

Extending ARM for End-to-End Corre lation
and Optim ization of E-se rvice Transactions

Ak h il Sah ai, Jinsong Ouyang, Vijay Mach iraju
Softw are Te ch nology Laboratory
H P Laboratorie s Palo Alto
H PL-2000-168
De ce m b e r 11th , 2000*

optim iz ation,
m anage m e n t,
E-se rvice s, ARM

E-se rvice s on th e w e b are incre asingly be ginning to coope rate to
pe rform com ple x task s. Th is h as re sulted in transactions th at
alth ough b egin and end at an e -se rvice h ave parts of th e m
e xe cuted on oth e r coope rating e -se rvice s. Be cause of th e ir
fe d e rated nature and varied im ple m e n tation, it is difficult to
pe rform end to end corre lation of such transactions th at span
m ultiple e -se rvice s. Th e proble m w ould b e com pounded by th e
incre asing trend of dynam ic com position of e -se rvice s.
Application Respons e Measure m e n t is a standard for
m e asuring application re sponses th at originate at a clie n t and
involve m ultiple se rve rs. W e e xtend ARM to th e e -se rvice s
w orld to pe rform end to end corre lation . In doing so w e e n able
m ulti-dim ens ional corre lation -a local corre lation as w e ll as a
corre lation spanning m ultiple e -se rvice s.

* Inte rnal Accession Date Only Approved for Exte rnal Publication
 Copyrigh t H e w le tt-Pack ard Com pany 2000

Abstract: E-services on the web are increasingly beginning to
cooperate to perform complex tasks. This has resulted in
transactions that although begin and end at an e-service have
parts of them executed on other cooperating e-services. Because
of their federated nature and varied implementation, it is difficult
to perform end to end correlation of such transactions that span
multiple e-services. The problem would be compounded by the
increasing trend of dynamic composition of e-services.
Application Response Measurement is a standard for measuring
application responses that originate at a client and involve
multiple servers. We extend ARM to the e-services world to
perform end to end correlation. In doing so we enable multi-
dimensional correlation-a local correlation as well as correlation
spanning multiple e-services.

A. INTRODUCTION

The term E-service has been already overloaded. An e-
service can be described broadly as a service available
via the Internet that conducts transactions. E-businesses
set up E-Services for clients and other E-Services to
access. They have a Uniform Resource Locator at which
they can be accessed and have a set of Interfaces that
can be utilized to access them. E-services that are
capable of intelligent interaction would be able to
discover and negotiate with each other, mediate on
behalf of their users and compose themselves into more
complex services. This composition could be static or
dynamic. These E-services by virtue of their deployment
by different enterprises cross enterprise boundaries
during their interactions. The interaction thus happens
across management domains and enterprise networks.
For example, priceline.com and expedia.com act as the
broker for airlines, hotel and car booking respectively.
They are statically composed e-services that have pre-
negotiated understanding with certain airlines and hotel
services and broker their services through their portal
sites. In the dynamic composition scenario, which is
increasingly the trend, these e-services would enter into
agreements on the fly and compose themselves to serve
a set of requests by discovering each other at E-
MarketPlaces (Brokers).

As these e-services are being deployed by different
enterprises and because of usage of different
technologies for their implementations, these e-services
could be vastly different in nature. They could be based
on CORBA [4], BizTalk [3], COM, J2EE [10], E-speak
[2] and they would need to agree upon document

exchange protocols to communicate and inter-operate
with each other.

The need for end-to-end correlation of transactions
spanning multiple e-services arises from the perspective
of both clients and service providers. Clients are
interested in tracking their interactions and
understanding the e-service process flow internals. This
enables the client to seek some insight to the actual e-
service flow. For example, FedEx provides its clients
information about their packet location as it traverses its
itinerary.

E-service providers that are using other e-services to
provide composite services would like to know how the
component services are behaving. By studying and
observing their behavior a composite e-service would be
able to optimize itself by either changing its component
sub e-services or by instructing the existing component
sub e-services to improve performance.

