E HEWLETT
"B pPACKARD

Extnding ARM 1 Supportn-D Corre htion

Ak hilSah ai, Jnsong Ouyang, M py Mad irap
Softv are Tedi nobgy Laboratory
H PLaboratories Pab Allb

H PL-2000-169

Decxmber 11t |, 2000*

ARM,
E-servce,
management,
optimizaton,
corre htion

ARM [1] and oter re htd transaction measurement
tdniques [2,4] are aimed at proMding a med anism for
measuring transactionall paramet®trs and for re hting te
measurement of one transaction with t ose of anoter. A
"corre Btor" passed from one transaction (refrred t as the
parent) to another (chill) is used estab Ush a parentc il
re htionship between the two transactions. H owe\er, each ol
tese taniquesis Imitd hawving asingl (or no) parentfor
e\ery sub-transaction. In managing distributd app lcations,
a case often arises tatwarrant corre htingasingl il wit
mu Bipl parents. In ot er words, a transaction cou B be \ewed
as a component of two or more parent transactions. In tis
paper, we extnd stat ofthe artin transaction measurement
from unidimensionall corre htors ®© mu K-dimensional
corre Rtors.

* IntrnalAcxssion Dat On ¥ Approwed for Externa IPub Bcation
O Copyrigh tH ew BtPack ard Com pany 2000

Extending ARM to Support n-D Correlation

Akhil Sahai, Jinsong Ouyang, Vijay Machiraju
E-Services Software Research Department
HP Laboratories, 1501 Page Mill Road, Palo-Alto, CA 94034

Abstract: ARM [1] and other related transaction measurement
techniques [2,4] are aimed at providing a mechanism for
measuring transactional parameters and for relating the
measurements of one transaction with those of another. A
“correlator” passed from one transaction (referred to as the
parent) to another (child) is used to establish a parent-child
relationship between the two transactions. However, each of these
techniques is limited to having a single (or no) parent for every
sub-transaction. In managing distributed applications, a case
often arises that warrants correlating a single child with multiple
parents. In other words, a transaction could be viewed as a
component of two or more parent transactions. In this paper, we
extend state of the art in transaction measurement from uni-
dimensional correlators to multi-dimensional correlators.

A. INTRODUCTION

Transaction measurement is an important aspect of
application management. The ARM API [1] is a simple
API that applications can use to pass vital information
about their transactions. A transaction is loosely defined
as any unit of work within the application logic that can
be marked with a “start” and “stop”. Examples of
transactions include:

1. body of a function or method (start at the beginning
of the function and stop at the end of the function)

2. a critical section of code (start at the beginning of
the critical section and stop and the end of the
critical section)

3. the lifetime of an object (start in the constructor of
the object and stop in the destructor)

4. a “purchase order” transaction (start when the user
initiates a purchase order and stop when the user is
given a confirmation number)

5. A “book buying” experience (start when the user
logins in to a web site and stop when the book is
shipped to or received by the user).

The exact number and nature of transactions are left to
the discretion of the application developer. From the
above examples, it can be noted that transactions can
represent a contiguous piece of code (e.g., 1, 2) or
functionality spread across several methods or
components (e.g., 3, 4, 5). They can be used to represent
system/application logic (e.g., 1, 2, 3) or business logic
(e.g., 4, 5). Further, transactions can be short-term
(execution completes within seconds or minutes) or
long-term (execution takes days or months to complete).

However, in all these cases, there should be a well-
defined “start” and “stop” that could be inserted into the
application logic to mark the boundaries of the
transaction.

In addition to measuring transactions in isolation, it is
often beneficial to relate transactions with each other.
The parent-child relationship ties a parent transaction to
its sub-transactions. This can be used to measure the
parent transaction as a whole and to relate that measure
with the measures of each of the sub-transactions. A
common use of this is to define a parent transaction as
the client-initiated transaction and to define sub-
transactions for portions of the parent transaction that
execute within server components (Figure 1). For
instance, a purchase order transaction initiated in a
browser in an e-commerce application could be defined
as the parent transaction while the resulting execution in
a web server could be defined as the sub-transaction.

