
 

Bilateral Filtering and Anisotropic  
Diffusion: Towards a Unified Viewpoint 
 
Danny Barash 
HP Laboratories Israel1  
HPL-2000-18(R.1) 
August 1st, 2000* 
 
E-mail: barash@hpli.hpl.hp.com 
 
 
bilateral 
filtering, 
anisotropic 
diffusion, 
adaptive 
smoothing, 
denoising 

Bilateral filtering has recently been proposed as a noniterative 
alternative to anisotropic diffusion. In both these approaches, 
images are smoothed while edges are preserved. Unlike 
anisotropic diffusion, bilateral filtering does not involve the 
solution of partial differential equations and can be 
implemented in a single iteration. Despite the difference in 
implementation, both methods are designed to prevent 
averaging across edges while smoothing an image. Their 
similarity suggests they can somehow be linked. Using a 
generalized representation for the intensity, we show that both 
can be related to adaptive smoothing. As a consequence, we also 
show that bilateral filtering can be applied to denoise and 
coherence-enhance degraded images with approaches similar to 
anisotropic diffusion. 
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1 Introduction

In a wide variety of applications, it is necessary to smooth an image while preserving its

edges. Simple smoothing operations such as low-pass �ltering, which does not take into

account intensity variations within an image, tend to blur edges. Anisotropic di�usion [3]

was proposed as a general approach to accomplish edge-preserving smoothing. This approach

has grown to become a well-established tool in early vision.

This paper examines the relation between bilateral �ltering, a recent approach proposed

in [6], and anisotropic di�usion. The paper is divided as follows. Section II presents the

connection between anisotropic di�usion and adaptive smoothing. The goal is to suggest

a viewpoint in which adaptive smoothing serves as the link between bilateral �ltering and

anisotropic di�usion. In Section III, adaptive smoothing is extended, which results in bilat-

eral �ltering. The possible uni�cation of bilateral �ltering and anisotropic di�usion is then

discussed. Sections IV and V take advantage of the resultant link, borrowing the use of the

geometric interpretation to anisotropic di�usion and applying it in bilateral �ltering. Section

IV examines the convolution kernel of a bilateral �lter, from the standpoint that color im-

ages are 2D surfaces embedded in 5D (x,y,R,G,B) space. Consequently, Section V describes

another idea from anisotropic di�usion, that of coherence-enhancement of color images using

a bilateral �lter. In Section VI, conclusions are drawn and suggestions are given for future

examination of the proposed uni�ed viewpoint.

2 Anisotropic Di�usion and Adaptive Smoothing

We �rst examine the connection between anisotropic di�usion and adaptive smoothing, which

was outlined in [4]. Given an image I(t)(~x), where ~x = (x1; x2) denotes space coordinates,

an iteration of adaptive smoothing yields:

I(t+1)(~x) =

P+1
i=�1

P+1
j=�1 I

(t)(x1 + i; x2 + j)w(t)P+1
i=�1

P+1
j=�1w

(t)
(1)

where the convolution mask w(t) is de�ned as:

w(t)(x1; x2) = exp (�

���d(t)(x1; x2)���2
2k2

) (2)

where k is the variance of the Gaussian mask. In [4], d(t)(x1; x2) is chosen to depend on the

magnitude of the gradient computed in a 3� 3 window:

d(t)(x1; x2) =
q
G2
x1
+G2

x2
(3)

where,

(Gx1; Gx2) =

 
@I(t)(x1; x2)

@x1
;
@I(t)(x1; x2)

@x2

!
(4)
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noting the similarity of the convolution mask with the di�usion coe�cient in anisotropic

di�usion [3], [7].

It was shown [4] that equation (1) is an implementation of anisotropic di�usion. Briey

sketched, lets consider the case of a one-dimensional signal I t(x) and reformulate the aver-

aging process as follows:

I t+1(x) = c1I
t(x� 1) + c2I

t(x) + c3I
t(x + 1) (5)

with

c1 + c2 + c3 = 1 (6)

Therefore, it is possible to write the above iteration scheme as follows:

I t+1(x) � I t(x) = c1(I
t(x� 1)� I t(x)) + c3(I

t(x+ 1)� I t(x)) (7)

Taking c1 = c3, this reduces to:

I t+1(x) � I t(x) = c1(I
t(x� 1)� 2I t(x) + I t(x+ 1)) (8)

which is a discrete approximation of the linear di�usion equation:

@I

@t
= cr2I (9)

However, when the weights are space-dependent, one should write the weighted averaging

scheme as follows:

