

Continental Pronto

Svend Frolund, Fernando Pedone
Software Technology Laboratory
HP Laboratories Palo Alto
HPL-2000-166 (R.1)
July 19th , 2001*

E-mail: {Svend_Frolund, Fernando_Pedone} @hp.com

data
replication,
disaster
recovery,
high
availability

Continental Pronto unifies high availability and disaster
resilience at the specification and implementation levels.
At the specification level, Continental Pronto formalizes
the client's view of a system addressing local-area and
wide-area data replication within a single framework. At
the implementation level, Continental Pronto makes data
highly available and disaster resilient. The algorithm
provides disaster resilience with a cost similar to
traditional 1-safe and 2-safe algorithms and provides
highly-available data with a cost similar to algorithms
tailored for that purpose.

* Internal Accession Date Only Approved for External Publication
@ Copyright IEEE.
 To be published in the 20th IEEE Symposium on Reliable Distributed Systems, 2001.

Continental Pronto�

Svend Fr�lund Fernando Pedone

Hewlett-Packard Laboratories

Palo Alto, CA 94304, USA

fSvend Frolund, Fernando Pedoneg@hp.com

Abstract

Continental Pronto uni�es high availability and disaster resilience at the speci�cation and im-

plementation levels. At the speci�cation level, Continental Pronto formalizes the client's view of a

system addressing local-area and wide-area data replication within a single framework. At the imple-

mentation level, Continental Pronto makes data highly available and disaster resilient. The algorithm

provides disaster resilience with a cost similar to traditional 1-safe and 2-safe algorithms and provides

highly-available data with a cost similar to algorithms tailored for that purpose.

1 Introduction

Increasingly, online databases must be continuously available. To remain available in the presence of

disasters, such as earthquakes and
oods, critical online databases typically run in multiple, geographically

dispersed data centers. Each data center contains a complete copy of the database, and these copies

operate in a primary-backup manner: clients are connected to a single primary data center, and the

other data centers are in stand-by mode waiting to take over if the primary su�ers a disaster. In some

cases, clients can also connect to backup data centers, but only to request queries. Data centers are

connected via wide-area networks, and because of severe consequences (e.g., client re-connections), the

take-over process|when a backup data center becomes the new primary data center|usually involves

human operators. The backup data centers may use timeouts to detect disasters in the primary, but the

actual fail-over requires operator approval.

Current data centers consist of clusters of servers, with servers within a cluster connected through a

local-area network. This local-area replication (within a data center) aims to increase both the scalability

and availability of the database. In terms of availability, the local-area replication enables the database to

survive non-disaster failures without activating a backup data center: another replica within the primary

data center can take over in case of non-disaster failures, such as process crashes, disk crashes, machine

crashes, and so on. Thus database availability involves both local-area replication within a single data

center, for non-disaster failures, and wide-area replication across data centers, for disaster recovery.

� c
 IEEE. This is an extended version of a paper, with the same title, that appears in the proceedings of the 20th (2001)

IEEE Symposium on Reliable Distributed Systems.

1

Local-area replication and wide-area replication have traditionally been addressed by separate mech-

anisms. Local-area replication is typically achieved through a parallel database system, such as Oracle

OPS [17], that runs in a high-availability cluster. In contrast, wide-area replication can be classi�ed as

either 1-safe or 2-safe [10], and typically involves shipping the transaction log from a primary site to a

backup site. However, combining conventional local-area with wide-area mechanisms is not trivial. For

example, assume that a local-area replication mechanism replicates a data item x in two databases d and

d0, both in the same data center. We do not want both d and d0 to propagate the same updates to x to

the backup data center. On the other hand, we want to propagate each update to x in a fault-tolerant

manner|we do not want an update to be lost if either d or d0 goes down.

Continental Pronto provides both local-area and wide-area replication in an integrated manner. Con-

tinental Pronto combines the classical notions of 1-safe and 2-safe with a local-area replication protocol

based on transaction shipping. While running in a single data center only, Continental Pronto provides

local-area replication with a cost similar to protocols that provide local-area replication only [18]. While

running in a con�guration with 2 data centers (or more), each with a single database, Continental Pronto

behaves like either a classical 1-safe or a classical 2-safe disaster-recovery protocol|the choice of 1-safe

and 2-safe is con�gurable.

One of the features of Continental Pronto is that we use transaction shipping for both local-area and

wide-area replication. Using the same basic mechanism for both types of replication allows us to provide

a combined approach. For example, we use the replication of databases within a data center to ensure

that the disaster-recovery protocol itself can tolerate local failures. Residing above the database also

allows us to cope with heterogeneous systems because we rely on a standard interface only (e.g., JDBC).

Finally, by using transactions as the unit of replication and shipping, we have access to a higher level of

semantic information about data updates as compared to transaction log mechanisms.

To reason about the correctness of Continental Pronto, we have formalized the notion of disaster

recovery. Our formalism captures the client's view of the system, including both local-area and wide-

area concerns in a single framework. Local-area and wide-area replication fundamentally solve the same

problem: making data, and thereby transaction processing, highly available. Rather than treating local-

area and wide-area replication as separate issues, with separate correctness conditions, we de�ne a single

correctness speci�cation that captures highly-available transaction processing. This single speci�cation

re
ects correctness according to external entities (clients) that access and manipulate highly-available

data.

The rest of the paper is structured as follows. Section 2 introduces the system model and some

terminology. Section 3 discusses Continental Pronto properties. Section 4 presents Continental Pronto

in detail. Section 5 assess the performance of Continental Pronto, Section 7 discusses related work, and

Section 6 concludes the paper. Correctness proofs are in the Appendix.

2

2 System Model and De�nitions

2.1 Processes and Groups

We consider a system composed of two disjoint sets of processes, the Clients set and the Databases set.

To capture the notion of data center, we sub-divide the Databases set into subsets, G1; : : : ; Gn. We refer

to each subset Gx as a group of databases (or simply a group), Gx = fd1; d2; : : : ; dnxg. We assume

that there are \logical" communication links connecting clients and databases, and databases among

themselves. In practice, several logical links can be multiplexed over the same physical link. We assume

that links connecting databases within the same group transmit messages more e�ciently than links

connecting databases across groups. Figure 1 depicts a typical system that exempli�es our model. Each

group is internally connected through a local-area network. Di�erent groups communicate via wide-area

networks. These wide-area network links can either be leased lines or part of the public Internet. Clients

connect to the groups via the public Internet.

clients

group

router

database

Internet

Figure 1: System model

Clients communicate with databases by message passing and can establish a connection with any

database. Databases communicate with each other using the Hierarchical Atomic Broadcast abstraction

de�ned in Section 2.3. We do not make assumptions about message-delivery times nor the time it takes

for a process to execute individual steps of its local algorithm.

Processes (clients and databases) can fail by crashing, that is, when a process fails, it permanently

stops executing its algorithm|we do not consider Byzantine failures. A correct process is one that

does not fail. Database processes may also recover after a crash, but for simplicity we do not introduce

database recovery explicitly in the model|we address database recovery in Section 4.3. A disaster is an

event that makes a group permanently unable to perform its intended function. We de�ne the notion of

disaster based on the aggregate failure of databases: a group Gx su�ers a disaster if a certain number

kx; 0 < kx � nx, of databases in Gx have failed.1 We say that a group is operational if it does not su�er

a disaster; a group that su�ers a disaster is in-operational. In this paper, we assume that at least one

group is operational.

