

Fast Multiproce ssor M e m ory Allocation
and Garbage Colle ction

H ans-J. Boe h m
Inte rn e t and Mobile Syste m s Laboratory
H P Laboratorie s Palo Alto
H PL-2000-165
De ce m b e r 8th , 2000*

E-m ail: H ans _Boe h m @h p.com

garbage
colle ction,
m e m ory
allocation,
m ultiproce ssors,
th re ads

W e e xtended our garbage colle cting m e m ory allocator to provide good
pe rform ance for m ulti-th re ade d applications on m ultiproce ssors. Th e
basic de sign is sim ilar to th e approach pre viously pursue d in [12].
H ow e ve r, w e concentrate on issue s im portant to m ore com m on sm all-
scale m ultiproce ssors, and on spe cific issue s not re porte d e lse w h e re .
W e argue th at a re asonable le ve l of garbage colle ctor scalability can
b e ach ie ve d w ith re lative ly m inor additions to th e underlying
colle ctor code . Furth e rm ore th e scalable colle ctor doe s not n e ed to b e
appre ciably slow e r on a uniproce ssor. Since our colle ctor can se rve as
a plug-in re place m e n t for m alloc/fre e , w e h ave th e opportunity to
com pare it to scalable m alloc-fre e im ple m e n tations, notably H oard
[3]. Som e w h at surprisingly, our colle ctor significantly outpe rform s
H oard in som e te sts, a prope rty th at is m ostly sh are d by th e garbage
colle cting allocator in [ETY9 7]. W e argue th at garbage
colle ctors curre ntly require significantly le ss synch roniz ation th an
e xplicit allocators, but th at it m ay be possible to de rive significantly
faste r e xplicit allocators from th is obs ervation.
Spe e dy acce ss to th re ad-local storage is a significant issue in th e
de sign of allocators th at m ust conform to standard calling
conventions. W e pre se nt e m pirical e vide nce th at at le ast in th e
pre se nce of a garbage colle ctor, th is can often b e accom plish e d faste r
in a th re ad-inde pend ent w ay th an th rough th e standard th re ad
library facilitie s, casting som e doubt on th e utility of th e latte r.

* Inte rnal Acce ssion Date Only Approved for Exte rnal Publication
 Copyrigh t H e w le tt-Pack ard Com pany 2000

Fast Multiprocessor Memory Allocation and Garbage
Collection

Hans-J. Boehm Hewlett-Packard Laboratories
1501 Page Mill Rd.
Palo Alto, CA 94304

Hans Boehm@hp.com

ABSTRACT
We extended our garbage collecting memory allocator1 to
provide good performance for multi-threaded applications
on multiprocessors. The basic design is similar to the ap-
proach previously pursued in [12]. However, we concentrate

on issues important to more common small-scale multipro-
cessors, and on speci�c issues not reported elsewhere. We
argue that a reasonable level of garbage collector scalability
can be achieved with relatively minor additions to the un-
derlying collector code. Furthermore the scalable collector
does not need to be appreciably slower on a uniprocessor.

Since our collector can serve as a plug-in replacement for
malloc/free, we have the opportunity to compare it to scal-
able malloc-free implementations, notably Hoard [3]. Some-
what surprisingly, our collector signi�cantly outperforms
Hoard in some tests, a property that is mostly shared by
the garbage collecting allocator in [ETY97]. We argue that

garbage collectors currently require signi�cantly less syn-
chronization than explicit allocators, but that it may be
possible to derive signi�cantly faster explicit allocators from
this observation.
Speedy access to thread-local storage is a signi�cant issue

in the design of allocators that must conform to standard

calling conventions. We present empirical evidence that at
least in the presence of a garbage collector, this can often
be accomplished faster in a thread-independent way than
through the standard thread library facilities, casting some
doubt on the utility of the latter.

1. INTRODUCTION
Recently, there has been increasing interest in the per-

formance of memory allocators and garbage collectors on
multiprocessors, motivated by several factors:

� Authors of large scale numerical programs for multi-
processors are at least considering programming lan-

1See http://www.hpl.hp.com/personal
/Hans Boehm/gc

guages and styles that encourage, support, and some-

times require dynamic memory allocation.

