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Abstract

High-end, mission-critical computer systems commonly guard against disasters. Such sys-
tems are composed of data centers (i.e., local-area networks of failure-independent computers)
in distributed geographical locations, connected through wide-area network links. Wide-area
network links are a major source of overhead, and to build efficient disaster-resilient protocols,
their use should be reduced without compromising the overall reliability of the system.

This paper claims that efficient disaster-resilient protocols can be devised by adequately
modeling wide-area distributed systems. To support our claim, we define a model for wide-
area distributed systems that distinguishes between data-center disaster failures and computer
failures, and develop a hierarchical Atomic Broadcast protocol for this model. The main idea
behind a hierarchical protocol is to run a local sub-protocol within each local-area network, and
then use a global protocol to orchestrate the communication between the local protocols across
wide-area links. The hierarchical nature of the protocol, and the accuracy of disaster detection,

allows us to achieve disaster resilience with few messages across wide-area links.

1 Introduction

High-end mission-critical computer systems commonly guard against disasters. Disasters can be
caused by the environment (e.g., floods, earthquakes, fires), and also a coincidence of events within
the computer system itself (e.g., operator errors, simultaneous crash of critical components due to
software faults). To deal with environment disasters, computer systems typically run in multiple
geographically dispersed data centers. Data centers are connected through possibly redundant
wide-area network links, and typically operate in a primary-backup manner: If the primary data
center suffers a disaster, the backup data center takes over. To enable the take over, the data in

the backup data center is continuously kept up-to-date.



A computing infrastructure with multiple data centers has some interesting characteristics.
First, since data centers are connected via wide-area networks, the difference in communication cost
within a data center (i.e., a local-area network) and across data centers (i.e., a wide-area network)
may be significant. Therefore, it makes sense to reduce the number of messages between data centers
at the expense of increasing the number of messages within a data center. Second, disasters are
rare events with very serious consequences, and so, in practice, disaster detection involves human
intervention: disaster detection may involve phone calls and emergency radio systems in addition
to timeout violations from within the computer system itself. Such out-of-band confirmation of
disasters has an impact on the system, since it is reasonable to assume that no disaster is suspected
unless it has actually happened. This aspect of disaster detection may be counter intuitive at
first. From the computer system’s perspective, disasters are detected via wide-area links, which are
known to be un-predictable. Thus, if one considers disaster detection from within the computer
system only, one would expect the detection of disasters to be less reliable than the detection of
failures within a given data center. However, this view ignores the out-of-band confirmation of
disasters by human operators.

Previous work on wide-area distributed systems use a homogeneous model in which all processes
communicate via wide-area network links [ADS00, KSMD00, CHD98, RFV96, MS95]. The main
goal of these previous approaches is to reduce inter-process communication in general and at the
same time handle highly unreliable failure detection. In this paper, we take a different look at
disaster-resilient wide-area distributed systems. In particular, we consider that (a) a data center can
be composed of several processes, which may fail independently of one another, (b) communication
between processes in different data centers is slow when compared to communication between
processes in the same data center, and (c) disaster detectors do not make mistakes, that is, a data
center that does not suffer a disaster is never suspected by processes in other data centers, and a
data center that suffers a disaster is eventually suspected by processes in other data centers.

We introduce an explicit notion of disaster as an event that makes a data center become in-
operational. A disaster is defined as the aggregate failure of a number of processes within the
same data center. We also introduce disaster detectors, which, like failure detectors [CT96], is a
distributed oracle. Where failure detectors give hints about process crashes, disaster detectors give
hints about data centers disasters. Therefore, processes can rely on failure detectors to monitor
the failures of other processes in their data center, and disaster detectors to monitor the disasters
of data centers. Disaster detectors is a novel concept to model data center disasters. Alternatively,
one could use, for example, failure detectors to detect disasters. By having disaster detectors as a
primitive concept, however, we can represent the idea that a process p in a data center d can suspect
that another data center d' has suffered a disaster, even if p has no knowledge about individual
processes in d'. Having a failure detector against each individual process in d’ gives (strictly) more

information than having a disaster detector against d’ (for detectors with similar types of accuracy



and completeness).

Disaster-resilient systems often rely on some replication mechanism. For example, to implement
disaster recovery for a database system, a typical configuration is to have an active database in
a primary data center and a stand-by database in a backup data center. Atomic Broadcast can
be used as a basic building block to implement replication in this scenario. As shown in [PF00],
Atomic Broadcast is the only inter-site mechanism necessary to synchronize replicas, and so, one
can move from a system composed of a single data center to a system composed of several data
centers—as the one described here—to cope with disaster failures by using an Atomic Broadcast
appropriate to the multi-data-center case. In this paper, we develop an Atomic Broadcast protocol
for such cases. Our protocol exchanges only 2(n — 1) messages between data centers to deliver a
message, where n is the number of data centers. The protocol is hierarchical in the sense that each
data center has a local Atomic Broadcast protocol, and an inter-data-center protocol orchestrates
the execution of the local protocols to solve Atomic Broadcast globally. The protocol illuminates
some of the difficulties in building such hierarchical protocols for wide-area networks.

Our contributions are the following:

e We present a distributed system model in which to represent disasters and the detection of
disasters. Disaster detection allows us to model a system in which a process can reliably detect
the in-operability of a part of the system, without giving each process reliable knowledge about

the crash of individual processes.

e We show how to use a notion of hierarchical algorithm to deal efficiently with underlying
heterogeneity in the network (a network that has both wide-area and local-area links). We use
a Hierarchical Atomic Broadcast protocol to illustrate the concept of hierarchical algorithm.
The main idea is to run a local Atomic Broadcast algorithm within each data center, and then
use a global wide-area and disaster-aware algorithm to orchestrate the local algorithms. With
this hierarchical organization, we can coalesce the many-to-many communication between
processes in different data centers, that would arise if we were to use a conventional Atomic
Broadcast protocol globally, into a one-to-one communication pattern between “coordinators”

in each data center.

