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1 Introduction

The fast growth of the Web and e-commerce has led to a large increase in Internet traffic.
Most network applications such as Web servers and proxies have to handle heavy loads from
clients spread all across the globe. In addition to high request rates, servers also have to
handle a large number of concurrent connections, many of which are idle most of the time.
This is because the connection times are large due to (i) the “last-mile problem” [3], which
has the effect that most clients connect to the Internet through slow modems, and (ii) due
to the geographically distributed nature of the Internet, which causes much of the traffic to
travel across many hops, increasing both latency and the probability of packet drops due to
congestion. For Web servers, the problem of long connections is exacerbated by the HTTP/1.1
protocol [5], which provides for persistent TCP connections that can be reused to handle multi-
ple interactions with the server. These persistent connections further add to the length of the
connection times. The bottom line is that servers need to service the high incoming request
load, while simultaneously handling a large number of concurrent connections efficiently.

To handle these demands, many high-performance Web servers are structured as event-
handling applications [9, 14, 16]. These servers employ event-dispatch mechanisms provided
by the underlying operating system to handle the network I/O on multiple concurrent connec-
tions. Some studies have looked at the scalability issues of some of these mechanisms and
found that traditional dispatch mechanisms are not very scalable [1]. While the performance
of Web servers clearly is important, we should not forget that there are many other Internet
services, such as ftp servers, proxy caches, and mail servers, that have to deal with similar
scalability concerns. For example, poor scalability is one of the primary reasons the number
of concurrent connections on many ftp servers is limited to a small number (around 30-50).

Another approach to building Internet servers that can handle high request loads and large
number of concurrent connections is to move the entire application into kernel space. Recent
efforts in this direction have produced dramatic results for Web servers (e.g., TUX [15]). How-
ever, this does not obviate the need for efficient event-dispatch mechanisms. In fact, it is our
contention that due to security and robustness concerns, many server sites are likely to prefer
running Internet servers in user space, provided that they can achieve performance that is
comparable to a kernel space solution. Efficient event dispatch mechanisms are also essential
for those applications that may be important for some sites (e.g., ftp), but perhaps not quite
important enough to warrant the effort of developing an OS-specific kernel solution.

In this paper, we look at the different Linux event-dispatch mechanisms used by servers for
doing network I/O. We try to identify the potential bottlenecks in each case, with an emphasis
on the scalability of each mechanism and its performance under high load. We use two metrics
to determine the efficiency of each mechanism, namely, the event-dispatch overhead and the
dispatch throughput. The mechanisms we study in particular are the select() system call,
/dev/poll interface and POSIX.4 Real Time signals (RT signals), each of which is described
in more detail in the following sections. Our studies show that RT signals are an efficient
and scalable mechanism for handling high loads, but have some potential limitations. We
propose an enhancement to the kernel implementation of RT signals that overcomes some of
these drawbacks, and allows for robust performance even under high load. We also measure



the performance of a variant of the select() based server which amortizes the cost of each
select() call, and show that it is scalable to a large extent in terms of the server throughput.

The rest of the paper is organized as follows. In Section 2, we describe the primary event-
dispatch mechanisms supported by the Linux kernel, and discuss some of the previous work
in this regard. In Section 3, we compare some of these mechanisms for their dispatch over-
head. We discuss RT signals in more detail, identifying their limitations and propose an en-
hancement to the default implementation of RT signals in the Linux kernel. In Section 4, we
present a comparative study of some of the mechanisms from the perspective of throughput
achieved under high loads. Finally, we present our conclusions in Section 5.

2 Event-Dispatch Mechanisms

In this section, we first discuss the two main schemes employed by servers for handling mul-
tiple connections. Next, we look at the various event-dispatch mechanisms supported by the
Linux kernel that can be employed by Web servers for doing network I/O. We follow this up
with a discussion of previous work that has focussed on the scalability of some of these mech-
anisms, including some other mechanisms that have been proposed to overcome some of the
drawbacks of existing mechanisms.

2.1 Handling Multiple Connections

There are two main methodologies that could be adopted by servers for doing network I/O on
multiple concurrent connections.