� Large scale commercial Java applications are becom-
ing more common, as is illustrated by the adoption

of the SPEC JBB2000 benchmark2. These are often
naturally multi-threaded, and can, at least in prin-
cipal, bene�t from multiprocessors. Although many
Java virtual machines have provided for concurrent al-
location for a number of years, the garbage collector

itself is still often single-threaded, and can become the
bottleneck.

� Small scale multiprocessors are becoming more eco-

nomical, and far more common. It appears quite pos-
sible that in the future most desktop computers will
contain multiple processors, perhaps manufactured on
a single chip. Thus it becomes interesting to parallelize
ordinary desktop applications, which may rely heavily
on dynamic memory allocation.

We previously developed a garbage collector that can be
used as a replacement for a malloc/free style explicit mem-
ory allocator. It is used in a number of research program-
ming language implementations and a variety of systems
written in C or C++, including some substantial commercial

systems. It is also used in a few Java implementations, no-
tably in the runtime for gcj, the runtime for the GNU static
Java compiler3, and it served as the basis for the Geodesic
Systems Great Circle4 garbage collector product.
The original design goals of this collector included:

� Thread-safety on as many platforms as possible.

� Allocator throughput should not degrade too much as
more client threads and processors are added.

Note that although the second goal might appear to be
trivial, it in fact is not. A number of standard allocator im-
plementations fail to meet the goal [15]. In particular, we
found that on many systems, the standard lock implemen-
tations would often result in excessive context switching,

because they yielded prematurely on a multiprocessor, and
possibly resulted in convoying (cf. [9, 4]). Older versions
of our collector were reasonably successful at meeting the
goal, but this required a custom lock implementation (using
a avor of adaptive locks [14]) on most platforms.

2See http://www.specbench.org/osg/jbb2000/
3See http://sources.redhat.com/java
4See http://www.geodesic.com

The original set of goals did not include increased through-

put on multiple processors. The vast majority of the garbage
collection and allocation code was protected by a single lock,
thus ensuring that allocation and garbage collection would
eventually become a bottleneck if we tried to scale applica-
tions to larger numbers of processors.
In this paper we thus address two additional goals:

� Allocation/garbage collection should not become the
bottleneck as we scale applications to larger numbers
of threads and processors. This requires that alloca-
tion and garbage collection throughput scale close to
linearly with the number of processors.

� Even single-threaded applications should bene�t some-
what from multiprocessors, in that the garbage collec-
tor itself should utilize all available processors.

Due to their easy availability, to us, as well as the rest

of the world, we concentrated on the low end of the mul-
tiprocessor spectrum, i.e. bus-connected systems with 2 to
4 Intel processors. This meant that extreme scalability was
less of a goal than in some other projects. However, this
also implied that we could not a�ord to sacri�ce unipro-
cessor performance for scalability; there were unlikely to be

enough processors to make up for the initial performance
loss.
We set ourselves the speci�c goal of making single threaded

applications run as fast in a 4 processor thread-safe environ-
ment as in a single-processor thread-unsafe environment.

The concurrency in the collector should make up for any
synchronization in the allocator.

2. RELATED WORK
There have been several e�orts to create processor-scalable

implementations of malloc-free style allocators (c.f. [15, 3].)

As we will see later, this involves a signi�cantly di�erent set
of problems. Nonetheless, there is some hope that the mea-
surements in this paper might inspire further improvement
for allocators requiring explicit deallocation.
Traditionally, work on concurrency in garbage collection

has concentrated on allowing the collector to run concur-

rently with the mutator(s) or client(s), rather than support-
ing multiple collector threads (cf. [8, 2, 6, 16, 11]). This al-
lows visible garbage collection pauses to be reduced, though
we now believe that explicit incremental collection during
allocations is usually a better approach, since it avoids the
scheduling issues in [6, 16]. In any case, this is largely an

orthogonal issue, since mutator/collector concurrency does
not prevent the collector from becoming a bottleneck with
a large number of mutator threads, and collector/collector
parallelism only mildly reduces pause times.
There has also been a small amount of work on allowing

individual threads to collect local heaps concurrently (cf.
[10, 17]). So far this has exhibited a limited bene�t for
overall scalability of the collector, though it probably has a
locality bene�t.
Endo Tauro, and Yonezawa previously parallelized an ear-

lier version of our collector, and have made it publicly avail-

able.5 Although we have made heavy use of their techniques,
their work di�ers from ours in a number of ways:

5Their collector, and some of the accompanying papers can
be retrieved from http://www.yl.is.s.u-tokyo.ac.jp/gc/

� Their primary goal is performance on large (supercom-

puter scale) systems. As a result, their emphasis is
what we would describe as extreme scalability. The
base performance on small systems appears to have
been less of an emphasis. In contrast, we wanted to
make our library competitive enough on uniprocessors
that we could use a single library for both uniproces-

sors and multiprocessors. As we will see below, this
appears to be reected in the �nal performance pro-
�les of the two collectors.

� We wanted to integrate our work into our standard col-
lector distribution, which must continue to be build-
able for single-threaded platforms, and must continue

to provide the original feature set for sequential col-
lector builds, and as many of the original features as
possible for parallel collector builds. We also wanted
to avoid breaking ports of the sequential collector to
platforms (e.g. Windows CE) which would be unlikely
to bene�t from parallel collection. All of these argue

for approaches that minimally disturb the sequential
collector code.

In contrast, the University of Tokyo work provides two

separate source code distributions, for shared and dis-
tribute memory multiprocessors respectively. Both di-
verge substantially from the sequential collector.

� We wanted to preserve the ability to link the collector
against unmodi�ed C programs as a malloc replace-
ment. Our current parallel collector of our collector
has been linked against programs designed for a tradi-

tional malloc/free implementation, though this facility
tends to require platform speci�c tuning to deal with
initialization-ordering issues.

This forced us to pay more attention to the thread-
speci�c-data issues discussed below. In the default
con�guration of the University of Tokyo collector those
are �nessed by dedicating a register to the allocator.

� Our measurements were performed in a di�erent envi-
ronment, and compare against di�erent systems, lead-

ing to somewhat di�erent conclusions and insights.

Some newer Java Virtual Machines also employ processor-
scalable collectors. It is common to address at least allocator
synchronization issues[9].

The parallel collector in the Jalapeno virtual machine ap-
pears to be one of the more ambitious e�orts, but has only
been somewhat super�cially described in the literature [1].
Since the collector is con�ned to a Java Virtual Machine,
and these normally dedicate a general register to a thread-
context pointer (at least on a non-X86 architecture), we

presume that the thread-local storage issues discussed be-
low did not arise. Although it also uses a shared work list
to perform parallel marking or copying, the more detailed
characteristics of its implementation appear to be di�erent.
In particular, the work list data structure appears to be
closer to that of [12], in large part because there was no

issue of sharing code with a more sequential collector.

3. CONTEXT
Our allocator/collector organizes the heap as a \big bag

of pages": Each page6 in the heap is dedicated to objects of

a single size. Each page has an associated descriptor, which
contains both mark bits for objects on that page, as well as
descriptive information for the page as a whole, e.g. the size
of individual objects.
Our collector is based on a Mark/Lazy Sweep algorithm.[5]

Objects pointer-reachable from the roots (program variables)

are marked. Unmarked objects are reclaimed incrementally
during allocation calls. The collector may take advantage of
compiler or programmer supplied type information to locate
pointers, or it may operate in fully conservative mode, and
treat everything as a potential pointer. The collector never

moves objects.
The collector only supports a limited form of generational

garbage collection, and even that is not used in our mea-
surements. It is nonetheless performance competitive for
many, but not all, applications. The techniques described
here could also be used for the old generation in a collector

with multiple generations.
The marker uses an explicit stack to store objects which