CLIENT A

-

[-
SERVERD
®

\ v !

SERVERC

Figure 1: Transactions and sub-transactions

The parent-child relationship is established by passing a
correlator from the parent transaction to the child
transaction. A correlator is a unique identifier that can be
used to distinguish one instance of a transaction from
another. In the example above, the browser passes a
correlator to the web server.

While applying these techniques to relate transactions in
distributed components, we found that the ability
provided by ARM to relate a sub-transaction to a single
parent was inadequate. In many cases, a single piece of
functionality participated in two or more logical
transactions at the same time. In this paper we explain a
simple extension to existing correlation mechanisms to
handle what we call as n-D correlation. The rest of this
paper is organized as follows: Section B shows some

examples that demonstrate the need for n-D correlation.
In section C, we suggest a solution to handle n-D
correlation. We conclude with some thoughts in section
D.

B. NEED FOR n-D CORRELATION

Consider the following example, which commonly arises
in many object pool applications (e.g., web server farm,
database connection pool, thread pool, etc).

Example 1: Object Pool

An object pool is a set of objects — all of which belong to
the same type. Consider an object pool of objects O, O,,
... Oy Let us assume that each object supports a method
M. The implementation of M constitutes a sub-
transaction that can be though of as participating in two
logical transactions, as demonstrated in Figure 2 — (1) a
logical transaction (P1) spanning the lifetime of the
object and (2) a logical transaction initiated by the client
that invokes these methods (P2). It would be useful to
understand how many times M was called within one
object in the pool versus another. Hence, relating M1
with the lifetime of the object that it is part of is
necessary. On the other hand, it is also useful to
understand the contribution of M to the overall response
time of the client’s invocation. Hence, relating M with
the client invocation is necessary.

In this example, the sub-transaction that corresponds to

M should be correlated along two dimensions that
correspond to the two logical transactions.

01

N

Figure 2: An object in the object pool. Method M is part of
two logical transactions — P1 and P2.

Example 2: Event-loop

Event loops are commonly used in many distributed
systems and event-driven systems. An event loop stays
in an infinite loop waiting for new events. Whenever a
new event is received it is handled before waiting for

more events (Figure 3). Event loops are usually
implemented using queues or multiple threads.

Consider the example of an event loop shown in Figure
3. The portion of the code marked as T is a sub-
transaction that executes logically within two parent
transactions — P1 that encompasses the loop and P2 that
constitutes the transaction of the event generator. This is
another example where T should be correlated along two
dimensions — P1 and P2.

pre-1oop |ogic
/I\ whil e (some-condition)
. P1
wait for event
P2 handl e event <—7T
}
\L post-loop logic

Figure 3: The event handler constitutes a transaction T, which
is part of two logical transactions — P1 and P2.

Example 3: Data flow computation

To understand the need for correlating across more than
two dimensions, consider the data flow computation
shown in Figure 4. The data flow computation is
characterized by the fact that the computation is
triggered only when all the inputs are available. In the
example shown in Figure 4, the data flow computation
module (DFM) has n inputs Iy, I, ..., I,. Let us assume
that each of these inputs is associated with a transaction
(Py, P,, ... Pp). In other words, P1 is a transaction that is
defined by a module (not shown in the figure) as starting
at some point before sending the input I, to DFM and
ending at some point after sending the input I, to DFM.
If we demote the work performed by DFM as transaction
T, we can think of T as a sub-transaction of n parents Py,
P, ... P

h(T) —p
I (T) ——»

In (Tn) ———

Figure 4: The computation of DFM is a sub-transaction of
multiple parent transactions, each associated with one input to
the DFM.

The need for n-D correlation arises from the fact that
logical transactions can be arbitrarily defined based on
business or other requirements. It is quite possible that

two logical transactions intersect at or share the same
functionality. Existing approaches and APlIs are limited
in their ability to handle these scenarios. For example,
handling these scenarios in ARM would require making
multiple calls to arm_start() to indicate the start of the
same sub-transaction which is not desirable for several
reasons:

1. Each call to arm_start() results in a new handle
being generated effectively creating a new sub-
transaction.

2. Even if one could pass the same handle to
arm_start(), the semantics of ARM do not state
that one could do so and hence the ARM
implementation library may choose to ignore
multiple starts with the same correlator.