ARM [7] is a standard in intrusive application
instrumentation. It provides for correlation of
application level transactions. As our approach extends
ARM to e-service transactions it is necessary to
understand ARM functionality.

B. ARM OVERVIEW

ARM provides APIs to delimit sections of application
code base. A section of an application code base can be
made into a transaction by inserting start and stop calls.
Handles can be attached to such transactions. The local
ARM Agent maintains the response time details of such
transactions. ARM also provides for transactions that
span multiple servers

Figure 1: ARM can be used to delimit transactions

 Extending ARM for End-to-End
 Correlation and Optimization of E-service Transactions

 Akhil Sahai, Jinsong Ouyang, Vijay Machiraju
 HP Laboratories, 1501 Page Mill Road, Palo-Alto, CA = 94034

ARM 2.0 API adds interesting functionality in the form
of correlation and furnishing of application data in the
form of data buffers, which are maintained by the ARM
library. The data buffers can contain application specific
data. The correlation data is sent to a central correlation
application that undertakes the task of linking up the
transactions with their component transactions.

Figure 2: Correlation in ARM

C. INADEQUACY OF ARM IN THE E-SERVICES
WORLD?

♦ ARM provides only lateral correlation.

E-services have their own workflow engines. Depending
on which state the e-service is in; a transaction is
initiated on request from one or more remote e-
service(s)/client(s). Thus for a transaction there could be
multiple parents, a local parent corresponding to the
local work flow engine and others corresponding to the
remote e-service transactions. ARM does not have the
capability of doing this kind of multi-dimensional
correlation.

♦ ARM assumes a central correlation engine.

In the E-service world this central correlation engine has
to be replaced by a management system equally trusted
by the e-services participating in the management task
[9]. As the management data needs to be sent over the
Internet and the number of transactions being created are
so large that they can easily overwhelm a simple
correlation engine, local caching and selective transfer
of data needs to be done.

♦ ARM assumes NOM (Network Object Model)
mechanism for correlation.

E-services essentially use the Document Object Model
of interaction. Correlators need to be sent and retrieved
using Documents from an e-service to another.

♦ ARM only provides response time details by default
For analyzing and optimizing e-services a host of data is
required which ARM does not provide. ARM provides
for application specific data to be collected but there is
no agreed upon format for this data.

D. EXTENDING ARM FOR CORRELATING E-
SERVICES DATA

At any given instant of time the e-services form a tree or
a directed acyclic graph with e-services at various nodes
(refer figure 1). As these DAGs are created either
statically or dynamically and conversations/transactions
are performed management information are sent to the
E-Service Manager, which performs correlation,
analysis and management. To enable end-to-end
correlation and management of e-service transactions,
we extend the ARM protocol and term it as the XARM
(eXtended ARM) protocol, which is used to exchange
the XARM objects (transaction traces) between the
managed e-services and the central e-service manager.
These XARM objects contain two types of information
at every level: correlators and management information
objects (MIO). As an e-service conversation can go
across multiple e-services, the correlation information
(correlator) is needed to track a conversation and
correlate the management data collected at each
participating e-service. As the conversations are
performed the MIOs would be correlated.

E-services at each level can further enrich the data
collection by agreeing on a certain ESSMIO (E-service
specific MIO) defined in a particular schema that would
enable the collaborating e-services to furnish business
logic data (e.g. the number of book buy requests
received etc). The default XARM object contains the
correlator and a certain set of predefined management
information data as described in section G.

1st. XARM protocol

The XARM API and its library maintain a local picture
of a transaction. This correlates the local parent, itself
and the local children transactions. For each transaction,
the XARM library generates a correlator and an MIO
and sends the correlator to the central e-service manager
at the start of the transaction. The library maintains and
updates the transaction’s MIO locally during the
lifecycle of the transaction, and sends it to the e-service
manager at the end of the transaction.