1Parameter kx is not necessarily equal to nx; in some cases, the failure of a majority of databases in a group may prevent

the remaining ones in the same group from performing their intended function|in such a case, kx = d(nx + 1)=2e.

3

2.2 Failure and Disaster Detectors

We equip the system with failure detectors and disaster detectors. A failure detector Dx gives information

about the possible crash of databases in a group Gx to databases in Gx and to the clients. In general,

if the failure detector of process p returns a set that includes a database d, we say that p suspects d.

We assume that eventually, every database in Gx that crashes is permanently suspected by every correct

database in Gx and by every correct client; and that if group Gx contains a correct database, then there

is a time after which this database is never suspected by any correct database in Gx or by any correct

client (i.e., Dx belongs to the class of eventually strong failure detectors [5]).

Disaster detectors are de�ned using similar machinery as failure detectors. If a disaster detector DD

returns a set of groups including group Gx to a process p, we say that p suspects Gx to be in-operational.

We assume that every group Gx that contains fewer than kx correct databases is eventually permanently

suspected by every correct process. Moreover, no group Gx is suspected by any database if it contains

kx or more correct databases. That is, each database has access to a disaster detector that is perfect in

the sense of [5]. In contrast, clients have access to a weaker disaster detector DDc: eventually, no group

Gx is suspected by any client if it contains kx or more correct databases. That is, clients have access to

a disaster detector that is eventually perfect in the sense of [5].

Our decision to give each database access to a perfect disaster detector re
ects our assumptions about

Continental Pronto's execution environment. Continental Pronto executes in a number of data centers|

modeled as groups|and these data centers are con�gured in a primary-backup fashion. Appointing a

new data center as the primary data center is an expensive operation that usually is only initiated in

response to disasters. Because data center fail-over is expensive, the decision to initiate such an operation

is usually made by a human operator. We refer to this kind of fail-over as \push-button" fail-over since

there is a human in the loop. With push-button fail-over, the detection of disasters is more accurate since

operators in di�erent data centers can potentially verify disaster suspicions. Moreover, it is possible to

enforce the appearance of a disaster, for example by shutting down computers manually, before initiating

a fail-over operation.

Clients have access to an eventually perfect disaster detector. This re
ects our assumption that the

network connection between clients and the primary data center may undergo instability periods, during

which clients may incorrectly suspect the primary data center to be in-operational, but will eventually

stabilize for long enough to ensure that \useful" computation can be done.

2.3 Hierarchical Atomic Broadcast

In the following, we de�ne Hierarchical Atomic Broadcast (HABcast), the communication abstraction

used by databases to communicate in Continental Pronto. HABcast uses the notions of failure detectors

and disaster detectors and trades communication within groups for communication across groups.

HABcast is de�ned by the primitives Broadcast(m), Deliver(1-safe, m), and Deliver(2-safe, m).

If a correct database in an operational group executes Broadcast(m), it eventually executes Deliver(1-

safe, m) and Deliver(2-safe, m). HABcast also ensures the following properties|we assume next that

sender(m) is the database that executes Broadcast(m), and group(m) is sender(m)'s group.

4

� hb-1: If a database in an operational group executes Deliver(1-safe, m), then every correct data-

base in each operational group eventually executes Deliver(1-safe, m).

� hb-2: If a database in group(m) executes Deliver(2-safe, m), then every correct database in each

operational group eventually executes Deliver(2-safe, m).2

In the absence of disasters, both properties hb-1 and hb-2 ensure that messages are delivered by

every correct database in each operational group. In the presence of disasters the properties di�er. If a

database executes Deliver(1-safe, m) and group(m) su�ers a disaster, there is no guarantee that correct

databases in other operational groups will also execute Deliver(1-safe, m). However, that is not the

case if a database in group(m) executes Deliver(2-safe, m) and then group(m) su�ers a disaster: every

correct database in each operational group will also execute Deliver(2-safe, m). To ensure property

hb-2, databases have to exchange messages across groups, and, as a result, Deliver(1-safe, m) can be

implemented more e�ciently than Deliver(2-safe, m)|we revisit this issue in Section 5.

Moreover, HABcast guarantees that:

� hb-3: If two databases execute Deliver(1-safe, m) and Deliver(1-safe, m'), then they do so in

the same order.

� hb-4: No database executes Deliver(2-safe, m) before executing Deliver(1-safe, m).

Property hb-3 states that messages of the type Deliver(1-safe, {) are globally ordered, and property

hb-4 speci�es a constraint on the order in which messages are locally delivered.

HABcast properties de�ne the permissible event sequence for broadcast and delivery events. To illus-

trate the semantics of HABcast, Figure 2 shows an event sequence that satis�es the HABcast properties,

and Figure 3 shows an event sequence that does not. In Figure 2, the database dx1 broadcasts a message

m, and every correct database in groups Gx and Gy delivers (1-safe;m) and (2-safe;m). Furthermore,

database dx1 broadcasts a message m0 and delivers (1-safe;m0), but since Gx su�ers a disaster, data-

bases in Gy do not necessarily have to deliver (1-safe;m0). Figure 3 depicts an execution that does not

satisfy the HABcast speci�cation since database dx3 is in group(m), delivers message (2-safe;m), and no

database in Gy delivers (2-safe;m).

2.4 Databases and Transactions

Database processes implement a number of primitive operations. These primitives capture the behavior

of commercial database systems, as accessed through standard APIs, such as JDBC. A transaction is

started with the begin primitive, and terminated with either the commit or the abort primitives. While

a transaction is active, we can use the exec primitive to execute SQL statements within the transaction.

We assume that all the primitives are non-blocking: if we call a primitive on a database and the database

does not crash, the primitive will eventually return.

Besides the primitives, we also make the following assumptions about every database di:

2Notice that hb-2 is not the uniform counterpart of hb-1, in the sense of [12]|which is \If a database executes Deliver(2-

safe, m), then every correct database in each operational group eventually executes Deliver(2-safe, m)." HABcast takes

advantage of the \asymmetry" in hb-2 to reduce the number of messages exchanged between groups.

5

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

Deliver(1-safe, m')

Deliver(2-safe, m)

Deliver(2-safe, m)

d
y
3

d
y
2

d
y
1

dx1

dx2

dx3 Group x

Group y

Broadcast(m) Broadcast(m0)

Deliver(1-safe, m)

Deliver(1-safe, m)

Figure 2: Correct execution of HABcast

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

Deliver(1-safe, m)

d
y
3

d
y
2

d
y
1

dx1

dx2

Deliver(1-safe, m)

dx3

Deliver(2-safe, m)

Group x

Group y

Broadcast(m)

Figure 3: Incorrect execution of HABcast

� db-1: Transactions are serialized by di using strict two-phase locking (strict 2PL).

� db-2: If di is correct, there is a time after which di commits every transaction that it executes.

The �rst property, as known as serializability, ensures that any concurrent transaction execution E has

the same e�ect on the database as some serial execution Es of the same transactions in E [3]. Furthermore,

strict-2PL schedulers ensure that if transactions ta and tb con
ict3 and ta has been committed before tb

by di in some execution E , then ta precedes tb in any serial execution Es that is equivalent to E [3].

The second property, although not explicitly stated as such, is often assumed to be satis�ed by

database systems. The property re
ects the fact that in general, databases do not guarantee that a

submitted transaction will commit (e.g., the transaction may get involved in a deadlock and have to be

aborted) but the chances that a database aborts all transactions that it processes is very low|of course,

this property assumes that transactions do not request an abort operation.