are known to be reachable, but whose contents have not yet
been examined (i.e. the \grey" objects in [8]) Each entry
in the stack contains a base address and a mark descriptor,
indicating the location of possible pointers relative to that

starting address. Mark descriptors typically take the form of
either a simple length speci�cation, or a bit vector describing
pointer locations.
Mark stack entries are used to describe both roots and

heap objects.
The mark process is started by pushing starting addresses

and mark descriptors for all root segments onto the mark
stack. Nearly all of the marking time is then spent in a
relatively small loop, which repeatedly removes an object
from the top of the mark stack and, if it �nds references to
previously unmarked objects, marks those, and pushes them

onto the stack.
At the end of the mark phase the page descriptors for all

pages in the heap are scanned. Completely empty pages
are recycled in their entirety without being touched by the
collector. Nearly full pages are eliminated from further con-
sideration. The remaining pages are enqueued by object size

for later sweeping.
The allocator satis�es large object requests by going di-

rectly to a page level allocator. It maintains separate free-
lists for various small object sizes. If the free-list for a
requested small object size is empty, it is re�lled �rst by
sweeping an enqueued page containing objects of the right

size or, if there are no more such pages, by obtaining a new
page from the large object allocator, and dividing that into
appropriately sized objects.

4. PARALLEL ALLOCATION
Allocators in many Java virtual machines provide per-

thread allocation arenas, to avoid synchronization on every
small object allocation. Since these collectors often com-
pact memory, these arenas are typically contiguous regions
of memory[9]. The size of these arenas is usually limited,

6By \page" we mean a heap section which is usually either
4K or 8K in length, not necessarily a physical page. We also
sometimes refer to it as a \chunk" or \heap block".

since the arena dedicated to a thread will go unused if that

thread allocates few or no small objects.
We use a similar scheme. However, since we cannot move

objects, our scheme relies on thread-local free-lists instead
of contiguous arenas.
We introduce a new thread-local allocation procedure.

The old global free-list allocator remains available, and is

used internally, as we see below.
Each thread has an associated array of 64 or 48 free-list

headers. Each header corresponds to a di�erent object size.7

Requests for objects larger than that covered by these free-
lists are handled through the old global free-list mechanism
and require a lock acquisition for allocation. Since such

allocations are more expensive anyway, in part because the
object must be initialized, the locking cost is amortized over
a larger amount of other work. Large object allocations also
tend to be far less frequent.
We would like to avoid �lling one of the thread-local free-

lists, only to discover that that particular thread only allo-

cates one object of the requested size. Thus each free-list
header may contain either a (small) count of allocated mem-
ory for that size, or a pointer to a suitable free-list. It is
initialized to a zero count.
Initially, allocations for each object size are satis�ed from

the corresponding global free-list, and the count is incre-

mented. Once the count exceeds a threshold of about a
page size, we start using a local free-list for that thread and
that object size. Since we add at most a page at a time
to a thread-local free-list, this ensures that we never reserve
more memory for a thread than it has already allocated, and

thus overallocate by at most a factor of two.
A thread-local free-list is re�lled using the same mecha-

nism that was already in place to re�ll the global free-lists.8

It was relatively easy to no longer acquire the main alloca-
tor lock during free-list construction, thus allowing several
threads to build free-lists concurrently. Mutual exclusion

is still needed during large block allocation or to remove a
page from the \waiting to be swept" queue. But these are
relatively fast operations, and should not limit scalability
for moderate numbers of processors.

5. PARALLEL MARKING
It is more diÆcult to parallelize the mark phase of the

garbage collector. But even that turned out to require sur-
prisingly little additional code.
At process startup, we arrange to create N�1 specialized

marker threads, where N is the available number of pro-
cessors. A garbage collection is initiated by an allocating
client thread. The client thread then stops all other client

threads, as it did in the original collector. It carries out
the mark phase jointly with the N � 1 marker threads, thus
utilizing all available processors.
The same data structure that was originally used as the

mark stack now serves as a global list of waiting mark tasks.
Although we retain its old representation as an array to-

gether with a \stack" pointer, it in fact now serves as a
queue. It is initialized with descriptors of the root set as be-
fore. However, objects are removed by atomically replacing

7On 32-bit machines we allocate multiples of 8 bytes, so
these free-lists cover requests up to 512 byte objects. On
64-bit machines the allocation granularity is 16 bytes, and
we use 48 headers, so the limit is 768 bytes.
8We did have to clean up the code somewhat to enable this.