E-Service S1

transaction 1
(C0)

transaction 2
(C1)

C1

MIO
C2

C1

MIO
C3

Trace

transaction 3
(C1)

Trace

Trace

E-Service S3

E-Service 2

MIO
C1

MIO
C2

MIO
C3

C0

MIO
C1

MIO
C0

Figure 3: XARM protocol

Figure 3 shows the workflow of the XARM protocol. A
transaction, at its start, generates a context by combining
its own correlator and that from its parent (if any), and
sends the context to the e-service manager. The e-
service manager then adds the transaction to the children
list of its parent. At the end of a transaction, the MIO
containing the management statistics is sent to the e-
service manager. Thus as shown in figure 3, a partial
tree is drawn when e-service s1 ends its transaction and
sends a response back to its client, e-service s0. New
children would be added to s0 if it has more sub
transactions.

2nd. XARM APIs

An e-service conversation/transaction usually starts with
a request from a consumer or a parent e-service, and
ends with a response or a new request to another e-
service. In between, one or more of the following can
occur, depending on how a conversation is defined and
implemented.
• The e-service can reply with one or more

preliminary responses.
• The e-service can receive one or more subsequent

requests. A sub transaction can start with or without
a subsequent request.

• The e-service can send one or more requests to one
or more of its sub/external e-services.

• The e-service can receive one or more response
from its sub/external e-services.

To manage e-service transactions with the above
communication pattern, several issues must be
addressed. First, the communication between e-services
is asymmetric. That is, one or more response can

correspond to one request, or vice versa. Furthermore,
an e-service can send a response directly to the ultimate
requester, instead of its parent. Second, a transaction is
usually nested in both a local transaction hierarchy and a
conversation across multiple e-services. Third, the
request/response documents to be sent/received by an e-
service can be handled by different threads/components.
To address these issues for end-to-end correlation and
management of e-service transactions, we propose the
XARM API and present the details in the following.

Two types of information are collected from e-services.
One type is descriptive information, which contains the
e-service and transaction definitions. The other is
management information, which contains the correlator
and the MIO for each transaction. The schemas for
correlator and MIO will be described in the following
section.

To send transaction traces to the central management e-
service, the XARM library needs to know the URI of the
e-service manager, which is provided in the XARMInit
class. An e-service, when getting started, initiates an
instance of this class and calls XARM_configure to let
the XARM library know the destination of the e-service
manager.

public class XARMInit extends Object {
// Public Constructors

public XARMInit();
// Public Instance Methods

public short XARM_configure(
 String service_manager_URI,
 int flags);

// misc …
}

Descriptive information is provided in the class
XARMTranRegistration. An e-service, when getting
started, initiates an instance of this class and calls
registration method, XARM_register_transaction, to
define the mapping from a universally unique
transaction class ID to a name pair (service, transaction).
There are two versions of XARM_register_transaction,
depending on whether the transaction ID is provided as a
parameter, or generated by the XARM library. The
library maintains a list of locally registered transactions.
When method XARM_register_transaction is called, a
new entry will be added in the list, and a registration
trace is sent to the e-service manager.

public class XARMTranRegistration extends Object {
// Public Constructors

public XARMTranRegistration();
// Public Instance Methods

public short XARM_register_transaction(
String service_URI,
String tran_name,
byte[] tran_id;
int flags);

public byte[] XARM_register_transaction(
String service_URI,
String tran_name,
int flags);

// misc …
}

Management information is provided in the class
XARMServiceTran. This class represents e-service
transactions when they execute. An e-service creates as
many as instances it needs. This would typically be at
least as many as the number of transactions that can be
executing simultaneously. An e-service would typically
create a pool of XARMServiceTran objects, take one
from the pool to use when a transaction starts, and put it
back in the pool after the transaction ends for later
reuse. Internally, each entry in the list of registered
transaction has a list of transaction instances. Each entry
contains an XARM object of a specific transaction
instance. When a new instance of a transaction class is
started, a new entry will be allocated and added in the
corresponding instance list. The contained XARM
object will be updated at each stage of the transaction,
and will be sent to the remote e-service manager at the
end of the transaction. The maximum length of each
transaction instance list depends on the system
configuration. The definition of the class is as follows.