3 Problem Speci�cation

Continental Pronto provides data replication across both local-area and wide-area networks. Here, we

outline properties that characterize what it means for a data replication protocol such as Continental

Pronto to be correct.

The �rst property we consider is concerned with data consistency in a replicated database system.

For data consistency, we use the conventional notion of 1-copy serializability [3]:

� cp-1: Every execution consisting of all committed transactions in a group is 1-copy serializable.

Property cp-1 is a safety condition. It requires the replication algorithm to provide the illusion

that there is only a single copy of each data item. One can trivially satisfy the 1-copy serializability

requirement with a system that never commits any transactions, or with a system that only has a single

copy of each data item. Even though these solutions guarantee 1-copy serializability, the former does not

do any useful computation, and the latter does not provide high availability or disaster resilience. To

rule out unsatisfactory solutions, we need additional properties.

3Two transactions con
ict if they both access the same data item and at least one of the operations modi�es it.

6

To capture data availability and prevent trivial solutions, we introduce a liveness property that Con-

tinental Pronto should satisfy. The liveness property is concerned with clients, and represents the idea

that a client should eventually receive a reply from the replicated database system, even if individual

databases fail or groups of databases become in-operational.

To state the liveness property, we �rst introduce the notion of a job. A job is the transactional logic

that a client executes to manipulate the replicated data in the system. To handle failures and disasters,

this logic may execute multiple physical transactions. For example, the logic may start a transaction

against one database, and, if that database fails, retry the same logic against another database, giving

rise to another physical transaction. We say that a client submits a job when it starts to execute the

job's logic, which may encompass generic retry logic and transaction-speci�c SQL statements. We say

that a client delivers a job when the job execution is complete. Delivering a job captures successful

completion: a physical transaction has committed in some database, and the client has the result of the

transaction (e.g., a con�rmation number for a hotel reservation). With these concepts in place, we can

now state the liveness property for our protocol:

� cp-2: If a client submits a job j, and does not crash, then it will eventually deliver j.

Of course, we cannot require a system to unconditionally provide such a liveness guarantee: if all

databases crash, the system can obviously not provide an answer to the client. We state the property

as an absolute requirement. Particular implementations will then provide this guarantee under certain

assumptions. For example, our protocol will provide the guarantee if a single group of databases remains

operational.

Property cp-2 ensures that a transaction will eventually be committed in some database. However, if

that database fails, the transaction may be lost. If the client delivers one job and then submits another

job, property cp-2 does not ensure that the updates performed by the �rst job are visible to the second

job. The issue of lost transactions is concerned with the durability of transactional updates. To consider

it correct, we need the system to satisfy some level of durability that ensures visibility of transactional

updates across database crashes and group disasters. Informally, what we want to ensure is that if a

client successfully updates the state of a particular database (i.e., delivers a job), then those updates are

visible in all databases that the client may subsequently connect or fail over to. Based on the conventional

concepts of 1-safe and 2-safe disaster recovery [10], we identify two levels of durability: 1-safe durability

and 2-safe durability. These durability levels generalize the conventional 1-safe and 2-safe characterization

to a system where we rely on local replication for high availability and wide-area replication for disaster

recovery.

We formulate 1-safe durability as follows:

� cp-3: If a database in an operational group commits a transaction t, then all correct databases in

all operational groups commit t.

The conventional
avor of 1-safe disaster recovery is to asynchronously propagate updates to a backup

site|the primary site commits transactions without waiting for the backup site to do the same. Rather

than capturing the propagation scheme, we capture the consequence of using the scheme as seen by

7

clients. With a 1-safe scheme, transactions can be lost: the primary may commit a transaction and then

fail before sending it to the backup. Our 1-safe durability has the same spirit: it only ensures global

transaction commitment if an operational group commits the transaction (an operational group in our

scheme corresponds to a correct primary in conventional 1-safe protocols).

With 1-safe durability, delivery of a job by a client does not imply global commitment of the trans-

actional update. Delivery of the job implies that some database committed the transaction, but if that

database is in a group that su�ers a disaster, the 1-safe durability property imposes no obligation on

other database to also commit the transactional update. In contrast, 2-safe durability imposes such an

obligation:

� cp-4: If a client delivers a job j then all correct databases in all operational groups commit the

transactional updates performed by j.

With 2-safe durability, there are no lost transactions. If a client delivers a job against one database,

and then fails over to another database in a di�erent group, the job's updates are also present in the

second database. This is similar in spirit to conventional 2-safe protocols where the primary site does not

respond to the client unless it has received acknowledgement from the backup site that the updates are

committed. Continental Pronto is con�gurable to provide either 1-safe durability or 2-safe durability.

Finally, to provide global consistency, we require that databases in di�erent groups commit con
icting

transactions in the same order. Property cp-1 makes sure that this holds for databases in the same group,

but it does not prevent the case where a database di in a group commits a transaction t before a con
icting

transaction t0 and another database dj , in a distinct group, commits t0 before t, as long as both di and

dj are consistent. Property cp-5 handles this case.

� cp-5: If two databases commit con
icting transactions t and t0, they do so in the same order.

4 Continental Pronto

4.1 Overview of the Protocol

Continental Pronto is based on the primary-backup replication model: a single database is appointed as

global primary, and all other databases are backups. Clients connect to the primary database to submit

update transactions; read-only transactions, or queries, can be executed against any database, be it in

the same group as the primary or not.

Normal operation. In the absence of failures, disasters, and suspicions, the protocol works as follows|

we consider next only update transactions; queries are simply executed locally at any database and do

not require any distributed synchronization among databases. To submit transactions, clients �rst have

to �nd the current primary database, which they do by polling databases. If the �rst database contacted

turns out to be the current primary, it establishes a connection with the client; otherwise it returns to the

client the identity (i.e., group id and database id) of the database it believes to be the current primary.

8

Assuming that the system eventually stabilizes, that is, failures, disasters, and suspicions do not keep

happening inde�nitely, clients eventually �nd the current primary database.

The primary receives SQL requests from the clients and executes them concurrently, but under the

constraints of (local) strict two-phase locking. Because the execution at the primary is serializable, it is

equivalent to some serial execution of the same transactions, and the order in which commit requests are

submitted to the primary de�nes one such serial execution order. To see why, consider two concurrent

transactions t1 and t2. If t1 has its commit requested before t2, either (a) t1 and t2 do not con
ict, and

their relative order does not matter (i.e., t1 can be ordered before t2), or (b) t1 and t2 con
ict, and the

locking mechanism built-in in the primary will block t2 until after t1 releases its locks, and so, t2 will

have its commit requested after t1, in which case t2 is ordered after t1 in any serial order equivalent to

the real execution.

When the primary receives a commit request for a transaction from some client, the primary uses

HABcast to broadcast the SQL statements for the transaction to all the backups. Upon 1-safe delivering

such a message, each backup executes the transaction against its database, following the delivery order.

Update transactions at the backups are executed sequentially, according to the order they are delivered.

Since this delivered order corresponds to the serializable order in the primary, all databases order con-

icting update transactions in the same order. Thus, the primary database can be non-deterministic and

execute transactions concurrently since we can repeat the same non-deterministic choices at the backups.

Even though backups have to process update transactions sequentially, they can do it concurrently with

the execution of local read-only transactions. Notice that performance at the primary is not hurt by

the backups because the primary can reply back to the client right after delivering a 1-safe or 2-safe

message (depending on the level of durability required by the transaction) and receiving a reply from its

local database acknowledging the commit of the transaction.