The paper is organized as follows. Section 2 defines the system model and introduces the notions
of disaster and disaster detectors. Section 3 presents in detail a hierarchical Atomic Broadcast
protocol for wide-area networks. Section 4 briefly discusses the cost of such protocol, and Section 5

concludes the paper.



2 System Model

We consider a system II with a finite set of processes. Processes can fail by crashing, that is, when
a process fails, it permanently stops executing its algorithm—we do not consider Byzantine faults
nor do we rely on the ability for processes to recover. A correct process is one that does not fail.
To model the notion of data center, we subdivide the set II of processes into a number of disjoint
subsets, g1, ...gn, where each subset g, represents a group (or data center). We use G to denote
the set of groups, that is, for any group of processes g, = {p7,... ,p§_}, 9z € G.

A disaster is an event that makes a group permanently unable to perform its intended function.
We define the notion of disaster based on the aggregate failure of processes—a group g, suffers a
disaster if a majority of processes in g, have failed.! A group that does not suffer a disaster is
operational; a group that suffers a disaster is in-operational.

Processes communicate by message passing. We assume that the system is asynchronous:
message-delivery times are un-bounded, as is the time it takes for a process to execute individual
steps of its local algorithm. Each process in the system has access to a timer. The presence of
timers does not introduce any notion of (real) time or synchrony into the system. A timer has two
primitives: set and expire, and guarantees that if process p; sets a timer, and does not crash, then

pi’s timer will eventually expire.

2.1 Failure Detectors

We equip the system with failure detectors [CT96]. Each process p; in a group g, has access to
a failure detector that gives hints about the crash of processes in g;. A failure detector does not
detect failures across groups. Although the classical notion of failure detection in [CT96] is global
(i.e., it has no notion of groups), we can reuse the basic definitions directly by considering each
group a separate system of processes with respect to the classical definitions.

A failure detector returns the set of processes that it believes to have crashed. If p;’s failure
detector returns a set that includes a process p;, we say that p; suspects p;. The failure detector
D, available to processes in a group g, is in the class of eventually strong failure detectors (i.e.,

OS8). That is, D, satisfies the following properties:

o Strong Completeness: Eventually, every process in g, that crashes is permanently suspected

by every correct process in g,, and

o FEventual Weak Accuracy: If the group g, contains a correct process, then there is a time after

which some correct process in g, is never suspected by any correct process in g,.

!We could give a more general definition of disasters where the number of process failures is a parameter. We
use this specific definition to simplify the presentation. We define disasters relative to the failure of a majority of
processes because the intended function of a group is to solve Atomic Broadcast with an unreliable failure detector
(see Section 2.3).



2.2 Disaster Detectors

A disaster detector gives hints about which groups are in-operational. Each process in the system
has access to a disaster detector, DD, that returns the set of processes that DD believes to be
in-operational. If DD returns a set including a group g, to a process p;, we say that p; suspects g,
(to be in-operational). We define accuracy and completeness requirements for disaster detectors as

follows:

e Strong Completeness: Eventually, every group that contains fewer than a majority of correct

processes is permanently suspected by every correct process in the system, and

e Strong Accuracy: No group is suspected by any process in the system before it contains fewer

than a majority of correct processes.

We define disasters in terms of process crashes, and we can formalize the notion of disaster detection

using similar machinery as [CT96].

2.3 Communication

Messages are structured values. Besides the actual data being transmitted, a message has fields
that contain meta data. A message has a field called sender, which identifies the process that sent
the message. A message also has a field called id, which uniquely identifies the message. Given a
message m, we refer to the meta data using “.” notation, for example m.sender.

We capture the notion of message passing through the primitives send and receive. These

primitives provide reliable channels:?

e Completeness: If a process p; sends a message to a process p;, then if neither process fails,

the message will eventually be received by pj,
e No duplication: A message sent is received at-most-once, and

e No creation: A message is only received if it was sent.

Processes in an operational group can communicate using Reliable Broadcast and Atomic Broad-
cast. Reliable Broadcast is defined by the primitives r-broadcast and r-deliver. Atomic Broadcast
is defined by the primitives a-broadcast and a-deliver. Given an operational group g,, Reliable

Broadcast guarantees the following properties:

e Validity: If a correct process in g, r-broadcasts a message m, then all correct processes in g,

eventually r-deliver m,

2These properties do not exclude link failures, they simply assume that failed links are eventually repaired.



o Agreement: If a correct process in g, r-delivers a message m, then all correct processes in g,

eventually r-deliver m, and

o Integrity: For any message m, every correct process r-delivers m at most once, and only if m

was previously r-broadcast by m.sender.
Atomic Broadcast has the same guarantees as Reliable Broadcast plus the following one:

e Total Order: If two correct processes p; and p; both a-deliver messages m and m/', then p;

a-delivers m before m' if and only if p; a-delivers m before m/.

Solving Atomic Broadcast in a group g, of processes whose failure detectors are of class ¢S
requires that a majority of processes in g, be correct [CT96]. This is why we require an operational

group to contain a majority of correct processes.

2.4 Hierarchical Atomic Broadcast

In the following, we define Hierarchical Atomic Broadcast, a broadcast communication primitive
appropriate for multi-data-center systems. Hierarchical Atomic Broadcast is defined by the prim-
itives HA-Broadcast and HA-Deliver, which take the notion of groups into account. Hierarchical

Atomic Broadcast guarantees the following properties:

e Validity: If a correct process p; in an operational group g, HA-Broadcasts a message m, then

p; eventually HA-Delivers m,

o Agreement: If a correct process p; in an operational group g, HA-Delivers a message m, then

every correct process p; in each operational group g, eventually HA-Delivers message m,

o Integrity: For any message m, each process HA-Delivers m at most once, and only if m was

previously HA-Broadcast by m.sender, and

e Total Order: If a correct process p; in an operational group g, and a correct process p; in an
operational group g, both HA-Deliver messages m and m’, then p; HA-Delivers m before m/

if and only if p; HA-Delivers m before m’.

Atomic Broadcast is a special case of Hierarchical Atomic Broadcast, that is, when G contains only

one group, Hierarchical Atomic Broadcast becomes Atomic Broadcast.