3. Using multiple starts is logically incorrect since
we are starting a single sub-transaction, not
multiple sub-transactions. As a consequence,
multiple starts with the same handles may result
in multiple response times being associated with
the same sub-transaction.

So, we propose an extension to ARM or ARM-like
mechanisms to deal with this problem. The extension
comes in two parts:

- Extension to the instrumentation API, and

- Extension to the handlers for the instrumentation

API.

In the case of ARM, these extensions map directly as
extension to the ARM API and extension to the ARM
library.

C. HANDLING n-D CORRELATION

In the ARM API, a correlator is specified as part of the
arm_start() method.

start _handle = arm start (
tran_id, flags, data, data_size
)

In this method, tran_id represents the transaction type
identifier and start_handle represents the transaction
instance identifier returned by the library. You can
notice that the correlator is not directly specified as a
parameter to the method. Instead it is embedded in the
“data” attribute using an encoding mechanism specified
by the ARM standard. Specific bits within the “flags”
attribute are used to indicate whether a correlator is
encoded in the “data” attribute or not.

This scheme should be changed to allow applications to
specify more than one parent transaction correlator. To
retain backward compatibility, one could design a new

encoding mechanism for the “flags” and “data” attributes
to accommodate this. Instead of going deep into the
encoding mechanisms and in order to support other
ARM-like transaction measurement schemes, we just
propose a conceptual extension to this API. Physically,
this extension could be realized by creating similar API
calls or new encoding mechanisms as in the case of
ARM. The conceptual extension is given below:

start _handl e = start (
tranid, parent_tran_handl es[],
ot her _fields

)

In case, an application does not use separate calls to start
and stop transactions, but intends to send complete
transaction information within one single call, it can use
the following variant of ARM API for transaction
completion:

conpl et e(
own_tran_handl e, tranid,
parent _tran_handl es[],
tran_status, other fields

)

In both these extensions, tranid represents the transaction
type identifier for the new transaction being marked. In
the first extension above, start_handle represents the new
transaction instance identifier returned by library. In the
second extension, own_start handle is an instance
identifier provided by the application itself to the library.

The array of parent_tran_handles is used to represent
correlators corresponding to all the parent transactions.

We now show how one could perform n-dimensional
correlation for the example of Object Pool shown in
Figure 2. Other examples in section C can be handled
similarly.

The client in Figure 2 passes its handle P2 as the
correlator to M. The mechanisms used for passing
correlators between two components are beyond the
scope of this discussion. M also has access to P1, which
is the start handle generated when the constructor of the
object marked the beginning of its transaction. M can
now make a call to start() using both these correlators as
shown below:

T = start(

M {P1, P2}, other _fields
)

An API handler that implements this call can store the
relationship between T, P1, and P2 in its internal data
structures.

D. CONCLUSION

ARM provides for uni-dimensional correlation between
transactions. However, in many situations there are
multiple dimensions to a transaction. To account for this,
we extended the API to be able to specify multiple
parent correlators.

E. ACKNOWLEDGEMENT

We would like to thank Aad Van Moorsel for his
suggestions and feedback on the paper.

F. REFERENCES

[1] ARM Working group, Application Response Measurement API guide

[2] Evans, J. Klein, and J. Lyon. Transaction Internet Protocol —Requirements
and Supplemental Information, 1998

[3]J. T. Park and J. W. Baek. Web-based Internet/Intranet service
management with QoS support. IEICE Trans. Communations., e82-b:11,
1999.

[4] Vantage Point Web Transaction Observer

http://www.omg.org/regions/cmgarmw/index.html
http://www.landfield.com/rfcs/rfc2372.html
http://www.openview.hp.com/products/webtransobserver/

	INTRODUCTION
	Need for n-D Correlation
	
	Example 2: Event-loop

	Handling n-D Correlation
	Conclusion
	Acknowledgement
	ReferenceS