� Thread-based: One way to handle multiple connections is to have a master thread ac-
cepting new connections, which hands off the work for each connection to a separate
service thread. Each of these service threads is then responsible for doing the network
I/O corresponding to its connection. These service threads can be spawned in two ways:

– On-demand: Each service thread is forked whenever a new connection is accepted,
and it then handles the requests for the connection. This can lead to large forking
overhead under high load when there are large number of new connections being
established.

– Pre-forked: The server could have a pool of pre-forked service threads. Whenever
the master thread receives a new connection, it can hand over the connection to one
of the threads from the pool. This method prevents the forking overhead, but may
require high memory usage even under low loads.

� Event-based: In an event-based application, a single thread of execution uses non-
blocking I/O to multiplex its service across multiple connections. The OS uses some form
of event notification to inform the application when one or more connections require ser-
vice. For this to work, the application has to inform the OS of the set of connections (or,
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more accurately, the set of file-descriptors) in which it is interested (interest set). The
OS then watches over the interest set and notifies the server whenever there’s activity
on any of these connections by dispatching an event to the application. Depending on
the exact event-dispatch mechanism in use, the OS could group multiple notifications
together or send individual notifications. On receiving the events, the server thread can
then handle the I/O on the relevant connections.

In general, thread-per-connection servers have the drawback of large forking and context-
switching overhead. In addition, the memory usage due to threads’ individual stack space
can become huge for handling large number of concurrent connections. The problem is even
more pronounced if the operating system does not support kernel-level threads, and the appli-
cation has to use processes or user-level threads. It has been shown that thread-based servers
do not scale well at high loads [7]. Hence, many servers are structured as event-based appli-
cations, whose performance is determined by the efficiency of event notification mechanisms
they employ. Pure event-based servers do not scale to multiprocessor machines, and hence, on
SMP machines, hybrid schemes need to be employed, where we have a multi-threaded server
with each thread using event-handling as a mechanism for servicing concurrent connections.
Even with a hybrid server, the performance of event-based mechanisms is an important issue.
Since efficient event dispatching is at the core of both event-based and hybrid servers, we will
focus on the former here.

2.2 Linux Kernel Mechanisms

As described above, event-based servers employ event-dispatch mechanisms provided by the
underlying operating system to perform network I/O. In this section, we describe the mech-
anisms supported by the Linux kernel for event notification to such applications. Following
are the mechanisms supported by the Linux kernel.

� select() system call: select() allows a single thread or process to multiplex its time
between a number of concurrently open connections. The server provides a set of file-
descriptors to the select() call in the form of an fdset, which describes the interest
set of the server. The call returns the set of file-descriptors which are ready to be serviced
(for read/write, etc.). This ready set is also returned by the kernel in the form of an
fdset.

The main attributes of the select() based approach are:

– The application has to specify the interest set repeatedly to the kernel.

– The interest set specification could be sparse depending on the descriptors in the
set, and could lead to excess user-kernel space copying. The same applies when
returning the ready set.

– The kernel has to do a potentially expensive scan of the interest set to identify the
ready file descriptors.
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// Accept a new connection
int sd = accept(...);

// Associate an RT signal
// with the new socket
fcntl(sd, F_SETOWN, getpid());
fcntl(sd, F_SETSIG, SIGRTMIN);

// Make the socket non-
// blocking and asynchronous
fcntl(sd, F_SETFL, O_NONBLOCK|O_ASYNC);

Figure 1: Associating a new connection with an RT signal

– If the kernel wakes up multiple threads interested in the same file descriptor, there
could be a thundering herd problem, as multiple threads could vie for I/O on the
same descriptor. This, however, is not a problem with Linux 2.4.0 kernel, as it
supports single thread wake-up.

� poll() system call: poll() is a system call identical to select() in its functionality,
but uses a slightly different interface. Instead of using an fdset to describe the interest
set, the server uses a list of pollfd structures. The kernel then returns the set of
ready descriptors also as a list of pollfd structures. In general, poll() has a smaller
overhead than select() if the interest set or ready set is sparse and a larger overhead
if it is dense. Other than that, poll() has the same problems as select().

� POSIX.4 Real Time Signals: POSIX.4 Real Time signals (RT signals) are a class of sig-
nals supported by the Linux kernel which overcome some of the limitations of traditional
UNIX signals. First of all, RT signals can be queued to a process by the kernel, instead
of setting bits in a signal mask as for the traditional UNIX signals. This allows multiple
signals of the same type to be delivered to a process. In addition, each signal carries
a siginfo payload which provides the process with the context in which the signal was
raised.