public class XARMServiceTran extends Object {
// Public Constructores
 public XARMServiceTran();
// Public Instance Methods

 public byte[] XARM_start_transaction
 (byte[] tran_id,

byte[][] parent_tran_handles,
ESSMIO essmi_object,
int flags);

 public short XARM_start_transaction
 (byte[] tran_id,

byte[][] parent_tran_handles,
byte[] tran_handle,
ESSMIO essmi_object,
int flags);

 public short XARM_update_transaction
 (byte[] tran_handle,

 ESSMIO mi_object,
int flags);

 public short XARM_stop_transaction
(byte[] tran_handle,
int tran_status,
String description,
ESSMIO essmi_object,
int flags);

 public short XARM_complete_transaction
 (byte[] tran_id,

 byte[][] parent_tran_handles,
byte[] tran_handle,
int tran_status,
Time resp_time,
ESSMIO essmi_object,
int flags);

// misc …
}

public class XARMUtil {

public Document XARM_insert
(Document document,
int doc_type,
byte[] tran_handle,
int flags);

 public byte[] XARM_retrieve
(Document document,
 int doc_type);

}

Method XARM_start is used to start a transaction.
There are two versions of XARM_start, depending
whether a transaction handle is provided by the user or
generated by the XARM library. The other parameters
to this method are the transaction class ID, the parent
transaction handles, and the ESSMIO. The transaction
ID is the type of transaction this transaction instance
(the transaction handle) belongs to. The local parent
transaction handle associates this transaction with its
local parent if any. If the transaction is due to an
external service request, method XARM_retrieve (a
utility function) is called to retrieve the handle, part of
the correlator tagged with the request. The handle is
passed as a remote parent transaction handle. It
associates this transaction with the remote transaction
sending the request. The ESSMIO is used to contain the
necessary e-service specific management information
for this transaction, if any.

An e-service may need to send requests to its sub e-
services during a transaction. In this case, it calls
method XARM_insert (a utility function) to piggyback

the transactions correlator on the document to be sent.
The correlator for a transaction consists of the
transaction class ID and the transaction handle.

When XARM_start is called, the XARM library
generates an XARM object for the transaction, and
sends the object (a start trace) to the e-service manager.
The XARM object is composed of the following.
• The correlators of the transaction and its local and

remote parents if any
• The transaction’s MIO
• The transaction’s ESSMIO

Like ARM, an e-service transaction can update its
statistics during its lifecycle by calling XARM_update.
The XARM library will then update and send, in an
update trace, the MIO and ESSMIO to the e-service
manager.

XARM_stop is used to inform the XARM library the
end of a transaction, and summarizes its statistics. It
informs the XARM library the status of this completed
transaction. The description can be optionally used to
inform the management system some more details about
the transaction. If the application logic finishes
successfully, the status is set to XARM_GOOD. If the
service request is not satisfied (e.g., could not reserve a
hotel room due to no vacancy), the status is set to
XARM_ABORTED. The status is set to
XARM_FAILED if there is an application or system
failure (e.g., a sub service is unavailable). The
description in this case can detail the reasons of failure.
XARM_stop will send, in a stop trace, the updated MIO
and ESSMIO to the e-service manager.

Like ARM, XARM also provides method
XARM_complete_transaction for e-services to pass the
statistics for completed transactions. The method, based
on passed parameters, builds an XARM object, and
sends it to the e-service manager.

Figure 4 is an example that illustrates how the XARM
API is used to instrument e-services. In the example, the
retailer e-service sends a request to the delivery e-
service, which then delivers the merchandise to the
customer. There are two transaction classes in the

delivery e-service: “delivery” and “items”. The delivery
transaction starts at a certain point of time each day, and
stops at another time or after a certain number of
merchandise deliveries. Each particular delivery is
referred to as an instance of the item transaction. This is
a typical example where XARM’s multi-dimensional
correlation is needed for e-service transaction
management.

