: [0.4,0.6] [0.3,0.7] [0.2,0.8] [0.1,0.9] [0.0,1.0] 

Environment 5: [0.0,1.0] [0.1,0.9] [0.2,0.8] [0.3,0.7] [0.4,0.6] 
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In environments 1 to 3, the distribution range is always of size 0.1. In environment 1, it 

alternates between two locations. In environment 2, it slowly drifts upwards, while in 

environment 3 it slowly drifts downwards. In environments 3 and 4, however, the 

mean of the distribution remains fixed at 0.5. In environment 4, the distribution 

becomes increasingly wide, while in environment 5 it becomes increasingly narrow. 

 

FIGURE 1:  Graphs for environment 1 
Figure 1a: Cumulative profits 
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Figure 1b:  Deviation of actual bid from apriori optimal belief algorithm plus reset 
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Figure 1c: Deviation of actual bid from apriori optimal belief algorithm without reset 
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FIGURE 2: Graphs for environment 2 
 
Figure 2a: Cumulative profits 
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Figure 2b: Deviation of actual bid from apriori optimal - belief algorithm plus reset 
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Figure 2c: Deviation of actual bid from apriori optimal - belief algorithm without reset 
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FIGURE 3: Graphs for environment 3 
 
Figure 3a: Cumulative profits 
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Figure 3b: Deviation of actual bid from apriori optimal - belief algorithm plus reset 
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Figure 3c: Deviation of actual bid from apriori optimal - belief algorithm without reset 
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FIGURE 4: Graphs for environment 4 
 
Figure 4a: Cumulative profits 
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Figure 4b: Deviation of actual bid from apriori optimal - belief algorithm plus reset 
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Figure 4c: Deviation of actual bid from apriori optimal - belief algorithm without reset 
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FIGURE 5: Graphs for environment 5 
 
Figure 5a: Cumulative profits 
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Figure 5b: Deviation of actual bid from apriori optimal - belief algorithm plus reset 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 200 400 600 800 1000

 
 
 
 
 
 
Figure 5c: Deviation of actual bid from apriori optimal - belief algorithm without reset 
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Figures 1 to 5 give the results for these 5 environments. In each case, graph (a) plots 

cumulative profit against time, averaged over 100 runs, for the algorithm with reset, 

and a purely belief-based algorithm. Graphs (b) and (c) plot the absolute difference 

between Opt(r) and the agent’s actual bid8 . In graph (b), the agent is using reset and 

switching, while in graph (c) it is using belief-based learning only. 

 

(7) Discussion and Future Research 

 

Figures 1-3 show that the belief resetting algorithm significantly outperforms the non-

resetting algorithm in environments 1-3. Graph (b) in each case shows that the 

algorithm correctly identifies changes to the underlying distribution of equilibrium 

price, and resets the beliefs. As a result of this, the algorithm rapidly returns to make 

bids close to the apriori optimal, while the algorithm without resetting (graph (c) in 

each case) is unable to do this. In the run shown in 3(b), the algorithm also incorrectly 

identified a change of distribution, and reset at round 508. It is inevitable that this will 

occur on occasion, due to the law of probabilities. However, as graph 3(a) shows, the 

algorithm performs well even taking into account these occasional misidentifications. 

 

In environments 4 and 5, the resetting mechanism performs almost identically to the 

pure belief –based approach, as figures 4 and 5 show. As the mean of the distribution 

does not change, only the standard deviation, it is harder for the algorithm to identify 

                                                        
8 For example, when pt is uniformly distributed over [0,1], Opt(r)=(1+r)/2.  
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that a change has taken place. In environment 5, where the standard deviation 

decreases, it cannot identify the change at all. Hence, both algorithms perform 

identically. In environment 4, where the standard deviation increases, the resetting 

algorithm is sometimes able to detect the change, though very late in the block. 

Because of this, it performs marginally better than the standard belief-based approach. 

 

It may be appropriate that the algorithm does not detect a structural breakdown when 

there is a small change in mean, or only a change in standard deviation. In such 

circumstances, adapting may be more efficient than resetting. Alternatively, it may be 

that better performance could be obtained by adjusting our test for stability to be 

stricter. However, by doing this, it increases the chance of false positives, and resets 

occurring during a stable period, which is clearly undesirable. Further work will be 

necessary to determine this. 

 

The algorithm can also be improved by the addition of appropriate rules of thumb to 

use at times when a structural breakdown occurs. Such rules of thumb may be based 

on experience from bandwidth trading data (the distribution of supply and demand 

schedules), and human trading expertise. 

 

The specific details of which statistical test to use and which rules of thumb to use will 

need more experimentation to answer. However, we believe that the general algorithm 

design outlined in this paper provides a promising insight into the way to design 

trading agents which behave optimally in statistically noisy environments.  
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3 There is also a large literature on learning in financial markets. However, this literature focuses on 

the transmission of private information via the price mechanism. Since we treat bandwidth as a 

perishable good, this issue is not relevant in our setting.  

 

4 Alternatively, bids can be aggregated into supply and demand curves. The interval [a, b] now 

correspond to the intercepting section of the two graphs. 

 

5 That is, a strategy in the one-shot double auction game. 

 

6 That is, s(r)-r is a decreasing function of r. 

 

7 An underlying assumption of the belief model is that the events eqt are i.i.d. (although they are 

allowed to be time dependent). If, however, eqt is dependent on previous outcomes, say on eqt-1 then 

this assumption is clearly violated. The purpose of this class of rules, is therefore to detect and 

therefore capitalise on such dependencies. 

 

8 For example, when pt is uniformly distributed over [0,1], Opt(r)=(1+r)/2.  

 

 
 
 