3 Solving Hierarchical Atomic Broadcast

In this section, we present a protocol that solves Hierarchical Atomic Broadcast. We first describe

an overview of the protocol, and then discuss it in detail.



3.1 Protocol Overview

The Hierarchical Atomic Broadcast protocol distinguishes between a primary group and backup
groups. The primary group determines the order in which messages are delivered. Each group
has a coordinator process, responsible for the interaction between groups. During periods when
no process in a group is suspected, the group has only one coordinator, but, due to false failure
suspicions, more than one coordinator may exist in a group. As we show below, the protocol
can cope with more than one coordinator in the same group at the same time. To simplify the

presentation, in the following, we focus first on executions without failures and failure suspicions.

Executions without Failures and Suspicions. To HA-Broadcast a message m, a process p;
in the Primary Group executes an a-broadcast(m). If p; is in a Backup Group, p; sends m to some
process p; in the Primary Group, which will a-broadcast m. The initial local Atomic Broadcast
in the Primary Group determines m’s order. If p; is the coordinator of the Primary Group, after
a-delivering m, p; sends m to some process p; in each operational Backup Group g,. Process p;
knows which Backup Groups are operational since it has access to a perfect disaster detector. Upon
receiving m, p; executes a-broadcast(m). Every process in g, HA-Delivers m after a-delivering it,
but only the coordinator in g, sends a reply to p;. By doing so, the number of messages exchanged
between the Primary Group and any Backup Group is limited to 2. When p; gathers replies from
processes in every operational Backup Group, p; r-broadcasts a message to processes in the Primary
Group, confirming that m can be HA-Delivered.

The confirmation message r-broadcast by p; is not necessary to guarantee agreement of Hierar-
chical Atomic Broadcast, but it guarantees that any message m HA-Broadcast by a process in the
Primary Group is only HA-Delivered by processes in the Primary Group if m is received by the
Backup Groups. The latency of HA-Delivery in the Primary Group can be reduced by allowing
processes in the Primary Group to HA-Deliver m right after they a-deliver it. However, we require
processes to wait for m to be r-delivered because we need a stronger agreement property when
we use Hierarchical Atomic Broadcast as a building block for primary-backup database replica-

tion [PF00].3 Figure 1 depicts an execution of the protocol without failures and failure suspicions.

Executions with Failures and Suspicions. The Hierarchical Atomic Broadcast protocol deals
with process failures and disaster failures. Moreover, because of the characteristics of the failure

detector used to detect process failures, the algorithm also has to handle incorrect failure suspicions.

e Dealing with process failures and failure suspicions. Let p; be a process in some

group g, that fails or is suspected to have failed. If p; is not the current coordinator in

3In particular, it means that a primary database never confirms the commit of a transaction to a client before the
backups have also committed the transaction, preventing transactions from being lost in case of failures.



gz, pi’s failure, or suspicion of failure, has no impact on the Hierarchical Atomic Broadcast
protocol (even though it may have an impact on the local Atomic Broadcast protocol). If p; is
the current group coordinator and fails, then the remaining processes will eventually suspect
it, and another one will be elected coordinator. Other groups do not have to be informed
about this change in role because messages can be received by any process in a group, be
it a coordinator or not; the coordinator is only responsible for sending messages to other
groups. Due to false failure suspicions, it can happen, for certain periods of time, that several
coordinators co-exist in the same group. Although this has an impact on the performance of
the protocol, it does not compromise its correctness: since processes execute in a deterministic
way, all coordinators will end up sending the same messages to other groups, and it does not
matter which message is received and processed first; furthermore, processing a message is

an idempotent operation, and so, it can be done several times.
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Figure 1: Execution without failures and failure suspicions

e Dealing with disaster failures. The action taken by a process p; upon detection of a
disaster failure depends on p;’s group. If p; is in the primary group, and suspects some
backup group g, to have suffered a disaster, p; simply starts to ignore g, (i.e., by not sending
messages to processes in g,). The mechanism is more complex when processes in a backup

group suspect the primary group. Groups are assigned an identification number a priori that



allows them to know which group should become the next primary when the current one
suffers a disaster failure. If the next pre-determined group also suffers a disaster failure, the
one that succeeds it takes over, and so forth. Before a backup group takes the role of primary,
it becomes a transition group. Processes in a transition group determine all messages that
have been HA-Delivered by every operational backup group so far, and make sure that every

operational group receives such messages before receiving any new HA-Broadcast message.

Figure 2 depicts an execution of the protocol where process p%, the current coordinator of the
primary group fails, process p% suspects p%, and process p% takes over as next coordinator and

re-contacts the backup groups.

HA-Broadcast(m) HA-Deliver(m)

a-broadcast(m) r-broadcast(m)
k a-deliver(m K r-deliver(m)

)
i o 2@\/{@5}1 ,’"/
| | L
Prinmary ! «A N

o \ o 1| I}
suspect p; 3y
» ? ok ¥
Store
OK
I
Backup P) \ \ /
Goup P2 \ \ \‘ /.
I o
Store Store
OK
51
Backup 3
Goup P2 x
3 L.

Figure 2: Execution with process failures

3.2 Protocol Description

We present our protocol in the form of object-oriented pseudo-code. Each process in the system
instantiates an object from the class habcast (see Figure 3). These resulting set of objects collec-
tively implement the Hierarchical Atomic Broadcast protocol. The pseudo-code in Figure 3 declares
the state of each object as a number of variables. Furthermore, each object has a number of private

methods that it may call during its execution. Finally, the class habcast declares three behav-



iors: PrimaryGroup, BackupGroup, and TransitionGroup. These behaviors capture the various
roles that an object can play throughout its lifetimme. The initial roles are assigned to objects in
the initially clause in the habcast class. Subsequently, objects can then transition from one
behavior to another by means of executing a become statement. The notion of behavior transition
is inspired by the Actor model of computation [Hew77, Agh86]. We describe the pseudo code for
the three possible object behaviors in Figure 4, 5, and 6. We give a more detailed description of
the pseudo-code semantics in Appendix B.