I t+1(x) = ct(x� 1)I t(x� 1) + ct(x)I t(x) + ct(x+ 1)I t(x + 1) (10)

with

ct(x� 1) + ct(x) + ct(x + 1) = 1 (11)

This can be rearranged as:

I t+1(x) � I t(x) = ct(x� 1)(I t(x� 1)� I t(x)) + ct(x+ 1)(I t(x + 1)� I t(x)) (12)

or

I t+1(x) � I t(x) = ct(x + 1)(I t(x + 1)� I t(x))� ct(x� 1)(I t(x)� I t(x� 1)) (13)

which is an implementation of anisotropic di�usion, proposed by Perona and Malik [3]:

@I

@t
= r(c(x1; x2)rI) (14)
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where c(x1; x2) is the nonlinear di�usion coe�cient, typically taken as:

c(x1; x2) = g(krI(x1; x2)k) (15)

where krIk is the gradient magnitude, and g(krIk) is an \edge-stopping" function. This

function is chosen to satisfy g(x) ! 0 when x ! 1 so that the di�usion is stopped across

edges.

Thus, a link between anisotropic di�usion (14) and adaptive smoothing (1) is established.

In the next section, we show the link between adaptive smoothing and bilateral �ltering.

3 Bilateral Filtering and Adaptive Smoothing

Bilateral �ltering was introduced [6] as a nonlinear �lter which combines domain and range

�ltering. Given an input image ~f(~x), using a continuous representation notation as in [6],

the output image ~h(~x) is obtained by:

~h(~x) =

R
1

�1

R
1

�1

~f(~�)c(~�; ~x)s(~f(~�); ~f(~x))d~�R
1

�1

R
1

�1

c(~�; ~x)s(~f(~�); ~f(~x))d~�
(16)

where ~x = (x1; x2),~� = (�1; �2) are space variables and ~f = (fR; fG; fB) is the intensity. The

full vector notation is used in order to avoid confusion in what follows. The convolution

mask is the product of the functions c and s, which represent `closeness' (in the domain) and

`similarity' (in the range), respectively.

E�ectively, we claim that a discrete version of bilateral �ltering can be written as follows

(using the same notation as in the previous section, only I is now a 3-element vector which

describes color images):

~I(t+1)(~x) =

P+S
i=�S

P+S
j=�S

~I(t)(x1 + i; x2 + j)w(t)P+S
i=�S

P+S
j=�S w

(t)
(17)

with the weights given by:

w(t)(~x; ~�) = exp(
�(~� � ~x)2

2�2D
) exp(

�(I(~�)� I(~x))2

2�2R
) (18)

where S is the window size of the �lter, which is a generalization of (1). In order to prove

our claim and demonstrate the relation to (1), we use a generalized representation for the

intensity ~I. In principle, the �rst element corresponds to the range and the second element

corresponds to the domain of the bilateral �lter. De�ning the generalized intensity as:

b~I �
8<:~I(~x)

�R
;
~x

�D

9=; (19)
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we now take d(t)(~x) to be the di�erence between generalized intensities at two points in a

given S � S window,

����b~I(~�)� b~I(~x)����, the latter being a global extension to (3). In (3), the

gradient, being the local di�erence between two neighboring points in a 3� 3 window, was

taken as a distance measure. Starting from (2), and setting k = 1 since the variances �D
and �R are already included in the generalized intensity, we obtain:

w(t)(~x) = exp(�
1

2

����b~I(~�)� b~I(~x)����2) =
= exp(�

1

2

������
8<:~I(~�)

�R
;
~�

�D

9=;�
8<:~I(~x)

�R
;
~x

�D

9=;
������
2

)

= exp(�
1

2

������
8<:~I(~�)� ~I(~x)

�R
;
~� � ~x

�D

9=;
������
2

)

= exp(�
1

2

0@(~I(~�)� ~I(~x))2

�2R
+
(~� � ~x)2

�2D

1A)
= exp(

�(~� � ~x)2

2�2D
) exp(

�(I(~�)� I(~x))2

2�2R
) (20)

Because these are the weights used in the bilateral �lter, as can be veri�ed in (18), equation

(20) provides a direct link between adaptive smoothing and bilateral �ltering. In a general

framework of adaptive smoothing, one can take spatial and spectral distance measures along

with increasing the window size, abandoning the need to perform several iterations. Taken

as such, we get the bilateral �ltering implementation of [6] which can be viewed as a gener-

alization of adaptive smoothing.