A server application can employ RT signals as an event notification mechanism in the
following manner. As shown in figure 1, the server application can associate an RT
signal with the socket descriptors corresponding to client connections using a series of
fcntl() system calls. This enables the kernel to enqueue signals for events like connec-
tions becoming readable/writable, new connection arrivals, connection closures, etc. Fig-
ure 2 illustrates how the application can use these signal notifications from the kernel
to perform network I/O. The application can block the RT signal associated with these
events (SIGRTMIN in figure 2) and use sigwaitinfo() system call to synchronously
dequeue the signals at its convenience. Using sigwaitinfo() obviates the need for
asynchronous signal delivery and saves the overhead of invoking a signal handler. Once
it fetches a signal, the siginfo signal payload enables the application to identify the
socket descriptor for which the signal was queued. The application can then perform the
appropriate action on the socket.
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sigset_t signals;
siginfo_t siginfo;
int signum, sd;

// Block the RT signal
sigemptyset(&signals);
sigaddset(&signals, SIGRTMIN);
sigprocmask(SIG_BLOCK, &signals, 0);

while (1) {
// Dequeue a signal from the signal queue
signum = sigwaitinfo(&signals, &siginfo);

// Check if the signal is an RT signal
if (signum == SIGRTMIN) {

// Identify the socket associated with the signal
sd = siginfo.si_fd;
handle(sd);

}
}

Figure 2: Using RT signals for doing network I/O

One problem with RT signals is that the signal queue is finite, and hence, once the sig-
nal queue overflows, a server using RT signals has to fall back on a different dispatch
mechanism (such as select() or poll()). Also, sigwaitinfo() allows the applica-
tion to dequeue only one signal at a time. We’ll talk more about these problems in the
next section.

2.3 Previous Work

Banga et al. [1] have studied the limitations of a select() based server on DEC UNIX, and
shown the problems with its scalability, some of which we have discussed above. They have
proposed a new API in [2], which allows an application to specify its interest set incrementally
to the kernel and supports event notifications on descriptors instead of state notifications
(as in the case of select() and poll()). The system calls proposed as part of this API
are declare interest(), which allows an application to declare its interest in a particular
descriptor, and get next event(), which is used to get the next pending event(s) from the
kernel.

Another event-dispatch mechanism is the /dev/poll interface, which is supported by the
Solaris 8 kernel [12]. This interface is an optimization for the poll() system call. Recently,
Provos et al. [10] have implemented the /dev/poll interface in the Linux kernel. This inter-
face allows the interest set to be described incrementally by writing to the /dev/poll device.
The polling is done by using an ioctl() call, which returns a list of pollfd structures cor-
responding to the set of ready descriptors.
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RT signals have been used for network I/O in phhttpd [4] Web server. Provos et al. have
discussed its implementation and some of its shortcomings and also proposed a new system
call sigtimedwait4() for dequeuing multiple signals from the signal queue [11].

3 Dispatch Overhead

In this section, we look at the first scalability parameter for event-dispatch mechanisms,
namely the overhead involved in handling requests as a function of the number of concur-
rent requests. This parameter becomes important in the context of large number of idle or
slow connections, irrespective of the actual active load on the server. In what follows, we first
present an experimental study of some of the Linux dispatch mechanisms, and then discuss
some of the insights from this study. We follow this up with a detailed discussion of RT signal
behavior, including their limitations. We then propose an enhancement to the implementation
of RT signals in the Linux kernel to overcome some of these limitations.

3.1 Comparative Study

In what follows, we present the results of our comparative study of some of the kernel mecha-
nisms discussed above. The main goal of this study was to look at the behavior of Web servers
under high load in terms of their CPU usage as the number of concurrent connections (most
of them idle) increases.

3.1.1 Experimental Testbed

To conduct the experimental study, we implemented a set of micro Web servers (�servers),
each employing a different event-dispatch mechanism. Most of the request handling and
administrative code in these �servers is identical to avoid differences in performance arising
due to other factors. Apart from trying to ensure that the different versions are as similar
as possible, using them instead of widely-used, full-fledged Web servers allows us to focus on
the performance impact of the dispatch mechanisms by reducing all other overheads to the
absolute minimum. Thus, the �servers do very simple HTTP protocol processing, and the
various �servers differ only in their use of the event-dispatch mechanism. Specifically, we
compared �servers employing select(), /dev/poll and RT signals as their event-dispatch
mechanisms.