The current-epoch variable denotes the number of times a group has changed coordinator.
The coordinator in a group orchestrates the interaction with other groups. The local and global
variables each refer to a set of messages. The local set contains the messages which have been
a-broadcast within the primary group; the global set contains the messages which have been HA-
Broadcast. For any process, the integer variable del-index is the largest sequence number of an
HA-Delivered message. That is, all messages with sequence numbers smaller than del-index have
all been HA-Delivered. The primary group assigns sequence numbers to messages. FKach process
has a counter, msg-index, which is the next sequence number to be assigned. A process in a backup
group may also initiate the HA-Broadcast of a message. If it does so, it stores the message in a set
called broadcast. Messages are stored in this set so that they can be re-submitted if the primary
group fails. The variable my-identity is the identity of a given process; the variable my-group is
this process’ group. The current coordinator of group x is the value of coord[x].

The method send-to-groups captures the behavior involved in sending a request to a number
of groups. Basically, for each group, the method keeps sending the request to a process in the group
until the request is acknowledged or the group is suspected to be in-operational. The return value
of send-to-groups is a vector of replies, one from each group. The method insert adds a set
of messages, from, to another set of messages, into (with duplicate elimination based on message
identifiers). The method deliver checks to determine if the set global contains any messages that
can be HA-delivered. If so, those messages are HA-delivered, and removed from the broadcast set.

Objects export a number of methods and event handlers (when clauses). An object in the
primary group exports a method, called HA-Broadcast, which other objects (in the same process)
can call to HA-Broadcast messages (see Figure 4). The HA-Broadcast method is the “entry point”
into our protocol. To HA-Broadcast a message m, an object in the primary group first performs a
local a-broadcast within the group, assigns a sequence number to the message, sends the message
to all the backup groups (using store), and then delivers the message. We use the a-broadcast
primitive to ensure that processes in the primary group agree on the set of a-delivered messages, the
assignment of sequence numbers, and suspicion of coordinator crashes. The local set of messages
contains the messages which have been a-broadcast within the primary group and assigned sequence
numbers. Once these messages have been a-broadcast (or “stored”) in the backup groups, they can

be HA-Delivered in the primary group. The store-messages method is a private method that is

10



called from within objects only; it “pushes” messages from the primary group to the backup groups.
The initially clause is executed when an object first instantiates the PrimaryGroup behavior.

An object with the BackupGroup behavior also exports a HA-Broadcast method (see Figure 5).
This method allows processes in a backup group to initiate the HA-Broadcast of messages. To
HA-Broadcast a message, an object sends the message to some process in the primary group. The
primary group then determines the order for the message through the sequence-number mechanism,
and then pushes the message to all the backup groups, including the group that initiated the HA-
Broadcast. To push messages to a backup group, the primary group sends a store message to an
individual process in the backup group. This process then a-broadcasts the store message within
the backup group. Only the coordinator in the backup group sends an acknowledgement to the
primary group—this is to limit the inter-group communication to 2 messages. When an object in a
backup group a-delivers a store message, it can HA-Deliver that message. The coordinator rotation
mechanism in a backup group is similar to the one employed in a primary group: processes use local
broadcast to agree on suspicions. In addition to process failures within the group, a backup group
also detects the failure of the primary group through a disaster detector DD. The group uses local
broadcast to order the detection of disasters with the receipt of store messages. If a backup group
detects a disaster, and if it supposed to take over as primary group, all objects in the group take on
a new behavior, called TransitionGroup. The event handlers for update-state and send-state
are concerned with the state synchronization between backup groups when the primary group fails
and one of the backup groups takes over as new primary. During the take-over (or transition phase),
the groups need to agree on which messages have been HA-Delivered.

The behavior TransitionGroup (see Figure 6) contains the pseudo-code for the transition phase.
This is the behavior executed by objects in a backup group that is about to take over as a new
primary group. The behavior captures the state synchronization among the backup groups. The
coordinator in the a transition group invokes the obtain-state method. For each backup group,
this method obtains the set of messages that has been HA-Delivered in that group. First, the
method sends a send-state message to all backup groups. In response to the this message, each
group simply sends all messages which have been HA-Delivered in that group. Based on the replies,
the coordinator in the transition group updates its own view of HA-Delivered messages, and sends
this view to all backup groups. The coordinator then a-broadcasts an update-state message

within the transition group to make all group members take on the behavior of a primary group.

4 Evaluation of the Protocol

We compare the Hierarchical Atomic Broadcast protocol with the Chandra and Toueg [CT96]
Atomic Broadcast protocol (CT-broadcast) and the Optimistic Atomic Broadcast protocol in [Ped99]
(OPT-broadcast). This comparison is done for reference purposes only as both Atomic Broad-

cast protocols assume a different system model than the Hierarchical Atomic Broadcast protocol:

11



class habcast {

current-epoch :

n
[y

local := {J; // The set of all messages seen by a process

global := {; // The set of messages HA-Delivered by a process
del-index := 0; // The sequence number of the last delivered message
msg-index := 1; // The current sequence number for this process
0;

broadcast // The set of broadcast, but not delivered messages
my-identity := ...;

my-group := ...;
all-groups := ..;
for y in all-groups do coord[y] := 1;
for y in all-groups do sizel[y] := |yl;

private method Result[] send-to-groups(Groups g,Request req)
for all y in g do
fork task:

repeat
send req to coordl[y];
set timeout;
wait until (receive(res) from p in y) or (time expires) or (y in DD);
if time expired then coord[y] := (coord[y] mod size(y)) + 1

until (received(res) from p in y) or (y in DD);

if received(res) from p in y then
coord[y] := p;
response(y,res) ;

wait until (for all y in g: response(y,res) or y in DD);
return vector of all response values;

private method insert(Message-set from,Message-set into)
for all m in from do
if A m’ in into such that m.id == m’.id then
into := into U { m };

private method deliver()
while 3 m in global such that m.index == del-index + 1 do
HA-Deliver(m);
if 3 m’ in broadcast such that m.id == m’.id then
broadcast := broadcast \ { m’ };
del-index++;

behavior PrimaryGroup { ... }
behavior BackupGroup { ... }
behavior TransitionGroup { ... }

initially do
if my-group == 1 then
become PrimaryGroup()
else
become BackupGroup() ;