4 Geometric Interpretation

In the previous two sections, it was shown that anisotropic di�usion and bilateral �ltering

can be linked through adaptive smoothing. Speci�cally, the di�usion coe�cient in (14)

relates to the convolution mask and in particular to the distance measure which is used in

the bilateral �lter. Similarly, the relation between anisotropic di�usion and robust statistics

was described in [1].

For illustration, Figure 2 demonstrates two di�erent ways of performing edge-preserving

smoothing on the original image in Figure 1. The result of using nonlinear di�usion �ltering

and the result of bilateral �ltering is similar but not identical, since the parameters are

di�erent and it was intentionally chosen to use a large window size with the bilateral �lter

and several iterations with anisotropic di�usion. That is the most natural setup for the two

to be used.
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Figure 1: Original image: Laplace.

Figure 2: Edge-preserving smoothing: anisotropic di�usion with 20 time-steps of � = 1:0 (left) and

Gaussian bilateral �ltering with a 30 � 30 window size, �D = 5:0 and �R = 30:0 (right). �D and

�R are bilateral �ltering parameters, see [6] for details.
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In color images, it was demonstrated in [5] that the image can be represented as 2D surface

embedded in the 5D spatial-color space and denoising can be achieved by using the Beltrami

ow. It is possible to borrow this notion outlined in [5] and choose the following spectral

distance measure for the bilateral �lter:

I(~x)� I(~�) =
q
(�R)2 + (�G)2 + (�B)2 (21)

Note that only the spectral distance measure of the range part is given in (21) and can

directly be installed in the similarity function s of the bilateral �lter as implemented in [6].

The spatial distance measure of the domain part remains the same as with grey-level images.

Written that way, one can distinguish between closeness in the domain and similarity in the

range, with the advantage of treating the two separately. However, it is also possible to

write (21) equivalently by combining the spatial and spectral distance terms. Using the

generalized intensity de�ned in (19), the full distance measure can be written as:���d(t)(x1; x2)���2 = �����D(b~I(~x)� b~I(~�))����2 = (�x1)
2 + (�x2)

2 + �2((�R)2 + (�G)2 + (�B)2) (22)

where � = �D=�R. Note that this distance measure can be plugged into the convolution mask

of adaptive smoothing (2) as one term with k = �D. It is now possible to take advantage

of a geometric interpretation in which color images are 2D surfaces embedded in the 5D

(x; y; R;G;B) space. Equation (22) is then analogous to the local measure:

ds2 = dx2 + dy2 + �2(dR2 + dG2 + dB2) (23)

which is the geometric arclength in the hybrid spatial-color space discussed in [2], [5].

5 Coherence-Enhancement by Bilateral Filtering

In this section, a coherence-enhancement procedure based on the geometric interpretation

given in (22) and outlined in [2], [7] is applied using a bilateral �lter. The approach, originally

proposed by Weickert for anisotropic di�usion, is based on the idea that the amount and

direction of di�usion can be controlled by altering the image metric. Our goal is to take a

familiar procedure in anisotropic di�usion and apply it in the framework of bilateral �ltering

in order to achieve control on edge-preservation.

Let us de�ne a di�erence operator, �R(x1; x2) � jR(x1; �2)� R(x1; x2)j+jR(�1; x2)� R(x1; x2)j,

where the same de�nition applies to �G and �B. The coordinates ~x = (x1; x2) represent

the center of the �lter mask, and ~� = (�1; �2) is a point within the mask. Furthermore, let

�Rx � jR(x1; �2)�R(x1; x2)j =�x+ jR(�1; x2)�R(x1; x2)j =�x, where �x stands for either

�x1 = jx1 � �1j or �x2 = jx2 � �2j. Using these de�nitions, one can write the following

identity which resembles the chain-rule:
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�R(x1; x2) =
1

2
(�Rx1�x1 +�Rx2�x2) (24)

where the same identity applies to �G and �B. We note that the above de�nition of the

di�erence operator instead of the straight-forward �R = jR(�1; �2)�R(x1; x2)j is meant to

give a two-point support to (x1; x2) when calculating �Rx, which is a better approximation

then a single-point support in our attempt to mimic the derivative operator in the context

of a geometric framework. It is now possible to write the distance measure of (22) as:

���d(t)(x1; x2)���2 = (�x1 �x2)

 
a b

b c

! 
�x1
�x2

!
(25)

where,

a = 1 +
�2(�R2

x1
+�G2

x1
+�B2

x1
)

4
(26)

b =
�2(�Rx1�Rx2 +�Gx1�Gx2 +�Bx1�Bx2)

4

c = 1 +
�2(�R2

x2
+�G2

x2
+�B2

x2
)