Failures, disasters, and suspicions. The Continental Pronto model of primary-backup replication

allows us to use standard, o�-the-shelf, databases without modi�cation. However, this replication model

introduces the challenge of how to maintain consistency without assuming a perfect failure-detection

scheme. Remember that we assume a failure-detection scheme where databases within a group have

access to a very weak failure detector which is allowed to make an arbitrary number of mistakes. Across

groups, we have a disaster-detection scheme that is perfect (i.e., does not suspect disasters unless they

have actually happened). The disaster-detection scheme re
ects the push-button fail-over scheme between

data centers.

Continental Pronto implements primary-backup on top of these failure and disaster detection mecha-

nisms. We use failure detection to elect a new primary within the same group when the current primary

is suspected, and we use disaster detection to elect a new primary in a di�erent group when the current

primary's group has su�ered a disaster. In both cases, we use the HABcast abstraction, introduced in

Section 2.3, to ensure that all databases agree on the sequence of primaries; but the databases only agree

on the sequence of primaries, not on the actual real time at which a database is appointed primary. This

looser notion of agreement allows us to implement a primary-backup mechanism without assuming a

synchronous model and without making timing assumptions within groups.

9

Due to the asynchrony of message transmissions, however, more than one primary in the same group

may co-exist during certain periods of time. To handle situations of multiple primaries executing trans-

actions concurrently, we rely on a certi�cation scheme similar to the one used in the Pronto protocol [18].

With such a scheme, the execution evolves as a sequence of epochs. All databases start their execution

in the �rst epoch, and for any given epoch, there exists a pre-assigned primary database. Whenever a

database suspects the current primary to have crashed, it uses HABcast to request an epoch change,

and, consequently, a change in the primary. Every message broadcast carrying a transaction, a failure

suspicion, or a disaster suspicion also contains the epoch in which the message was broadcast. Upon

delivering a message, the action taken depends on its epoch.

� A transaction delivered in the epoch in which it was broadcast (and thus, executed) is committed;

a transaction delivered in a di�erent epoch than the one in which it was broadcast is aborted.

� A suspicion delivered in the same epoch in which it was broadcast makes the database pass to the

next epoch; a suspicion delivered in a later epoch than the one in which it was broadcast is ignored.

Since all databases deliver messages in the same order, they all agree on which transactions should be

committed and which ones should be aborted. A client that has its transaction aborted because it used

an outdated primary re-executes its transactional using the current primary.

4.2 The Protocol in Detail

Algorithm 1 depicts the database side of Continental Pronto. We have omitted pseudo code for the client-

side algorithm in Continental Pronto, as it is quite similar to the client-side algorithm in Pronto [18].

The �rst part of the algorithm (lines 1{28) shows the transaction processing by the primary database.

The start of a transaction is embodied in a begin request. In response to such a request, the primary

initializes some control variable for the transaction. The primary tracks the durability level of the

transaction (the variable level), a unique identi�cation of the job from which the transaction originates

(the variable jobid), and the state of the transaction (the variable state). A transaction starts in the

executing state and remains in this state until a commit or abort is requested. If the client requests to

commit the transaction, the transaction passes to the committing state and is broadcast to all databases

by the primary. A transaction delivered by a database is in the committing state, and it remains in

the committing state until its fate is known by the database (i.e., commit or abort). The executing and

committing states are transitory states, whereas the committed and aborted states are �nal states.

The second part of the algorithm (lines 29{50) shows the delivery of transactions. Upon delivering

a committing transaction, each database server certi�es the transaction using the control information

provided by the primary. The certi�cation test is deterministic, ensuring that all database servers reach

the same result (i.e., commit or abort) individually. If a backup decides to commit the transaction, it

executes the SQL statements associated with the transaction against the local database, making sure

that if two transactions t1 and t2 have to be committed, and t1 is delivered before t2, t1's SQL statements

are executed before t2's SQL statements. If the primary does not crash and its group is operational,

10

clients eventually receive the transaction's outcome. If the outcome is abort, the client re-executes the

transactional job.

Finally, the third part of the algorithm (line 51{66) shows the fail-over logic|the behavior that

triggers and controls the election of primaries. The execution evolves as a sequence of epochs: whenever

a backup suspects the primary or its group, it starts a new epoch, by broadcasting an epoch change

message. If a backup process in the primary group suspects the primary process, some other database in

the primary group becomes the next primary. If a backup process suspects the primary group, another

group assumes the role of primary group, and some database in this group becomes primary. Primaries

are deterministically computed from the epoch number. If a backup suspects the primary incorrectly, the

primary also delivers the change epoch message and aborts all transactions in execution. In such a case,

clients have to re-start the execution of their jobs in the new primary, as described before. Notice that

given the properties of disaster detectors, backups never incorrectly suspect the primary group.

Algorithm 1 Database dxi in group Gx

1: Initialization...

2: ei 1 fei is the current epoch at dxi g

3: prmy grpi 1 fprmy grpi is the current primary group and...g

4: prmy dbi 1 f...prmy dbi the current primary according to dxi g

5: To execute a transaction...

6: when receive (ta; request) from c do
7: case request = begin(job id; durability level; ta):
8: if dxi 6= prmy dbi or Gx 6= prmy grpi then fif not the primary...g

9: send (ta; \i'm not primary") to client(ta) f...refuse to process the request, ...g

10: else f...else...g

11: client(ta) c f...keep the id of the client associated with ta, ...g

12: job(ta) job id f...ta's job identi�cation, and...g

13: level(ta) durability level f...its durability levelg

14: state(ta) executing fupdate ta's state, and...g

15: begin(ta) f...start ta's execution against the databaseg

16: wait for response(ta; result) fwait for a reply from the database, and...g

17: send (ta; result) to client(ta) f...send the results to the clientg

18: case (request = exec(ta; sql-req) or request = abort(ta)) and...
...state(ta) = executing:

19: exec task fexecute SQL statements...g

20: exec(ta; sql-req) f...concurrently with other requestsg

21: wait for response(ta; result) fwait for a reply from the databaseg

22: if result = aborted then fif the database decided to abort ta...g

23: state(ta) aborted f...update ta's stateg

24: send (ta; result) to client(ta) fin any case, send results to the clientg

25: case request = commit(ta) and state(ta) = executing:
26: state(ta) committing fupdate ta's state...g

27: sql-seq all exec(ta; sql-req) statements in order f...gather SQL statements for ta, and...g

28: Broadcast(dxi ; Gx; ei; ta; client(ta); job(ta); level(ta); sql-seq) f...broadcast ta to allg

Due to the unreliable nature of the failure detectors used by the backups within the primary group,

it is possible that at a given time during the execution, database processes execute in di�erent epochs,

11

and so, multiple primaries may be able to execute transactions simultaneously. To prevent database

inconsistencies (i.e., non-serializable executions) that may arise from such situations, transactions have

to pass a validation test before committing. To do that, every transaction is broadcast together with

the epoch in which it executed. The validation test ensures that a transaction is only committed by

some database if the epoch in which the database delivers the transaction and the epoch in which the

transaction was executed are the same.

4.3 Dealing with Database Recovery

Continental Pronto was formally designed in the crash-stop model|in which databases never recover

after a crash. Even though not realistic in many practical circumstances, we decided to consider this

model to simplify the formal treatment of Continental Pronto, and then extend it in an ad hoc manner

to re-integrate recovering databases. Two aspects have to be addressed to allow databases to recover:

HABcast and Continental Pronto, the protocol itself. HABcast can be given a crash-recover semantics

along the lines of [2, 22], which extend Consensus and Atomic Broadcast to the crash-recover model.