Each of these �servers was run on a 400 MHz Pentium-III based dual-processor HP NetServer
LPr machine running Linux 2.4.0-test7 in uniprocessor mode. The client load was generated
by running httperf [8] on ten B180 PA-RISC machines running HP-UX 10.20. The clients and
the server were connected via a 100 Mbps Fast Ethernet switch. To simulate large number
of concurrent and idle connections, each httperf was used to establish a set of persistent con-
nections, each of which generated periodic requests to the �server. The effect was that at all
times, some of the connections were active while the rest were idle, and these active and idle
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Figure 3: Reply rate with varying number of concurrent connections
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Figure 4: CPU usage with varying number of concurrent connections

connection sets kept changing with time. The server’s reply size was 92 bytes. In each exper-
iment, the total request rate was kept constant, while the number of concurrent connections
was varied to see the effect of large number of idle connections on server performance.

To measure the CPU usage of the �server, we inserted an idle counter in the kernel run-
ning the �server. This idle counter counted the idle cycles on the CPU. We computed the
CPU load imposed by the �server by comparing the idle cycles with the �server running on
the system to those for an unloaded system.

3.1.2 Experimental Results

As part of our comparative study, we ran experiments to measure the performance of three
�servers based on select(), /dev/poll and RT signals respectively. In each experiment,
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Figure 5: Response time with varying number of concurrent connections

the clients were used to generate a fixed request rate, and the number of concurrent connec-
tions was increased from 250 to 3000. Figure 3 shows the reply rates achieved by the servers
for request rates of 500 req/s and 1000 req/s respectively. The reply rate matches the request
rate for the RT signal and select() based servers at all points. On the other hand, the reply
rate starts dropping off for the /dev/poll based server after a point. This is because the
server becomes overloaded and starts dropping connections beyond a certain load. The reason
why the /dev/poll server performs so poorly under overload might be due to a bug in the
/dev/poll implementation.

The more interesting figures are figures 4 and 5, which show the CPU usage and the average
response time respectively for each of the �servers, as the number of concurrent connections
is increased. As can be seen from figure 4, the CPU usage for both select() and /dev/poll
increases with the number of concurrent connections and they become saturated after a cer-
tain point. On the other hand, the CPU usage for RT signals is insensitive to the number of
idle connections. The RT signal based server’s CPU usage is about 6.67% on average for the
500 req/s case, while it is about 13.25% for the 1000 req/s case. Thus, the CPU overhead of
RT signals seems to be dependent only on the request rate. Also, the RT signal CPU usage
is dramatically lower than either select() or /dev/poll based servers. A similar behavior
is seen for the response time in figure 5. Once again, the response time increases for both
the select() and /dev/poll based servers with the number of connections. On the other
hand, the RT signal based server shows a very small response time for each of the request
rates (about 0.3 ms in each case). Further, this response time is independent of the number
of concurrent connections.

Thus, the results in this section show that RT signals have very small dispatch overhead
and also that this overhead does not depend on the number of concurrent or idle connections
being handled by the server. Rather, it is determined only by the active work being done by
the server.
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3.2 RT Signals: Reasons for Efficiency

From our comparative study, we observe that RT signals have a relatively low overhead
compared to select() and /dev/poll event-dispatch mechanisms. Further, this overhead
seems to be independent of the number of idle connections, and depends only on the active
request rate. In other words, RT signals show essentially ideal behavior. In this section, we
discuss the reasons for the better performance of RT signals in more detail.

RT signals are more efficient due to the following reasons:

� First, the server only needs to specify its interest set to the kernel incrementally. This is
because the server application associates an RT signal with each socket file descriptor at
the time of its creation (just after the accept() system call). From this point onwards,
the kernel automatically generates signals corresponding to events on the descriptor,
and thus obviates the need for the application to specify its interest in the descriptor
again and again (as is the case with select() system call). This functionality is similar
to the declare interest() API proposed in [2].

� Unlike select(), poll() and /dev/poll, in the case of RT signals, the kernel does
not know about the interest set explicitly. Rather, whenever there’s an event on one of
the descriptors, the kernel enqueues a signal corresponding to the event without having
to worry about the interest set. Thus, the interest set is totally transparent to the ker-
nel and this gets rid of the overhead of scanning each descriptor in the interest set for
activity on every polling request from the application.