Travel e-service

C0

Request

Confirm

XARM_configure(service_manager_URL)
XARM_register_transaction(retailer,delivery, ID0)

h0 = XARM_start(ID0, NULL, NULL, 0)

Send the delivery request to the hotel e-service

XARM_stop(h0, XARM_GOOD, NULL,0)

 receive the confirmation from the hotel e-service

Retailer
XARM_configure(service_manager_URL)
XARM_register_transaction(deliver,delivery, ID1)
XARM_register_transaction(deliver,items,ID2)

 h1 = XARM_start(ID1, NULL, NULL, 0)

 while (more work) {
 receive a delivery request
 parentTrans[0] = h1
 parentTrans[1] = h0
 h2 = XARM_start(ID2, parentTrans, NULL, 0)
 delivers the item sto the customer
 XARM_stop(h2, XARM_GOOD, NULL, 0)
 send the response to the retailer
 }

XARM_stop(h1, XARM_GOOD, NULL,0)

Deliver

Figure 4: Usage of XARM APIs in a simple scenario

Travel

Car

Hotel

Air

Figure 5: A travel e-service depends on Airline, car and hotel
e-services

Another example would be a travel e-service that
interacts with air flight, hotel, and car rental e-services.
The interactions between these e-services are shown in
figure 5, and figure 6 presents the instrumented pseudo
code.

MI_register_transaction(ts_URL,Travel, ID00)
MI_register_transaction(ts_URL, Airline, ID01)
MI_register_transaction(ts_URL, Hotel, ID02)
MI_register_transaction(ts_URL, Car, ID03)

h00 = MI_start(ID00, NULL, NULL, 0)

h01 = MI_start(ID01, h00, NULL, 0)
h02 = MI_start(ID02, h00, NULL, 0)
h03 = MI_start(ID03, h00, NULL, 0)

Send the air request to the airline service

Send the hotel request to the hotel service

Send the Car request to the car rental service

MI_stop(h01, MI_GOOD, NULL, 0)
MI_stop(h02, MI_GOOD, NULL, 0)
MI_stop(h03, MI_GOOD, NULL, 0)
MI_stop(h00, MI_GOOD, NULL,0)

Perform some actions and start three sub
transactions and send requests to air, hotel, and
car rental services

Receive a flight scedule from air service

Receive a reserved hotel from hotel service

Receive a rental car from car rental service

perform some actions prepare to the itinerary, and
then stop the transactions

Send the travel itinerary to the customer

 Receive a travel request from a customer

 Travel Service

Send the flight payment to the airline service

Send the hotel payment to the hotel service

Send the car payment to the car rental service

Receive the flight confirmation from airline service

Receive the hotel confirmation from hotel service

Receive the car confirmation from car service

MI_register_transaction(as_URL, flight, ID10)

h10 = MI_start(ID10, h01, NULL, 0)

MI_Stop(h10, MI_GOOD, NULL, 0)

Confirm the flight and send back the confirmation

 Send the flight confirmation to the travel service

 Receive a flight request from the travel service

Perform some actions and select a flight that fits in
with the customer's requirement. Then send the offer
back to the travel service

 Receive the payment from the client

Air ServiceC01

AirReq

C01

Payment

MI_register_transaction(hs_URL, hotel, ID20)

h20 = MI_start(ID20, h02, NULL, 0)

MI_Stop(h20, MI_GOOD, NULL, 0)

Confirm the hotel and send back the confirmation

 Send the hotel confirmation to the travel service

 Receive a hotel request from the travel service

Perform some actions and select a hotel that fits in
with the customer's requirement. Then send the offer
back to the travel service

Receive the payment from the client

C02

HotelReq

C02

Payment

MI_register_transaction(cs_URL, car, ID30)

h30 = MI_start(ID30, h03, NULL, 0)

MI_Stop(h30, MI_GOOD, NULL, 0)

Confirm the car and send back the confirmation

 Send the car confirmation to the travel service

 Receive a car rental request from the travel service

Perform some actions and select a car that fits in with
the customer's requirement. Then send the offer back
to the travel service

Receive the payment from the client

C03

CarReq

C03

Payment

Hotel Service

Car Service

AirOffer

Confirm

HotelOffer

Confirm

CarOffer

Confirm

Figure 6: Instrumentation of travel e-service

E. XARM OBJECT FORMAT DEFINITION

An XARM object may contain some or all of the
following: the correlators, a management information
object (MIO), and an e-service specific MIO (ESSMIO),
as shown figure 7. We have described the format of the
correlator. In this section, we derive a set of
management parameters [6] that should be included in
the MIO, then present the XARM object schema [1].