In the case of Continental Pronto, besides announcing its presence to other databases, a recovering

database also has to catch up with those other databases. One way to do it is for a recovering database

d to deliver all messages that have been delivered by other databases while d was down. Notice that

this is already captured by the HABcast properties which require correct databases to deliver the same

transactions in the same order|correct in the crash-recover model does not rule out databases that crash

and recover, but those that crash and never recover, or keep crashing and recovering without performing

any useful computation.

5 Performance Assessment

In Continental Pronto, all database communication relies on HABcast (de�ned in Section 2.3). To reply

to a client's commit request, the primary �rst has to broadcast the commit request and deliver it. Thus,

the performance of the broadcast abstraction has a major impact on the performance of Continental

Pronto. In the following, we discuss how to implement HABcast. Then we compare the performance of

Continental Pronto to the performance of traditional 1-safe and 2-safe protocols. Our comparison is done

analytically (i.e., based on the number of messages and the latency) as well as by simulation.

5.1 Implementing HABcast

There are many ways to implement HABcast. Our discussion here is based on the implementation

in [7]. Thus, HABcast is implemented as a composition of uniform atomic broadcast protocols running

independently of each other in each data center. As for Continental Pronto, there is a primary process,

and the group to which the primary belongs is denoted the primary group. During times when processes

do not crash, groups do not su�er disasters, and there are no suspicions, the protocol works as follows

(see Figure 4). To broadcast a message m, a process in the primary group �rst executes a local atomic

broadcast within its group. When a process in the primary group local delivers m, it delivers message

12

Algorithm 1 (cont.) Database dxi in group Gx

29: To commit a transaction...

30: when Deliver(1-safe; dyj ; Gy; ej ; ta; client(ta); job(ta); level(ta); sql-seq) do
31: if 9 tb 6= ta; s.t. state(tb) = committed and job(tb) = job(ta) then fif committed a txn for the same job...g

32: if level(ta) = 1-safe then send (�; committed) to client(ta) f...send reply to the clientg

33: else
34: if ej < ei then fif ta didn't execute in the current epoch...g

35: execute abort(ta) f...ta has to be abortedg

36: wait for response(ta; result) f...dittog

37: state(ta) aborted fupdate ta's stateg

38: else
39: if dxi 6= prmy dbi or Gx 6= prmy grpi then fif ta didn't execute at dxi in Gx...g

40: for each (ta; sql-req) in sql-seq do f...submit the whole txn to the databaseg

41: execute sql-req fta can be committed now...g

42: wait for response(ta; result) f...done!g

43: execute commit(ta) frequest ta's commit, and...g

44: wait for response(ta; result) f...wait for con�rmationg

45: state(ta) committed fupdate ta's stateg

46: if (state(ta) = aborted or level(ta) = 1-safe) and...
...dxi = d

y
j and Gx = Gy then fif aborted or not a 2-safe txn...g

47: send (ta; state(ta)) to client(ta) f...send status to the clientg

48: when Deliver(2-safe; dyj ; Gy; ej ; ta; client(ta); job(ta); level(ta); sql-seq) do
49: if 9 tb s.t. (state(tb) = committed and job(tb) = job(ta)) and...

...level(ta) = 2-safe and dxi = d
y
j and Gx = Gy then fif ta or other txn for the same job committed...g

50: send (ta;committed) to client(ta) f...send reply to the clientg

51: To request a primary server/group change...

52: when prmy dbi 2 Di and Gx = prmy grpi do fif suspect primary and belong to its group...g

53: Broadcast(ei; \change server") f...request a primary changeg

54: when prmy grpi 2 DD do fif suspect the primary group...g

55: Broadcast(prmy grpi; \change group") f...request a primary group changeg

56: To change a primary server/group...

57: when (Deliver(1-safe; ej ; \change server") and ej = ei) or...
...(Deliver(1-safe; prmy grpj; \change group") and prmy grpj = prmy grpi) do

58: if prmy dbi = dxi and Gx = prmy grpi then fif incorrect primary suspicion...g

59: for each ta s.t. state(ta) = executing do f...abort all txns in executiong

60: execute abort(ta) frequest ta's abort, and...g

61: wait for response(ta; result) f...wait for con�rmationg

62: state(ta) aborted fupdate ta's stateg

63: send (ta;aborted) to client(ta) fnotify ta's clientg

64: ei ei + 1 fchange the current epochg

65: if Delivered (1-safe; \change group") then prmy grpi prmy grpi + 1 fdetermine new primary groupg

66: prmy dbi ei mod sizeof (group prmy grpi) fdetermine the current primaryg

13

(1-safe;m). Upon locally delivering m, the primary process pi also sends m to a single process in each

other group. When a process pj in group Gy receives m, pj executes a local atomic broadcast with m.

Upon locally delivering m, pj sends a reply to pi and delivers messages (1-safe;m) and (2-safe;m).

After pi receives a reply for m from some process in each operational group it does not suspect to have

su�ered a disaster, pi delivers message (2-safe;m) and sends a message to the other members of the

primary group so that they can also deliver message (2-safe;m).

. . .
Primary

Backup

Backup

Backup

Backup

Group 2

Backup
Group n

Backup
Group 1

Backup

(k = 3)

Backup

Broadcast(m) Deliver(2-safe;m)Deliver(1-safe;m)

Figure 4: Failure-free execution of the HABcast protocol

Dealing with failures and suspicions in HABcast boils down to determining another primary process

whenever the current crashes or is suspected, and taking over the execution from where the previous one

left it. This is a particularly complicated operation in HABcast since a process taking over the role of

primary has to take actions that are not \incompatible" with the ones taken by the previous primary,

such as determining the delivery order of messages. A detailed discussion about how HABcast handles

failures, suspicions, and disasters is out of the scope of this paper, and can be found in [7].

5.2 Analytical Evaluation

We compare Continental Pronto to two algorithms that inherently deal with data center disasters: 1-

safe and 2-safe [10]. These algorithms are the conventional means to achieve database disaster recovery.

The 1-safe and 2-safe algorithms deal with a system where each data center has a single database only,

and although [10] considers a single backup, we have speci�ed the complexity for n � 1 backups. Using

the 1-safe con�guration, the primary can commit a transaction before exchanging messages with the

backups, however, the backups may miss some transactions if the primary crashes. This is similar to

Continental Pronto's 1-safe durability in case of data center disasters. To commit a transaction using the

2-safe con�guration, the primary has to wait for a round-trip message with each backup. If the primary

crashes, 2-safe guarantees that the backups have all transactions committed by the primary. This is what

Continental Pronto guarantees with 2-safe durability in case of data center disasters.

14

Our comparison assumes best case scenarios, without failures and suspicions. This means, for example,

that when considering Continental Pronto, we assume that the primary process in HABcast coincides

with the primary database process in Continental Pronto. We use number of messages and latency as

metrics for our comparison. For the latency analysis, we distinguish between �l, the transmission delay

along local-area links, and �w, the transmission delay along wide-area network links; we assume �w > �l.

We also specify the number of messages injected into the network per message broadcast, distinguishing

between messages injected into a local-area network and messages injected into a wide-area network.