� Based on the fd field in the signal payload, the application can identify the active de-
scriptor immediately without having to potentially check each descriptor in the interest
set (as in the case of select()).

� By blocking the relevant RT signal and using sigwaitinfo() for dequeuing signals
from the signal queue, the overhead of calling a signal handler is avoided.

3.3 Limitations of RT signals

In spite of their efficiency, RT signals, as currently implemented in Linux, have some po-
tential limitations. These limitations arise from the fact that the signal queue is a limited
resource. Since each event results in a signal being appended to the signal queue, a few active
connections could dominate the signal queue usage or even trigger an overflow. The former
could result in unfair service and the latter could cause a deadlock-like situation in which the
server can no longer make any progress.

To understand how a signal queue overflow can lead to a deadlock situation, note that once
the queue is full, no further signals can be enqueued and hence all future events are dropped.
Of course, eventually the server would drain the queue and new events would start to come
in again. However, those events that got dropped are lost forever. If one of those events
happened to indicate, for example, that the listen queue has pending connections, the server

11



may never realize that it ought to call accept() to service those connections. Similarly, if an
event got dropped that indicated that a particular connection is now readable, the server may
never realize that it should call read() on that connection. Over time, the more events are
dropped, the more likely it becomes that either some connections end up in a suspended state
or that the listening socket is no longer serviced. In either case, throughput will suffer and
eventually drop to zero.

To avoid this kind of deadlock, the Linux kernel sends a SIGIO signal to the application
when the signal queue overflows. At this point, the application can recover from the overflow
by falling back onto some other event dispatch mechanism. For example, the application
could use select() or poll() to detect any events that may have been dropped from the
signal queue. Unfortunately, using a fallback mechanism comes with its own set of problems.
Specifically, there are two issues:

� First, having to handle signal queue overflows by switching onto another mechanism
makes the application complex. It may require translating the interest set from the (im-
plicit) form used by the RT signal mechanism into the explicit form used by the other
mechanism. Furthermore, the application has to receive and service the kernel notifi-
cations in a different manner. Also, this transition needs to be done very carefully, as
losing even a single event could potentially create the deadlock-like situation mentioned
above.

� Second, switching over to a non-scalable mechanism also has the potential to make the
application sluggish. Since the application is already under overload (which led to the
signal queue overflow in the first place), using a high-overhead mechanism for recovery
could overload the server even further, potentially sending it into a tailspin.

Another drawback with RT signals is that each call to sigwaitinfo() dequeues exactly one
signal from the queue. It cannot return multiple events simultaneously, which might be a
problem under high load.

Thus, using RT signals as implemented in the kernel has some potential drawbacks even if
they are used in conjunction with another mechanism.

3.4 Signal-per-fd: RT Signal Enhancement

As discussed above, having to handle a signal queue overflow could be potentially costly as
well as complex for an application. It would be desirable, therefore, if signal queue overflows
could be avoided altogether. To understand why signal queue overflows are happening in the
first place, note that there’s a potential of multiple events being generated for each connection,
and hence multiple signals being enqueued for each descriptor. But, most of the time, the
application does not need to receive multiple events for the same descriptor. This is because
even when an application picks up a signal corresponding to an event, it still needs to check
the status of the descriptor for its current state, as the signal might have been enqueued
much before the application picks it up. In the meantime, it is possible that there might
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have been other events and the status of the descriptor might have changed. For instance,
the application might pick up a signal corresponding to a read event on a descriptor after the
descriptor was closed, so that the application would have to decide what to do with the event
in this case. Thus, it might be more efficient and useful if the kernel could coalesce multiple
events and present them as a single notification to the application. The application could then
check the status of the descriptor and figure out what needs to be done accordingly.

We propose an enhancement to achieve this coalescing, which we call signal-per-fd. The basic
idea here is to enqueue a single signal for each descriptor. Thus, whenever there’s a new
event on a connection, the kernel first checks if there’s already a signal enqueued for the
corresponding file descriptor, and if so, it does not add a new signal to the queue. A new
signal is added for a descriptor only if it does not already have an enqueued signal.