Figure 3: Hierarchical atomic broadcast protocol
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behavior PrimaryGroup {

public method HA-Broadcast(Message m)
a-broadcast([Send,m,nil]);

private method store-messages()
mset := { m in local | m.index > del-index };
send-to-groups (G \ me, [Store,mset,me]);
r-broadcast (mset) ;

initially do
for all m in broadcast do HA-Broadcast(m);
local := global;

() when receive(req) from dest do
a-broadcast (req) ;

) when a-deliver([Send,m,dest]) do
if for all m’ in msg-set: m’.id # m.id then

m.index := msg-index++;
insert({ m },local);
if coord[my-group] == my-identity then

if dest != nil then
send [0K,m] to dest;
store-messages() ;

() when r-deliver(mset) do
insert (mset,global) ;
deliver();

(@ when coord in D do
a-broadcast ([Change-epoch, current-epochl) ;

(e) when a-deliver([Change-epoch,e]) do
if e == current-epoch then
coord[my-group] := (current-epoch mod size(my-group)) + 1;
current—-epoch++;
if my-identity == coord[my-group] then
store-messages () ;

Figure 4: Primary group behavior
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behavior BackupGroup {

public method HA-Broadcast(Message m)
broadcast := broadcast U { m };
send-to-groups (primary-group, [Send,m,mel) ;

() when receive(req) from dest do
a-broadcast (req) ;

®) when a-deliver([Store,mset,dest]) do
if dest is in primary-group then
insert (mset,global);
deliver();
if coord[my-group] == my-identity then
send [0K,mset] to dest;

() when a-deliver([Send-state,g,dest]) do
if g > primary-group then
primary-group := g;
if coord[my-group] == my-identity then
send [0K,{ m in global | m.index < del-index }] to dest;

(@ when a-deliver([Update-state,mset,dest]) do
insert (mset,global);
deliver();
send [0K,mset] to dest;
for all m in broadcast do
send-to-groups (primary-group, [Send,m,me]) ;

(e) when primary-group in DD do
a-broadcast ([Change-group, primary-groupl) ;

(s) when a-deliver([Change-group,y]) do
if y == primary-group then
primary-group++;
if my-group == primary-group then
become Transition();

() when coord[my-group] in D do
a-broadcast ([Change-epoch, current-epoch]) ;

@ when a-deliver([Change-epoch,el) do
if e == current-epoch then
coord[my-group] := (current-epoch mod size(my-group)) + 1;
current-epoch++;

Figure 5: Backup group behavior
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behavior TransitionGroup {

private method obtain-state()
replies := send-to-groups(G \ me, [Send-state,primary-group,mel);
for all sets s in replies do insert(s,global);
send-to-groups (G \ me, [Update-state,global,mel);
a-broadcast ([Update-state,globall) ;

initially do
if my-identity == coord[my-group] then
obtain-state();

(a) when a-deliver([Update-state,mset]) do
insert (mset,global);
deliver();
become PrimaryGroup() ;

® when coord[my-group] in D do
a-broadcast ([Change-epoch, current-epochl) ;

() when a-deliver([Change-epoch,e]) do
if e == current-epoch then
coord[my-group] := current-epoch mod size(my-group)) + 1;
current-epoch++;
if coord[my-group] == my-identity then
obtain-state();

Figure 6: Transition group behavior
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CT-broadcast and OPT-broadcast consider a single group of processes. Moreover, the optimistic
assumptions made about OPT-broadcast to achieve high performance are not usually satisfied in
wide-area networks. In our comparison, we consider a single group of n processes for the CT-
broadcast and the OPT-broadcast protocols, and divide this group in subgroups of m processes
each (i.e., we assume that n is a multiple of m) for the Hierarchical Atomic Broadcast protocol.

CT-broadcast and OPT-broadcast use an unreliable failure detector and can tolerate an infinite
number of false failure suspicions. Briefly, with the CT-broadcast protocol, broadcast messages
are first sent to all processes, and then the processes decide on a common delivery order for the
messages. To reach a decision, processes use a Consensus algorithm based on rotating coordinator
paradigm [CT96]. The OPT-broadcast makes some optimistic assumptions about the system (e.g.,
by taking into account the hardware characteristics of the network) to deliver messages fast. The
key observation is that in some cases, there is a good probability that messages arrive at their
destinations in a total order, and so, processes do not have to decide on a common delivery order.
Processes have to check whether the order is the same, and if this is the case, OPT-broadcast is
“cheaper” (i.e., requires fewer messages) than CT-broadcast. Otherwise, OPT-broadcast is “more
expensive” than CT-broadcast.

Let g, and gy be two groups of processes. To compare the three protocols, we consider the
number of messages exchanged between g, and g, to HA-Deliver some message m, and the number
of communication steps between g, and g, to HA-Deliver m. Such a division of processes in groups
has no effects on CT-broadcast and OPT-broadcast, but it allow us to highlight the strength of the
Hierarchical Atomic Broadcast protocol. In all cases, we assume that message m is HA-Broadcast
by some process in group g,. For the CT-broadcast protocol, we assume that the coordinator is a
process in g,, and for the Hierarchical Atomic Broadcast protocol, we assume that g, is the primary
group. We consider executions where no process fails or is suspected to have failed.

Table 1 presents the number of messages and the number of communication steps for the
broadcast protocols considered. From Table 1, it is clear that the Hierarchical Atomic Broadcast
protocol performs remarkably better than CT-broadcast and OPT-broadcast in the way groups
communicate. When interpreting such results, however, one should bear in mind that the Hier-
archical Atomic Broadcast protocol was devised to minimize the communication between groups,
and, more importantly, makes stronger assumptions about the way processes and groups fail than
CT-broadcast and OPT-broadcast. Nevertheless, such assumptions are reasonable when consid-
ering how wide-area networks are used in practice, and, as presented in Table 1, lead to great

performance improvements.