XARM Object

Correlators MIO & ESSMIO

Figure 7. The XARM object

The management parameters in MIOs are classified into
the following types.
• E-service health index. This indicates the current

status of an e-service. Possible values are: up, down,
congested, halted, restarting, and unknown.

• Availability. This indicates an e-service’s
availability, in terms of downtime per a certain
period of time. Downtime is the duration of e-
service unavailability due to system or application
faults.

• Reliability. The reliability of an e-service can be
measured in terms of the fault rate. That is, the
number of faults per the number of handled service
requests.

• Performance. Performance parameters include
response time, response status, throughput/rate,
aborted count/rate, and failed count/rate. Response
time is the duration from the sending of a request to
the receiving of a response. Response status
indicates if a service request has been done, aborted,
or failed. Throughput/aborted/failed rate is the
number of committed/aborted/failed services per the
total number of service requests.

• Faults. A fault parameter contains the information
about a fault when a request is serviced (e.g., fault
ID, fault description, time of the fault occurred).

The above parameters form a base for the management
of e-service transactions.

By aggregating and analyzing MIOs for cooperating e-
service transactions, the central management e-service
can provide the necessary information to perform the
following management tasks. It enables the management

system to perform end-to-end conversation management.
It enables an e-service or a consumer to track its
interactions with other e-services and the e-service flow.
It enables service ranking and selection. An e-service
can rank its external e-service providers based on their
performance, availability, and reliability. The latest
statistics of the external e-services can also help the e-
service choose the right e-service supplier. This kind of
correlation leads to service optimization as well. By
identifying performance bottlenecks and service failure
points, the management agent can reconfigure and/or
restart the e-service to achieve better performance and
availability. This correlation mechanisms leads to e-
service evolution. An e-service provider usually
provides different types of services. The information
provided by the XARM library and aggregated by the e-
service manager can be used to monitor the access
patterns for the provided services, and help make
decisions about whether or how to evolve the non-
performing services to generate more revenue. In
addition it leads to consumer tracking. The information
can be used to find out the consumer pattern so that
actions can be taken to guarantee the QoS for valued
customers.

3rd. The XARM object schema

Each XARM object contains the correlators of the
transaction, and its local and remote parents. The
correlator is transparently handled by the XARM
library. Its schema is:

<complexType name = “CorrelatorType”>
<element name = “TranID” type = ”string”/>
<element name = “TranHandle”

type = “String”/>
</complexType>

Currently the measurement data in each MIO contain the
identity (i.e., URI for a consumer or service provider),
and performance, availability, and reliability statistics.

<complexType name = “MIOType”>
<element name = “Identity” type = “IDType”/>
<element name = “Performance”

type = “PerfType”/>
<element name = “Availability”

type = “AvailType”/>
<element name = “Failure”

type = “FaultType”/>
</complexType>

<complexType name = “IDType”>
<element name = “From” type = “serviceURI”/>
<element name = “to” type = “serviceURI”/>

</complexType>

<complexType name = “PerfType”>
<element name = “RespTime” type=“decimal”/>
<element name = “StartTime” type=“decimal”/>
<element name = “StopTime” type=“decimal”/>
<element name = “TranStatus”

type = “decimal”/>
</complexType>

<complexType name = “AvailType”>
<element name = “ReqCount” type =“decimal”/>
<element name = “ComCount” type =“decimal”/>
<element name = “FailCount” type=“decimal”/>
<element name = “AbortCount”

type = “decimal”/>
</complexType>

<complexType name = “FaultType”>
<element name = “FaultId” type =“decimal”/>
<element name = “FaultDesc” type =“string”/>

</complexType>

The Correlators and MIO construct a default XARM
object that is used to identify a transaction’s local
context and statistics.