To efficiently check for the existence of a signal corresponding to a descriptor, we maintain a
bitmap per process. In this bitmap, each bit corresponds to a file-descriptor and the bit is set
whenever there is an enqueued signal for the corresponding descriptor. Note that checking
the bit corresponding to a descriptor obviates the need to scan the signal queue for a signal
corresponding to the descriptor, and hence, this check can be done in constant time. This bit is
set whenever the kernel enqueues a new signal for the descriptor and it is cleared whenever
the application dequeues the signal.

By ensuring that one signal is delivered to the application for each descriptor, the kernel
coalesces multiple events for a connection into a single notification, and the application then
checks the status of the corresponding descriptor for the action to be taken. Thus, if the size
of the signal queue (and hence the bitmap) is as large as the file descriptor set size, we can
ensure that there would never be a signal queue overflow.

This enhancement has the following advantages:

� Signal-per-fd reduces the complexity of the application by obviating the need to fall back
on an alternative mechanism to recover from signal queue overflows. This means that
the application does not have to re-initialize the state information for the interest set,
etc. that may be required by the second mechanism. In addition, the application does not
have to deal with the complexity associated with ensuring that no event is lost on signal
queue overflow. Finally, the server would not have to pay the penalty of potentially costly
dispatch mechanisms.

� Signal-per-fd also ensures fair allocation of the signal queue resource. It prevents over-
loaded and misbehaving connections from monopolizing the signal queue, and thus
achieves a solution for the proper resource management of the signal queue.

� By coalescing multiple events into a single notification, this mechanism prevents the
kernel from providing too fine-grained event notifications to the application, especially
as the application might not pick up the notifications immediately after the events. This
enhancement thus notifies the application that there were events on a descriptor, instead
of how many events there were. The latter information is often useless to the application
as it has to anyway figure out what the events were and what the status of the descriptor
is.
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Figure 6: Server performance with 252 idle connections

On the whole, signal-per-fd is a simple enhancement to the implementation of RT signals
that can overcome some of their limitations in the context of using them as an event-dispatch
mechanism for doing network I/O.

4 Dispatch Throughput

In this section, we look at another parameter associated with the efficiency of event-dispatch
mechanisms, namely, the throughput that can be achieved as a function of the load on the
server. This metric is orthogonal to the overhead discussed in the previous section, as this
refers to the active load on a server, which reflects the actual amount of useful work being
performed by the server. In what follows, we first provide a comparative experimental study
of some of the Linux dispatch mechanisms, including the signal-per-fd optimization proposed
in the previous section. In addition, we also look at the throughput achieved by a select()
based server with a minor modification which allows the server to do multiple accept()s
each time the listening socket becomes ready. Then, we discuss the results of this study and
provide some insights into the behavior of the various mechanisms.

4.1 Experimental Study

Here, we experimentally evaluate the throughput achieved by various event-dispatch mech-
anisms under high load. Our experimental setup is the same as that used in Section 3.1 for
comparative study of select(), /dev/poll and RT signals. In this study, we evaluate two
new mechanisms/enhancements as well:

(i) The signal-per-fd enhancement to RT signals. We have implemented this enhancement
in the Linux 2.4.0-test7 kernel, and we ran the RT signal based �server on the modified
kernel for measuring the effect of signal-per-fd.
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Figure 7: Server performance with 6000 idle connections
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Figure 8: Response time with increasing load
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(ii) A select() based �server which does multiple accept()s each time the listening
socket becomes ready, as opposed to the standard select() based �server which does
only one accept() for such a case. We’ll refer to this modification as multi-accept se-
lect. The idea here is to enable the server to identify more connections and perform
more useful work per select() call.

We consider these mechanisms here, but not in the dispatch overhead study, because signal-
per-fd would have similar behavior as the standard RT signal implementation unless the
server is under overload. Similarly, multi-accept select would have overhead similar to the
standard select() based server in terms of handling concurrent idle connections, and would
differ only when the active load on the servers is varied.

In order to measure the throughput of these various mechanisms under varying loads, we
used a set of idle connections along with a set of httperf clients generating requests at high
rates. In these experiments, we kept the number of idle connections fixed for each experiment
and varied the request rate. We used a very small reply size (1 byte excluding the header
information, etc.) to see how much load the servers could sustain in terms of the number of
requests.