5 Conclusion

The key challenge in devising eflicient hierarchical protocols is to be able to distinguish wide-

area communication from local-area communication. The Hierarchical Atomic Broadcast proto-
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Protocol Number of messages | Number of steps
between g, and g, between g, and g,

Hierarchical ABcast 2 2
CT-broadcast 3m 3
OPT-broadcast omZ +m 2

Table 1: Broadcast implementations

col uses per-group coordinators to reduce the inter-group communication from many-to-many to
coordinator-to-coordinator and meet such a challenge. Although this is a simple idea, its imple-
mentation is complicated because both (global) disasters and (local) coordinator failures have to be
handled. Finding other ways to modularize hierarchical protocols is an interesting topic for future
work.

In practice, failures and disasters are often detected in different ways. Failure detection usually
relies on some timeout mechanism, whereas disaster detection usually involves human intervention.
To capture and exploit this distinction, we have integrated into our model the notions of disasters
and disaster detectors. The resulting model is a more faithful representation of real wide-area
distributed systems. It also provides a foundation for specifying the properties of disaster-resilient
protocols, such as Hierarchical Atomic Broadcast. We plan to use Hierarchical Atomic Broadcast

as a modular building block for disaster recovery protocols applied to replicated databases.
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A Algorithm Correctness

We prove that the algorithm in Figure 3, 4, 5, and 6 is a correct implementation of Hierarchical

Atomic Broadcast. We use the expression set,(m) to refer to any set that contains message m.

Proposition 1 (AGREEMENT). If a correct process p; in an operational group g, HA-Delivers
message m, then every correct process pj in each operational group g, eventually HA-Delivers

message m.

PROOF (SKETCH): The proof builds on a simple induction on the index associated with messages.
From the deliver(—) method, no process HA-Delivers a message m before HA-Delivering every
message m’, such that m'.index < m.indez. In the following we only present the inductive step of
the proof, as the base step follows similarly. Assume process p; has HA-Delivered every message

m', m'.index < m.index. We prove that p; HA-Delivers m. There are four cases to consider:

Case (a). Process p; and p; are in the Primary Group, and, therefore, do not change their behav-
ior. To HA-Deliver m, p; first r-delivers m, and by agreement of Reliable Broadcast, p; eventually
r-delivers m. Since p; has HA-Delivered every message m' such that m'.index < m.indez, p;

eventually HA-Delivers m.

Case (b). If p; HA-Delivers m while in the Primary Group, and p; is not in the Primary Group,
pj HA-Delivers m in a Backup Group. Notice that since p;’s group is operational, it is never
suspected and, thus, no group takes the role of Transition Group. Before HA-Delivering m, p;
r-delivers m, and by uniform integrity of Reliable Broadcast, there is a process p, that r-broadcasts
m. Thus, p, executed send-to-groups(—, [Store, set,(m), —]), and from the send-to-groups method,
pr received a reply from every Backup Group that was not suspected by p,. Since g, is operational,
pr never suspects gy, and receives a response from some process p; in g,. Process p, only replies
to message [Store, set,(m), —| after p,; a-delivers [Store, set,(m), me]. Therefore, from agreement of

Atomic Broadcast, p; also a-delivers [Store, set,(m), —], and it follows that p; HA-Delivers m.

Case (c). If p; HA-Delivers m while in a Backup Group, (c.1) p; HA-Delivers m in a Backup
Group, or (c.2) p; HA-Delivers m in a Transition Group, or (c.3) p; HA-Delivers m in the Primary
Group. The proof is by contradiction:

(c.1) Consider initially that g, = g,. From the algorithm, p; a-delivered [Store,set,(m), -], and
by agreement of Atomic Broadcast, p; also a-delivers [Store, set,(m), —] and eventually HA-
Delivers m, a contradiction. Therefore, it must be that g, # g,. Process p; is correct, and
from the contradiction hypothesis, p; does not HA-Deliver m, thus, by the when statements
at lines (b) and (d), p; does not a-deliver [Store, set,(m), —] nor does it a-deliver [Update-

state, set,(m)]. But since g, is operational, this can only happen if no process p, in g,
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executes an a-broadcast with those messages. From the send-to-groups method, either there
is no process in the Primary Group that executes send-to-groups(—, [Store, set,(m), —|), or the
Primary Group suffers a disaster failure before any process can complete the execution of the
send-to-groups() method. Process p; HA-Delivered m, and it can be proved that there exists
a process in the Primary Group that executes send-to-groups(—, [Store, set,(m), —]). We con-
clude that the Primary Group suffers a disaster failure. So, eventually all correct processes in
operational groups suspect the Primary Group, and some group becomes Transition Group.
Assume first that this group is not g,. From the send-to-groups() method, either there is
no process in the Transition Group that executes send-to-groups(—, [Update-state, set, (m)]),
or the Transition Group suffers a disaster failure before any process can complete the exe-
cution of the send-to-groups method. If the Transition Group suffers a disaster failure, it
is eventually suspected and another is chosen. Since p;’s group is operational, it eventually
becomes Transition Group, and so, we conclude that no process in the Transition Group ex-
ecutes send-to-groups(—, [Update-state, set,(m)]). From the Transition Group behavior and
the fact that the group is operational, if the coordinator process crashes before executing the
obtain-state() method, another process becomes coordinator and executes the obtain-state()

method until the end. Therefore, assume that g, is the Transition Group (case (c.2)).

Since p; does not HA-Deliver m, p; does not execute a-deliver([Update-state, set,(m)]). But
gy is operational, and so, there must be a process p; in g, that does not crash and executes
a-broadcast([Update-state, set, (mm)]). By the properties of Atomic Broadcast, p; eventually
a~delivers message ([Update-state, set,(m)]), a contradiction. Therefore, it has to be that p;

is in the Primary Group (case (c.3)).