4

which can be veri�ed by starting from (25), using the de�nitions for �Rx1 ;�Rx2 and identity

in (24) to reach back (22). We obtain in (25) a symmetric positive de�nite matrix M

analogous to a `structure tensor' [7]. Diagonalizing the matrix M , we get:

M = U�UT (27)

where U = (u1ju2) is a Hermitian matrix with the eigenvectors u1; u2 in its columns. The

diagonal matrix � consists of the eigenvalues �1; �2 (�1 > �2) in its diagonal. For a 2x2

system which is symmetric (such as the matrix M , see (25)) the corresponding eigenvalues

are given by:

�1;2 =
1

2
(a+ c�

q
(a� c)2 + 4b2) (28)

and the orthonormal eigenvectors, excluding the trivial case where b = 0, can be obtained

from:

u1 k

 
2b

c� a+
q
(a� c)2 + 4b2

!
(29)
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Figure 3: Original Image (this is a color image)
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Figure 4: Bilateral Filtering (this is a color image)
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Figure 5: Bilateral Coherence Enhancement (color image)
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In our example, we change the eigenvalues of M without altering its eigenvectors, in the

same manner used in [2] for the purpose of coherence-enhancement:

� =

 
�1�

�1 0

0 �2�

!
(30)

where � � 1 is a positive scalar. Unlike the procedure for coherence- enhancement in

anisotropic di�usion, di�using � before changing its eigenvalues is not necessary in bilateral

�ltering.

In the example, we start from an original image of a �sh plotted in Figure 3. The image in

Figure 4 is then obtained after applying bilateral �ltering with �D = 10:0 and �R = 100:0,

using the distance measure as in (21). Note that the scales of the �sh got smoothed as a

consequence of bilateral �ltering. In Figure 5, the same bilateral �ltering is applied and

in addition � is set to 0:1. One can verify by examining the color images that smoothing

can be controlled by the variable �. We note that in addition to coherence-enhancement

demonstrated here, image enhancement using bilateral �ltering can be thought of. Although

the framework of bilateral �ltering does not allow color image enhancement by inverse dif-

fusion across an edge as mentioned in [2], since the bilateral �lter coe�cients will always

remain positive even when the eigenvalues of the `structure tensor' are made negative, other

approaches can be suggested. One possible approach is to design special closeness and sim-

ilarity functions, tailored to obtain image enhancement. Another approach which can be

considered is to multiply the coherence-enhancing bilateral �lter by an additional enhance-

ment factor which attempts to capture the geometry of an edge. Image enhancement by

bilateral �ltering remains an open and challenging area of application.

6 Conclusions

The nature of bilateral �ltering resembles that of anisotropic di�usion. It is therefore sug-

gested the two are related and a uni�ed viewpoint can reveal the similarities and di�er-

ences between the two approaches. Once such an understanding is reached, it is possible

to choose the desired ingredients which are common to the two frameworks along with the

implementation method. The method can be either applying a nonlinear �lter or solving a

partial-di�erential equation.

Adaptive smoothing serves as a link between the two approaches, each of which can be

viewed as a generalization of the former. In anisotropic di�usion, the di�usion coe�cient

can be generalized to become a `structure tensor' [7] which then leads to phenomena such as

edge-enhancing and coherence-enhancing di�usions. In bilateral �ltering, the kernel (which

plays the same role as the di�usion coe�cient) is extended to become globally dependent

on intensity, whereas a gradient can only yield local dependency among neighboring pixels.
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Thus, the window of the �lter becomes much bigger in size than the one used in adaptive

smoothing and there is no need to perform several iterations. We note that this extension

is general on its own right, meaning that a variety of yet unexplored possibilities exist for

constructing a kernel with an optimal window size, as well as designing the best closeness

and similarity functions for a given application.

The general hybrid spatial-color formulation [2], [5] provide a geometric interpretation with

which the bilateral convolution kernel can be viewed as an approximation to the geometric

arclength in the 5D hybrid spatial-color space. Ideas that are based on the geometric inter-

pretation, such as coherence-enhancement, can be borrowed from anisotropic di�usion and

applied to some degree of approximation in bilateral �ltering.

Two practical goals seem to come up from comparing between anisotropic di�usion and

bilateral �ltering. The �rst is a further trial to reduce the number of iterations needed in

anisotropic di�usion (which can be achieved by e�cient numerical schemes such as [8], less

proned to stability problems) while retaining the same accuracy as in bilateral �ltering. The

second is to reduce the window size and investigate other means which aim at minimizing

computations associated with bilateral �ltering. Both approaches are related to each other,

and an exchange of new ideas between one another can be rewarding.
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