Figure 6 shows the performance of the servers with 252 idle connections, while figure 7 plots
the same information for 6000 idle connections. As can be seen from figures 6(a) and 7(a),
the throughput with select() plateaus out much before it does for the RT signals (both the
default and the signal-per-fd implementations). The fall in reply rate of /dev/poll is much
more dramatic and again, it seems to perform very poorly under overload. The interesting
observation is that multi-accept select is able to sustain a high throughput, similar to the
RT signals, and even manages to achieve a slightly higher peak throughput in each case.
Figures 6(b) and 7(b) show the CPU usage for the �servers. Again, as can be seen from
these figures, the CPU usage for RT signals is much less than that for select(), multi-
accept select and /dev/poll in all cases, and RT signals reach saturation at a much higher
load. In fact, for 6000 idle connections (figure 7(b)), CPU usage is 100% for the select(),
multi-accept select and /dev/poll based �servers right from the beginning, which can be
attributed to their high overhead in handling large number of concurrent connections. On
the other hand, the CPU overhead for the RT signals based server (for both the default and
signal-per-fd cases) increases linearly with the load in either case. An interesting point to be
noted from these figures is that the server with the default RT signal implementation reaches
saturation at a slightly smaller load than signal-per-fd, and this is more pronounced for the
6000 idle connections. We will discuss this point in more detail below.

Figures 8(a) and (b) plot the average response times of the various servers with increasing
load for 252 and 6000 idle connections respectively. Figure 8(a) shows that select() reaches
overload at a relatively low load, while the other mechanisms get overloaded at much higher
loads. In figure 8(b), select() shows high response times for all loads and is thus over-
loaded for all the points in the graph. These plots complement figures 6(a) and 7(a), which
show the throughput for these cases. The figures further show that the /dev/poll server
achieves small response times at low loads, but under overload, it offers much higher re-
sponse times compared to the other mechanisms. Thus, its overload behavior is again seen
to be very poor. The interesting point in figure 8(a) is that multi-accept select is able to

16



252 idle connections 6000 idle connections
Request Rate No. of No. of No. of No. of

(req/s) sigwaitinfos SIGIOs sigwaitinfos SIGIOs
2800 504728 0 504474 0
3000 540576 0 540792 0
3200 10538 1526 19 19
3400 40 40 16 16
3600 40 40 14 14
3800 39 39 13 13
4000 39 39 13 13

Table 1: Signal queue overflows under high loads

provide a low response time upto very high loads. Figure 8(b) shows an even more interest-
ing behavior of multi-accept select — its response time actually decreases with increasing
load until it hits overload. This behavior clearly shows the load amortization occuring for
multi-accept select, so that more useful work being extracted for the same select() call
overhead translates to lower average response times. Finally, the two RT signal implemen-
tations have the lowest response times until they get overloaded, which is expected as they
have the lowest overhead. Once again, these graphs show that the default RT signal based
server reaches overload slightly earlier than the signal-per-fd server.

Next, we will try to understand these results, and in particular, we will focus on the behavior
of multi-accept select and the two implementations of RT signals.

4.2 Discussion

From the results of our comparative study, we get the following insights into the behavior of
the various mechanisms:

� Using multi-accept select increases the throughput of the select() based server sub-
stantially. This is because select() is basically a state notification mechanism. Thus,
when it returns the listening socket as ready, it means there are new connections queued
up on the listen queue. Using multiple accept() calls at this point drains the listen
queue without having to call select() multiple times. This helps prevent the high cost
of using multiple select() calls for identifying new connections. Once new connections
are efficiently identified and added to the interest set, under high load, select()would
have large number of active connections to report each time it is called. Thus, its cost
would be amortized as the server could perform more useful work per select() call.
This has to do with the fact that the ready set returned by select() would be dense
and hence, the scanning cost of select() is utilized better. Also, the more useful work
the server does on each call to select(), the less often it needs to be called. Hence,
the server is able to identify more connections and extract more useful work, and thus
achieves a higher throughput. Note that the overhead is still high — only the overhead
is being better utilized now.
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The high throughput achieved by the multi-accept select() server is contrary to con-
ventional wisdom, according to which select() based servers should perform poorly
under high loads in terms of their throughput as well. While this is true for a simple
select() based server, our results show that implementing the server more carefully
can help us achieve better performance.