By the contradiction assumption, p; does not HA-Deliver m, and so p; does not execute r-
deliver(set,(mm)). But since p;’s group is operational, and executes send-to-groups(—, [Store,
set,(m), —]), it follows that there is a correct process that executes r-broadcast(set.(m)),
which by the agreement of Reliable Broadcast contradicts the fact that p; does not execute
r-deliver(set,(m)).

Case (d). If p; HA-Delivers m while in a Transition Group, p; HA-Delivers m in a Transition

Group, or in a Backup Group. Assume initially that p; is in a Transition Group. To HA-Deliver

m, p; first a-delivers [Update-state, set,(m)], and from the properties of Atomic Broadcast and

the fact that g, is operational, p; eventually a-delivers [Update-state, set,(m)] and HA-Delivers m.

Thus, assume that p; is in a Backup Group. All messages HA-Delivered by p; are in global, and

before HA-Delivering m, p; executes send-to-groups(—, [Update-state,global, —]). From the send-

to-groups() method, p; received a [OK, set,(m)] message from some process p, in group g,. Before

sending [OK, set.(m)], p, a-delivered the message [Update-state, set,(m), —] and HA-Delivered m.
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By the agreement of Atomic Broadcast, and the algorithm, p; also a-delivers [Update-state, set, (m)]
and HA-Delivers m. O

Proposition 2 (TOTAL ORDER). If a correct process p; in an operational group g, and a correct
process p; in an operational group g, both HA-Deliver messages m and m', then p; HA-Delivers m

before m' if and only if pj HA-Delivers m before m/'.

PROOF (SKETCH): Assume, for a contradiction, that there are two processes p; and p; that HA-
Deliver messages m and m' such that p; HA-Delivers m before m’, and p; HA-Delivers m’ before
m. All messages are HA-Delivered in the deliver() method, and such that message m is only HA-
Delivered if all messages that precede m, considering m’s index, have been HA-Delivered. Thus, it
has to be that m.index; < m'.indez; at process p; and m'.index; < m.index; at process pj, which
can only happen if messages m and m’ are assigned indeces twice. Processes in a Primary Group
assign indeces to messages in the same way, and only once, thus, we conclude that some Primary
Group assigns indeces to m and m/’, suffers a disaster failure, and another Primary Group assigns
different indeces to m and m'. Without loss of generality, we consider that m is assigned an index
twice. Before becoming Primary Group, g, was a Transition Group, and some process pi in g,
executed the obtain-state() method. It follows that since p; is a correct process in an operational
group that has HA-Delivered m, py will a-deliver [Update-state, set.(m)], and will thus insert m
into its global set. When becoming the Primary Group, g, will assign the set global to the set
local. But to assign an index to m, when processes in g, execute the (b) when clause, there must

be no message m’ in the set local such that m'.id = m.id, a contradiction. O

Proposition 3 (VALIDITY). If a correct process p; in an operational group g, HA-Broadcasts a

message m, then p; eventually HA-Delivers m.

PROOF (SKETCH): There are two cases to consider:

Case (a). Assume that g, is the Primary Group. Since g, is operational, it remains the Primary
Group. HA-broadcast(m) leads to a-broadcast([Send, m, nil]), and by the validity of Atomic Broad-
cast, p; eventually executes a-deliver([Send,m,—]). It can be proved that there exists a process
that eventually executes store-messages() after a-delivering message ([Send,m,—]), and executes

r-broadcast(set,(m)). Upon r-delivering a set that contains m, p; HA-Delivers m.

Case (b). Assume that g, is a Backup Group. Since p; executes HA-Broadcast(m), p; includes
m in its broadcast set and executes send-to-groups(gy, [Send, m, —|). We consider first that (b.1) g,
is operational, and then that (b.2) g, is in-operational:

(b.1) From the send-to-groups() method, there is some process p; in g, that executes send([OK,
set,(m)]) to p;. Before doing that, p; a-delivers message (—,[Send,m,—]), and it follows
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that some process p, in g, eventually executes send-to-groups([Store,set,(m),—]). Since
gs 1s operational, from the send-to-groups() method, some process ps in the g, executes
send([OK, set,(m)]) to p,. But before doing that, ps a-delivered message ([Store, set,(m), —])
and HA-Delivered m. By the agreement property of Atomic Broadcast, p; also a-delivers
([Store, set.(m), —]) and HA-Delivers m.

(b.2) For a contradiction, assume that p; never HA-Delivers m. Consider first that some oper-
ational group g, becomes Primary Group. Hence, some process p; in g, executes send-to-
groups(—, [Update-state, global;, —]), and either m is in global;, or m is not in global;. In
the former case, since p;’s group is operational, p; eventually HA-Delivers m, a contradiction.
So, consider the case where m is not in global;. After receiving the message (—,[Update-
state, global;, —]), some process in g, a-broadcasts it, and eventually p; a-delivers (—, [Update-
state, globalj, —]). Since m is not in global, when p; executes the for statement in the (d)
when clause, m € broadcast;, and p; executes send-to-groups(g,, [Send,m, —]), but from the
fact that g, is operational, p; eventually HA-Delivers m. Thus, no operational group ever
becomes the Primary Group, which leads to a contradiction since g, is operational, and if all

the other groups suffer disaster failures, g, eventually becomes Primary Group. O

Proposition 4 (UNIFORM INTEGRITY). For any message m, each process HA-Delivers m at most

once, and only if m was previously HA-Broadcast by sender(m).

PROOF (SKETCH): We first prove that messages are HA-Delivered at most once. Assume, for a
contradiction, that m is HA-Delivered twice. Message m can only be HA-Delivered in the deliver()
method, and only if m.index =del-index+1. After HA-Delivering m, del-indez is incremented.
Therefore, it has to be that m appears more than once in global with different indeces. However,
from the algorithm, no message is included more than once in global, regardless of its index, a
contradiction.