<complexType name = “XARMType” >
<element name = “Parent”

type = “CorrelatorType”
minOccurs = “0”
maxOccurs = “unbounded”>

<element name = “Correlator”
type = “CorrelatorType”/>

<element name = “MIO” type=“MIOType”/>
</complexType>

To identify a service request in the context of a
conversation, an e-service needs to get the XARM
objects of its predecessors. To know how its sub e-
services perform, an e-service needs to get the XARM
objects of the participating e-services. XARMTree is
defined to serve the need. This is the structure generated
by the remote e-service manager when receiving XARM
objects from local XARM libraries.

<element name = “XARMTree”
type =“XARMTreeType”/>

<complexType name = “XARMTreeType” >
<element name = “Predecessor”

type = “XARMType”
minOccurs = “0“ maxOccurs = “unbounded”>

<element name = “XARMObject”
type = “XARMType”/>

<element name = “Child”
type = “XARMType”

minOccurs = “0“ maxOccurs = “unbounded”>
</complexType>

F. CONCLUSION

End-to-end e-service transaction management is a
challenging task. Although ARM addresses some of the
issues it is inadequate in the domain of e-service
transaction management. XARM extends ARM to this
domain.

G. ACKNOWLEDGEMENTS

We would like to thank Aad Van Moorsel and Klaus
Wurster for his suggestions and feedback on the paper.

H. REFERENCES

[1] XML at World Wide Web (WWW) Consortium.
 http://www.w3.org/xml

[2] Hewlett-Packard Company. E-Speak Architecture Specification. Version
 Beta2.2. December 1999.
 http://www.e-speak.net/library/pdfs/E-speakArch.pdf

[3] D. Rogers. BizTalk service framework. Microsoft Corporation.
 http://www.biztalk.org

[4] Object Management Group. The common object request broker:
 Architecture and specification. Revision 2.0, July 1995
 http://www.omg.org

[5] A. Dan and F. Parr. An Object implementation of network centric
 business service application (NCBSAs): conversational service
 transactions, service monitor, and an application style. OOPSLA’97,
 Business Object Workshop III.

[6] J. T. Park and J. W. Baek. Web-based Internet/Intranet service
 management with QoS support. IEICE Trans. Commun., e82-b:11,
 1999.

[7] ARM Working Group. Application Response Measurement API Guide.
 1997.
 http://www.omg.org/regions/cmgarmw/index.html

[8] K. Evans, J. Klein, and J. Lyon. Transaction Internet Protocol –
 Requirements and Supplemental Information. 1998.
 http://www.landfield.com/rfcs/rfc2372.html

[9] A. Sahai, V. Machiraju, and K. Wurster. Managing Next Generation
 E-Services. HPL Technical Report 2000-120.
 http://lib.hpl.hp.com/techpubs/2000/HPL-2000-120.html.

[10] A. Sahai, J. Ouyang, V. Machiraju, and K. Wurster.
 End-to-End E-service Transaction and Conversation Management
 through Distributed Correlation. HPL Technical Report 2000-145.
 http://lib.hpl.hp.com/techpubs/2000/HPL-2000-145.html

[11] Web Logic (J2EE implementation) from BEA.
 http://www.bea.com

http://www.w3.org/xml
http://www.e-speak.net/library/pdfs/E-speakArch.pdf
http://www.biztalk.org/
http://www.omg.org/regions/cmgarmw/index.html
http://www.landfield.com/rfcs/rfc2372.html
http://lib.hpl.hp.com/techpubs/2000/HPL-2000-120.html
http://lib.hpl.hp.com/techpubs/2000/HPL-2000-120.html
http://www.bea.com/

	INTRODUCTION
	ARM Overview
	Inadequacy of ARM in the E-Services World?
	Extending ARM for Correlating E-Services Data
	XARM protocol
	XARM APIs

	XARM Object Format definition
	The XARM object schema

	Conclusion
	Acknowledgements
	ReferenceS