� The behavior of the servers running on the default RT signal implementation and the
signal-per-fd implementation are very similar until saturation. This is understandable
as there are very few signal queue overflows under low loads, and hence, the two schemes
work essentially the same. To verify that this is indeed the case, in table 1, we have tabu-
lated the number of SIGIOs and the number of sigwaitinfo() calls for the default RT
signal based server, at some of the loads for 252 and 6000 idle connections respectively.
The number of sigwaitinfo()s denotes the number of times the server dequeued a sig-
nal from the signal queue, and the number of SIGIOs represents the number of signal
queue overflows. As can be seen from the table, under low loads, there are no SIGIOs
and hence, no signal queue overflows. On the other hand, at high loads, all the sig-
waitinfo() calls result in SIGIOs. This indicates that the signal queue is overflowing
all the time, and hence, the server has to fall back on an alternative mechanism to per-
form its network I/O under high loads. The fallback mechanism used in our server was
multi-accept select1. Hence, under high loads, the default RT signal server behavior
is identical to that of the multi-accept select server, as was seen from the throughput
and the response time plots.

� As noted earlier, the signal-per-fd server reached overload at slightly higher load com-
pared to the default RT signal server. In particular, the default RT signal based server
saturated at about 3200 req/s, which corresponds to the high number of sigwait-
info()s resulting in SIGIOs at this load, as can be seen from table 1. Thus, preventing
signal queue overflows seems to make the server sustain slightly higher loads before
getting saturated. Once the signal-per-fd server becomes saturated, its throughput is
bounded by the amount of useful work it can amortize over each signal notification,
even though it does not suffer from signal queue overflows. Recall that similar to se-
lect(), signal-per-fd is also a state-notification mechanism — hence the server can
extract more work per signal compared to the default event-notification mechanism.
Thus, its throughput is comparable to that of multi-accept select under overload, even
though its peak throughput is slightly smaller, as sigwaitinfo() still returns only one
signal per call.

To summarize, we find that RT signals are an efficient mechanism in terms of overhead, and
under saturation, their throughput is determined by the fallback mechanism being used to
handle signal queue overflows. We find that select() system call can give high throughput
if we use multiple accept()s to identify more new connections per select() call. Finally,
signal-per-fd has a behavior almost identical to that of the default RT signal implementation
in terms of overhead and throughput, but it is able to sustain slightly higher load before

1We cannot simply use select() with single accept() in this situation because, to prevent any potential
deadlocks, we have to ensure that no event is lost, and hence, we need to clear the listen queue completely.

18



becoming overloaded. Further, it helps reduce the complexity of the server to a large extent.
This is because we do not have to worry about using alternative event-dispatch mechanisms,
and state maintenance also becomes much easier.

5 Conclusion

In this paper, we first discussed some of the common event-dispatch mechanisms employed
by Internet servers. We focussed on the mechanisms available in the Linux kernel, and mea-
sured their performance in terms of the overhead and throughput of a minimal Web server.
Our comparative studies showed that RT signals are a highly efficient mechanism in terms
of their dispatch overhead and also provide good throughput compared to mechanisms like
select() and /dev/poll. In particular, the overhead of RT signals is independent of the
number of connections being handled by the server, and depends only on the active I/O be-
ing performed by it. But, an RT signal based server can suffer from signal queue overflows.
Handling such overflows leads to complexity in the server implementation and also potential
performance penalties under high loads. To overcome these drawbacks, we proposed a scheme
called signal-per-fd, which is an enhancement to the default RT signal implementation in the
Linux kernel. This enhancement was shown to significantly reduce the complexity of a server
implementation, increasing its robustness under high load, and also potentially increasing its
throughput. Overall, we conclude that RT signals are a highly scalable event-dispatch mech-
anism and servers based on these signals can also be substantially simplified when coupled
with the signal-per-fd enhancement.

Another interesting result of our study was the performance of select() based servers under
high loads. According to conventional wisdom, select() based servers have high overhead
and thus, perform very poorly under high loads in terms of the server throughput as well.
Our experiments with the multi-accept variant of a select() based server show that though
select() does have high dispatch overhead, this overhead can be amortized better by per-
forming more useful work per select() call, resulting in a high throughput even under
heavy load conditions. Thus, we conclude that even a select() based server can be made to
scale substantially if its overhead is better utilized to perform more useful work.
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