We now show that m is only HA-Delivered if it was previously HA-Broadcast by sender(m).
Only messages in global are HA-Delivered, and a message m is included in global only by executing
the insert() method. Assume first that the Primary Group never suffers a disaster failure. Thus,

there are two cases to consider:

(a) If p; is in the Primary Group when it executes insert(set.(m), global), then p; also a-delivers a
message of the form [Send, m, —]. By uniform integrity of Atomic Broadcast, there is a process
pj in the Primary Group that executes a-broadcast([Send, m, —]). From the algorithm, there
is a process p; in the Primary Group that either executes method HA-Broadcast(m), or
receives a message ([Send,m,—]) from some process px. From the algorithm, in the former

case, p; is sender(m), and in the latter, py is sender(m).
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(b) If p; is in a Backup Group, then p; executes insert(set.(m), global) after receiving message
([Store, set,(m), —]) from some process p; in the Primary Group, and as shown in item (a),

m has been HA-Broadcast by sender(m).

Now consider that the Primary Group suffers a disaster failure, and let g, be the first Transition
Group where some process p; in g, executes send-to-groups(—, [Update-state, global;, —]) in the
obtain-state() method. Thus, p; executed insert(s) and received the replies from each Backup
Group not suspected by p;, with the messages HA-Delivered by each group. By the first part of
the proof, all messages received by p; have been HA-Broadcast by some process. If p; executes
insert(mset, global) in the (a) when clause, then p; first executes a-deliver([Update-state, mset]),
and there is a process p; in g, that executed a-broadcast([Update-state, global;]), such that for each
message m in global; there exists a reply s received by p; such that m € s. Therefore, from the
first part of the proof, m has been HA-Broadcast by some process.

Finally, if p; is in a Backup Group and executes insert(mset, global;) in the (d) when clause,
it has a-delivered message [Update-state, mset, —], and there is some process p; in p;’s group that
a-broadcast it. Process p; received message [Update-state, mset, —]) from some process p; in the
Transition Group, and as shown in the previous paragraph, each message m in mset has been

HA-Broadcast by some process. o
Theorem 1 Class habcast in Figure 8 solves the Hierarchical Atomic Broadcast problem.

PRrROOF: Immediate from Propositions 1, 2, 3, and 4. O

B Pseudo Code

We first give an overview of the main abstraction mechanisms, and then give a more detailed

description of events, values, types, statements, and expressions.

B.1 Overview

We describe our protocol as a class, and processes can then instantiate this class to generate objects
that execute the behavior specified in the class. Such objects have a local state, which is described
by the variables declared in a class. Objects also export a number of methods that other objects (in
the same process) can call. Objects in different processes communicate through message-passing,
not method invocation. Objects can also export a number of event handlers. With event handlers,
we can describe object behavior as a reactive system—objects can generate events, which other
objects can then react to. As for method invocations, events are only triggered within a process.
Method invocation is synchronous (the caller waits) whereas event triggering is asynchronous.
Objects have access to a number of built-in methods: send, a-broadcast, and r-broadcast.

These methods have the semantics that we outlined in Section 2. In addition, there are a number
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of pre-defined events that are triggered by the underlying runtime system: receive, a-deliver,
r-deliver. These events model upcalls from the underlying communication substrate to hand-
off messages to the algorithm. With these built-in facilities, we describe message-passing through
combinations of calling the send method and reacting to receive events.

In our algorithm, processes may play different roles over time. For example, a process may
initially be in a backup group, and then during execution become part of the primary group. For
presentation simplicity, we introduce an explicit notion of role (or behavior) in our pseudo code.
A behavior defines a number of methods and event handlers. These methods and event handlers
capture a particular role that an object may play during its lifetime. Objects can change their role
by installing a new behavior. Inspired by the Actor model of computation [Hew77, Agh86], we use
a become primitive to describe the (atomic) change of behavior.

An object may handle a particular type of event in one behavior, but not in another. We assume
that events are queued until they can be handled (if ever). In other words, we assume that events
are not dropped if they cannot be delivered to an object. Calling a method that is not defined in

the current behavior yields an exception.

B.2 Specifics

Events are typed values. The event value “receive(44)” is an event of type “receive” with
parameter 44. We use patterns over events to match on particular event types and to bind the
parameter values in an event to a local variable. For example, the pattern “receive(req)” matches
events of type receive and when a match occurs, the parameter of the event is bound to the
variable req. There are a number of built-in event types that capture reception of messages—we
outlined those types above in the previous section. Besides the built-in events mentioned above, we
also use events that denote expiration of timers and suspicion of groups and processes. Finally, it is
possible to declare user-defined event types. For example, the declaration “event response(Result)”
to declares an event type with name “response” that is parameterized by values of type “Result.”

We describe event handlers in terms of when clauses. A when clause has an event pattern and
a sequence of actions. For example, the clause “when receive(req): send(req) to p” has the
event pattern “receive(req)” and action “send(req) to p.” The semantics of a when clause is
to execute the action sequence when reacting to an event that matches the pattern. The binding
established in the pattern is visible in executing the associated statements. In the example, the
name req would be bound to the parameter of an event while executing the send statement. An
object reacts to events one at a time. A behavior may have a special when clause, called initially,
which is executed when the behavior is instantiated.

To test if a receive event has happened, we invoke a predicate, called received, that takes
the same parameters as an event type. For example, to test if an event of type “receive(res)”

has happened we would invoke “received(res).”
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We use the traditional control structures for sequential computation, such as if, for, while,
and repeat, with their conventional semantics. To describe event synchronization as part of a
computation, we use a wait until construct. This construct takes a list of event patterns, and
blocks the computation until an event happens that matches one of the patterns. To explicitly
create concurrency, we introduce the ability to fork new tasks (or threads). The construct “fork

task: send(req) to p” starts a new thread to execute the send statement.

“ 13 Ky ="

For statements, we use “:=" for assignment; for expressions we use “==" for equality,
for inequality, and “++” to increment integer variables. In terms of data types, we use integers,
sets, and arrays. We also assume data types to describe groups, process identities, requests, and
results; for a given group g, the expression “|g|” denotes the cardinality of g. We use the normal
set operations, such as set construction, set difference, union, and intersection. In addition to
these operations, we employ existential quantification over sets. Messages are typed; the construct
“[Send,m,nilli” is a message of type “Send” with parameters “m” and "nil.” The type Message

contains all messages.
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