If a process in some data center sends a message to a process in another data center, we count that

communication as a single wide-area message and no local-area messages. If a process sends a message

to another process in the same data center, we count a single local-area message only. We assume, as a

simpli�cation, that all n groups have the same number k of processes.

Table 1 presents the results of our comparison. The 1-safe protocol only involves a single wide-area

message to each backup and no latency because the primary does not wait for the backups to commit. The

latency for Continental Pronto is based on the latency of HABcast when delivering a message of the type

(1-safe;�), which is determined by the latency of the local Atomic Broadcast within the primary group.

Using the Atomic Broadcast algorithm presented in [5] with some optimizations [23], this latency is 2 �l.

Although the protocol does not wait for the backups to deliver messages, the primary data center still

communicates with all the backup data centers (asynchronously). The primary in the primary data center

sends a round-trip wide-area message to a single process in each backup data center. This communication

pattern amounts to 2(n � 1) wide-area messages. Each data center executes a local Atomic Broadcast

protocol, which requires 3(k � 1) local-area messages. Moreover, there are n such executions, giving a

total of 3n(k � 1) local-area messages. In addition, the primary in the primary data center executes a

reliable broadcast, which amounts to k � 1 local-area messages. All in all, running Continental Pronto

in 1-safe con�guration gives rise to (k � 1)(3n+ 1) local-area messages.

The latency for a 2-safe protocol is 2 �w because the primary synchronously communicates with the

backups. A conventional 2-safe protocol gives rise to wide-area messages only|there is no notion of

local-area replication in a conventional 2-safe protocol. If we run Continental Pronto in 2-safe mode,

its latency is based on the latency of HABcast when delivering a message of the type (2-safe;�). As

illustrated in Figure 4, this latency is composed of a local Atomic Broadcast in the Primary group, a local

Atomic Broadcast in each backup group (these occur concurrently), and a round-trip communication with

each backup group (these are also concurrent). Thus, the total latency for Continental Pronto in 2-safe

mode is 4 �l + 2 �w. The number of messages is the same for Continental Pronto in 1-safe and 2-safe

mode|only the latency is di�erent.

Protocol Latency Wide-area msgs Local-area msgs

1-safe 0 (n� 1) 0

C Pronto 1-safe 2 �l 2(n� 1) (k � 1)(3n+ 1)

2-safe 2 �w 2(n� 1) 0

C Pronto 2-safe 4 �l + 2 �w 2(n� 1) (k � 1)(3n+ 1)

Table 1: Cost of protocols

15

5.3 Simulation-Based Evaluation

Our analytical evaluation of HABcast does not consider local messages used within the groups by the

failure detection mechanism, and the impact of having to share common resources, such as communication

links, on the latency of the protocol. In order to take these factors into account, we have built a simulation

model and conducted several experiments. Our simulation model considers n groups of processes, and

each group has its own local-area network. Groups communicate with each other using dedicated links,

however only one link is used between any two groups. Transmission of wide-area messages also impacts

the transmission of a local-area message in the sender's group and in the receiver's group, to model the

local communication with the routers in each group. For local-area messages, we assume a transmission

latency randomly generated between 2 and 3 milliseconds, and for wide-area messages between 100 and

150 milliseconds. Messages are all broadcast by the same process at maximum rate, that is, some process

in the primary group broadcasts a message right after delivering (2-safe;�) for the previous message.

Figures 5 and 6 depict some of the results of our experiments. In both cases, enough experiments were

conducted to build con�dence intervals of 98%. The con�dence intervals are not shown in the graphs

since they never overlap. Figure 5 compares the times to deliver messages of the type (1-safe;�) and

(2-safe;�) in a system with 3 groups. Not surprisingly, most of the overhead to deliver a message of

type (2-safe;�) is related to wide-area messages.

1-safe durability
2-safe durability

processes per group

la
te
n
cy
(m
se
c)

1086420

1200

1000

800

600

400

200

0

Figure 5: 1-safe and 2-safe durability

2-Safe (2)
2-Safe (3)

HABcast (1)
HABcast (2)
HABcast (3)

processes per group

la
te
n
cy
(m
se
c)

1086420

1200

1000

800

600

400

200

0

Figure 6: Comparing HABcast to 2-safe

Figure 6 compares the time to deliver messages of the type (2-safe;�) with the time of the 2-safe

algorithm, for con�gurations with 2 and 3 groups. The �rst observation is that for groups with 3 processes,

for systems with 2 and 3 groups, there is no big di�erence between Continental Pronto and the 2-safe

algorithm. The wide-area latency for Continental Pronto in 2-safe mode and for a traditional 2-safe

protocol is the same, and this wide-area latency is the main component of the total latency. In terms

of resilience, however, one process crash in the 2-safe algorithm requires a data center failover, while in

Continental Pronto this requires a local recon�guration.

16

6 Related Work

The basic issues in disaster recovery and the notion of 1-safe and 2-safe protocols are not new [15, 8, 10].

A large body of research and several commercial systems, such as [21, 25], address these issues. We

identify next some of the main trends distinguishing wide-area replication from local-area replication.

6.1 Wide-Area Replication

Most works consider disaster recovery in the context of a primary site and a number of backup sites.

Activating a backup site to be a new primary site is usually done with human intervention (i.e., push-

button fail over). A key feature distinguishing these works is whether a site contains a single database

or whether it contains multiple databases that each contain a partition of the data.

Single-database sites. The algorithms in [16] are based on log shipping: the transaction log at the

primary is sent to the backups. The algorithms implement the basic 1-safe semantics, where the main

idea is to parallelize the processing of log entries at backup sites to reduce the resource consumption at

those sites. The notion of 0-safe introduced in [6] also addresses the scenario with a single database per

site. Unlike traditional 1-safe algorithms, the 0-safe approach allows multiple copies of the database to

be updated simultaneously (i.e., the system can have multiple primaries). As in 1-safe log-propagation

schemes, when a database is updated, the log entries are asynchronously sent to all other copies. The

basic assumption behind the 0-safe scheme is that all transactions commute. Although transactions may

be lost as in the traditional 1-safe case, the 0-safe algorithm allows a recovered databases to later on

inform the other databases of transactions that may have been lost (without violating consistency).

Multiple-database sites. In [19], multiple primaries databases in the primary site, each with its own

disjoint partition of the database, separately send their logs to a backup site. Each primary database

has a backup peer database, and the issue is to provide \consistent" 1-safe semantics in the context of

independent streams of log entries without violating atomicity: a disaster at the primary could result in a

transaction that is only partially re
ected at the backup. The paper introduces two algorithms to prevent

such atomicity violations, which tag information onto the log entries being sent to the backups. The

backup site only commits a transaction if it has all its pieces, and if it has all the preceding transactions.

The algorithms in [14] address the same scenario, but as an extension to [19], they allow the same site to

contain both primary and backup partitions. The challenge with such mixed sites is to ensure that any

given site can recover to a consistent state after possibly aborting some in-progress transactions. The

basic idea in [14] is extend the locking period at a primary database so that locks are not released until

a transaction is stable in the corresponding backup database. Thus, the system has 1-safe characteristics

from the client perspective, but the throughput may be more like a 2-safe approach. Finally, [13] considers

the case of a partitioned database, but from a 2-safe viewpoint. The main idea is to exploit the lazy

commit optimization described in [10] to release the locks held at the primary site before sending the log

records to the backup site. Thus, unlike traditional 2-safe protocols, locks will not be held at the primary

while the transaction logs are sent to the backup. This allows for increased transaction throughput at the

17

primary. However, in terms of end-to-end response time (as seen by the client), the performance will be

similar to traditional 2-safe protocols: to avoid lost transactions, the primary cannot reply to the client

until it receives an acknowledgement message from the backup site that the transaction is durable.

There are several di�erences between these existing approaches and Continental Pronto. First, Con-

tinental Pronto relies on transaction shipping rather than log shipping. This means that we can support

heterogeneous databases as long as they support a standard interface, such as JDBC|of course, the price

for this
exibility is a degradation in the performance relative to log shipment. Second, we can deploy

Continental Pronto without modi�cation of the database internals|we only rely on the standard data-

base semantics. Third, Continental Pronto provides disaster resilience for systems where the primary and

the backup sites contain multiple copies of the same data item. That is, the failure of a single database

can be handled locally, within a single data center. Only when a data center actually su�ers a disaster

is it necessary to bring another data center online. More importantly, we provide this localized handling

of non-disaster failures without increasing the cost of the disaster-recovery protocol. In other words, the

local replication of data within a data center does not give rise to \replication" of the transaction sent

across the wire to backup sites: each transaction is only sent once.

6.2 Local-Area Replication

In terms of commercial systems, the traditional way to provide local-area replication is through a parallel

database system, such as OPS [17] or XPS [27]. These systems run in clusters [26], where each cluster

node contains an instance of the database. With a shared-disk approach, used by OPS, the instances

access the same disk (each cluster node mounts the disk). With a shared-nothing approach, used by XPS,

the instances access their own disk, but can mount each others disk if an instance fails. In both cases,

the disk sharing requires special hardware.

A number of systems provide local-area replication without special hardware. These systems can be

divided in two groups: active replication and primary backup [9, 11]. With active replication [24], all

database servers, one way or another, execute the clients' requests, and return the results to the clients.

Database server communication is usually based on a broadcast primitive with total-order guarantees

(i.e., Atomic Broadcast). Database replication techniques usually assume a certain knowledge about the

semantics of the operations, or require stronger deterministic assumptions on the way databases process

transactions [1] than the assumptions made by Continental Pronto (e.g., having access to database internal

modules), or both. An exception is [20], which presents a weaker form of active replication to solve non-

determinism due to preemption in replicated real-time applications. With primary-backup [4], the idea

is to have a single primary database that processes transactions and sends the state updates to one or

more backups. For example, [28] uses virtual-memory mapped communication to achieve fast failover

by mirroring the primary's memory on the backups. Commonly, most replication techniques based on

primary-backup assume a perfect failure-detector mechanism. Pronto [18] is a primary-backup protocol

whose idea is to allow for incorrect suspicions by enforcing agreement on failure suspicions among the

replicas through a totally-ordered broadcast abstraction.

In terms of functionality, it is possible to run the local-area replication algorithms in an environ-

ment with multiple data centers. Although functionally correct, the cost of such an approach would be

18

prohibitive. Algorithms for local-area replication do not distinguish between communication within a

data center and communication between data centers. For example, if we ran the Pronto protocol [18]

in the multi-data center setting, the number of wide-area messages would be proportional to the total

number of databases in the system whereas with Continental Pronto, the number of wide-area messages

is proportional to the number of data centers.

7 Conclusion

Traditional approaches to data replication typically provide either local-area replication or wide-area

replication, but usually not both. Moreover, combining these point solutions into a replication mechanism

that provides both local-area and wide-area replication is not straightforward. The di�culty of perform-

ing this combination is evidenced by the complexity of the protocols that provide disaster-recovery for

partitioned databases. Having multiple partitions introduce some, but not all, of the problems with

combining local-area and wide-area replication.

Continental Pronto provides a uni�ed approach to wide-area and local-area data replication. One

of the keys to cover this space with a relatively simple protocol is the formulation of an underlying

communication abstraction, called HABcast. The agreement properties of HABcast give a nice foundation

for programming the various durability levels (1-safe and 2-safe) for transactions. Furthermore, the

ordering guarantees of HABcast allows us to factor out the complex ordering and dependency issues for

transactions that result from combining local-area and wide-area replication.

The price for the relative simplicity of Continental Pronto is the increased \cost" of performing data

replication. Where traditional disaster-recovery protocols rely on low-level log shipping, Continental

Pronto uses higher-level, and less e�cient, transaction shipping. We believe that the resulting
exibility

and simplicity is worth the extra price for many online e-commerce systems.

References

[1] D. Agrawal, G. Alonso, A. El Abbadi, and I. Stanoi. Exploiting atomic broadcast in replicated databases.

In Proceedings of EuroPar (EuroPar'97), Passau (Germany), September 1997.

[2] M. K. Aguilera, W. Chen, and S. Toueg. Failure detection and consensus in the crash-recovery model. In

Proc. of the 12th Intl. Symposium on Distributed Computing (DISC-12), Andros, Greece, September 1998.

[3] P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in Database Systems.

Addison-Wesley, 1987.

[4] N. Budhiraja, K. Marzullo, F. Schneider, and S. Toueg. Optimal primary-backup protocols. In Adrian Segall

and Shmuel Zaks, editors, Distributed Algorithms, 6th International Workshop, WDAG '92, volume 647 of

Lecture Notes in Computer Science, pages 362{378, Haifa, Israel, 2{4 November 1992.

[5] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems. Journal of the

ACM, 43(2):225{267, March 1996.

[6] L. Frank. Evaluation of the basic remote backup and replication methods for high availability databases.

Software Practice and Experience, 29:1339{1353, 1999.

19

[7] S. Fr�lund and F. Pedone. Dealing e�ciently with data center disasters. Technical Report HPL-TR 167,

Hewlett-Packard Labs, 2000.

[8] H. Garcia-Molina and C. A. Polyzois. Issues in disaster recovery. In IEEE CompCon, 1990.

[9] J. N. Gray, P. Helland, P. O'Neil, and D. Shasha. The dangers of replication and a solution. In Proceedings of

the 1996 ACM SIGMOD International Conference on Management of Data, Montreal (Canada), June 1996.

[10] J. N. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan Kaufmann, 1993.

[11] R. Guerraoui and A. Schiper. Software based replication for fault tolerance. IEEE Computer, 30(4), April

1997.

[12] V. Hadzilacos and S. Toueg. Fault-tolerant broadcasts and related problems. In Distributed Systems, chap-

ter 5. Addison-Wesley, 2nd edition, 1993.

[13] K. Hu, S. Mehrotra, and S. Kaplan. An optimized two-safe approach to maintaining remote backup systems.

Technical report, University of Illinois at Urbana-Champaign, 1997.

[14] R. Humborstad, M. Sabaratnam, and �. Torbj�rnsen. 1-safe algorithms for symmetric site con�gurations.

In Proceedings of the VLDB conference, 1997.

[15] J. Lyon. Design considerations in replicated database systems for disaster protection. IEEE CompCon, 1988.

[16] C. Mohan, K. Treiber, and R. Obermarck. Algorithms for the management of remote backup data bases for

disaster recovery. In Proceedings of the IEEE conference on Data Engineering (ICDE), 1993.

[17] Oracle parallel server for windows NT clusters. Online White Paper.

[18] F. Pedone and S. Fr�lund. Pronto: A fast failover protocol for o�-the-shelf commercial databases. In

Proceedings of the 19th IEEE Symposium on Reliable Distributed Systems (SRDS), October 2000.

[19] C. A. Polyzois and H. Garcia-Molina. Evaluation of remote backup algorithms for transaction processing

systems. ACM Transactions on Database Systems, 19(3), September 1994.

[20] D. Powell, M. Ch�er�eque, and D. Drackley. Fault-tolerance in Delta-4. ACM Operating Systems Review,

SIGOPS, 25(2):122{125, April 1991.

[21] Compaq remote database facility product family. Online white-paper.

[22] L. Rodrigues and M. Raynal. Atomic broadcast in asynchronous systems where processes can crash and

recover. In Proc. of the 20th Intl. Conference on Distributed Computing Systems (ICDCS-20), Taipei, Taiwan,

April 2000.

[23] A. Schiper. Early consensus in an asynchronous system with a weak failure detector. Distributed Computing,

10(3):149{157, 1997.

[24] F. B. Schneider. Implementing fault-tolerant services using the state machine approach: A tutorial. ACM

Computing Surveys, 22(4):299{319, December 1990.

[25] Symmetrix remote data facility. Online data sheet.

[26] P. S. Weygant. Clusters for High-Availability: A Primer of HP-UX Solutions. Prentice-Hall, Hewlett-Packard

Professional Books., 1996.

[27] Informix extended parallel server 8.3. Online White-Paper.

[28] Y. Zhou, P. Chen, and K. Li. Fast cluster failover using virtual memory-mapped communication. Technical

Report TR-591-99, Department of Computer Science, Princeton University, January 1999.

20

Appendix: Proofs

To prove cp-1, we de�ne C(Ex;ei) as the committed projection of the execution Ex;ei , involving all trans-

actions committed during epoch e at database dxi in group Gx. C(Ex;ei) is a partial order, that is,

C(Ex;ei) = (�x;e
i ; <

x;e
i), where �x;e

i is the set of committed transactions in Ex;ei , and <
x;e
i is a set de�ning

a transitive binary relation between transactions in �x;e
i . We de�ne C(Ex;e) = C(Ex;ei) [C(Ex;ej) such

that �x;e = �x;e
i [�x;e

j and <x;e=<
x;e
i [<

x;e
j .

Lemma 1 If d
x;e
i and d

x;e
j are databases in Gx that do not crash in epoch e � 1, then C(Ex;ei) = C(Ex;ej).

Proof (sketch): We have to show that databases dx;ei and d
x;e
j commit the same transactions (i.e.,

�x;e
i = �x;e

j;x) in the same order (i.e., <x;e
i =<x;e

j;x). Assume that dxi commits transaction t during epoch

e. Therefore, t passed the validation test, and so, dxi has executed t during epoch e, and has not exe-

cuted Deliver(1-safe; e; \change server") or Deliver(1-safe;�; \change group") before executing

Deliver(1-safe;�;�; e; t;�;�; sqlSeq(t)). From hb-1 and hb-3 of HABcast, database dxj also exe-

cutes Deliver(1-safe;�;�; e; t;�;�; sqlSeq(t)) before executing Deliver(1-safe; e; \change server")

or Deliver(1-safe;�; \change group"). So, t passes the validation test at dxj and is committed by dxj .

We now show that <x;e
i =<x;e

j , that is, if a transaction ta precedes another transaction tb in C(Ex;ei),

then ta also precedes tb in C(Ex;ej). Since database dxi executes transactions using a 2PL scheduler, if

ta precedes tb, then ta commits before tb. From the algorithm, it follows that ta is delivered before tb.

By the hb-3 property of HABcast and the fact that databases commit transactions in the order they are

delivered, database dxj delivers and commits ta before tb. Therefore, ta precedes tb in database dxj . 2

Proposition 1 (cp-1) Every execution with all committed transactions in a group is 1-copy serializable.

Proof (sketch): From property db-1, for any execution Ex;ei , at epoch e, there exists a serial execution

Ees , involving the committed transactions in Ex;ei , such that C(Ex;ei) is equivalent to C(Ees). By Lemma 1,

for every database dxj that does not crash in epoch e, e > 1, C(Ex;ei) = C(Ex;ej). Thus, from the de�nition

of committed projection, C(Ex;el1
) [C(Ex;el2

) [::: [C(Ex;elk
) = C(Ex;ei), where dlk is a database that does

not crash in epoch e. Thus, C(Ex;el1
) [C(Ex;el2

) [::: [C(Ex;elk
) is equivalent to C(Ees).

We claim that [e=1C(E
e
s) is equivalent to C(Es). The proof for the claim follows from the fact that

for all e � 1, the protocol ensures that Ees and Ee+1s are executed sequentially. That is, every transaction

that executes in epoch e + 1 starts after all transactions that commit in epoch e have been committed.

We conclude that for any execution E , there is an execution Es, such that C(E) is equivalent to C(Es). 2

Proposition 2 (cp-2) If a client submits a job j, and does not crash, then it will eventually deliver j.

Proof (sketch): For a contradiction, assume that c submits j, does not crash, but never delivers j.

Let �1 be a time after which no database aborts transactions; let �2 be a time after which no group su�ers

a disaster failure, and no database crashes or is suspected to have crashed; let � = max(�1; �2). It follows

that at some time � 0 > � , c connects to some database dxi that does not crash nor is suspected to have

crashed in a group Gx that does not su�er a disaster. From the contradiction hypothesis, c never delivers

j, and so, either (a) c always receives an abort message, or (b) blocks forever while waiting for the result

21

of some operation. From case (a) and Algorithm 1, database dxi always decides to abort the transactions

created by the execution of j, contradicting the assumption that � 0 > �1. In case (b), d
x
i either blocks while

executing some operation, contradicting the liveness properties of databases, or commits a transaction t

associated with job j, but j has level 2 and before dxi delivers message (1-safe;�;�;�; ta; c;�;�;�), it

delivers message (2-safe;�;�;�; ta; c;�;�;�), contradicting property hb-4 of HABcast. 2

Proposition 3 (cp-3) If a database in an operational group commits a transaction t, then all correct

databases in all operational groups commit t.

Proof (sketch): Consider that some database di commits transaction ta. From Algorithm 1, di exe-

cuted Deliver(1-safe;�;�; c; ej ; ta;�;�;�) such that ej � ei. From property hb-1 of HABcast, every

correct database dk in each operational group eventually executes Deliver(1-safe;�;�; c; ej ; ta;�;�;�).

From the hb-3 property of HABcast, it follows that after executing Deliver(1-safe;�;�; c; ej; ta;�;�;�),

ej � ek, and so, dk commits ta. 2

Proposition 4 (cp-4) If a client delivers a job j then all correct databases in all operational groups

commit the transactional updates performed by j.

Proof (sketch): Since c delivers j, c received a message of the type (ta;commit), and there is some

database di that executed send(ta;commit). Thus, from Algorithm 1, di executed Deliver(2-safe;�;�; c;

�; ta;�;�;�) and Deliver(1-safe;�;�; c;�; ta;�;�;�). From line 50 of Algorithm 1, di Broadcast

such a message, and by property hb-2 of HABcast, every correct database dj in each operational group

eventually executes Deliver(2-safe;�;�; c;�; ta;�;�;�). By property hb-4 of HABcast, dj executes

Deliver(1-safe;�;�; c;�; ta;�;�;�) before, and it follows from Algorithm 1 that dj commits ta. 2

Proposition 5 (cp-5) If two databases commit con
icting transactions, they do so in the same order.

Proof (sketch): Immediate from the fact that transactions are committed in Algorithm 1 according

to the total order property hb-3 of HABcast. 2

22