Local Mark stacks

(One per marker thread)

Cleared
traced

To be

Queue

Global Mark

Figure 1: Data structure for grey objects

the mark descriptor with a zero descriptor indicating that no
pointers remain to be followed. The stack pointer is never
decremented until it is reset at the end of the collection.
Each of the marker threads repeatedly removes a small

number of entries from the shared work queue (currently
between 1 and 5 depending on the number of remaining en-
tries), copies them to the bottom of a local mark stack, and
proceeds to mark from there as in the sequential case, push-
ing newly found objects onto the local mark stack. When
the local mark stack is emptied, more object descriptors are

remove from the global work queue.
A picture of the overall data structure for 4 marker threads

is given in �gure 1. The shaded sections represent grey ob-
jects (i.e. objects yet to be traced). The thin arrows repre-
sent possible movement of object descriptors.
Note that since the marker threads operate primarily on

their local mark stacks, the data structure is still traversed in
a mostly depth-�rst fashion, which is probably more likely
to resemble the allocation order, and thus exhibit better
spatial locality.
The removal of an object from the global mark queue

requires no synchronization whatsoever. The descriptor is

simply overwritten. We assume that aligned word writes are
atomic.9

There is no guarantee that an object will be traced by
exactly one marker thread. But repeated tracing is unlikely
to occur, unlikely to have more than a minor performance

impact, and is guaranteed to .remain correcerve correctness.
To speed up the search for a work queue entry, we main-

tain a shared pointer to the �rst entry on the mark queue
with a possibly nonzero descriptor. This is updated with
an atomic compare-and-swap whenever a thread discovers a
larger safe value. Thus it is guaranteed to increase mono-

tonically during a collection.
Objects may be added back to the global work queue.

This currently requires locking and is expected to be rare. In
addition to the initial addition of the root set, this happens
when:

1. A mark thread discovers that the global work queue
is empty, but it still has multiple entries on its local

mark stack. This condition is checked only relatively
rarely (after about a page of tracing). It is necessary
for load balancing, since a single thread may otherwise
end up tracing most of the data structure.

9As far as we know, all modern multiprocessors satisfy this
constraint.

2. A local mark stack is in danger of overowing. This

should be very rare, though it may happen with very
long linked lists of certain kinds.

As in [12], we also found it necessary to split large objects
before marking them, so that the tracing duties for such

objects could be shared between threads.
Overow of the work queue is handled by the same code

that handled mark-stack overow in the sequential case.

6. ISSUES AFFECTING ABSOLUTE PER-
FORMANCE

Since we focussed heavily on absolute performance, we
encountered several issues that have apparently not been
pointed out by prior work:

6.1 Mark bit representation
As we mentioned above, in our collector, each page has

an associated array of mark bits. In the sequential collector,

we reserved one bit per word.10 Setting a mark bit is im-
plemented, as it must be on most architectures, by reading
a containing addressable unit (we use a word for historical
reasons), oring in the appropriate bit, and writing the result
back.
In the parallel collector, adjacent mark bits may be set

concurrently by multiple threads. This means that we must
�nd a way to make the setting of mark bits appear atomic,
where the naive implementation of the above scheme may
lose bits written by another thread between the read and
write operations.
We explored two ways of resolving this issue:

1. Update mark bits using an atomic compare-and-swap
instruction. We compute the word containing the new
mark bit as above. However, we write it back using an
atomic compare-and-swap instruction to ensure that

that word of the mark bit array was not concurrently
modi�ed.11 If we discover that there was a concurrent
modi�cation, we retry the process, starting with the
read operation.

This has the advantage that the heap and the mark
bits consume the same amount of memory as in the
sequential case. It has the disadvantage that we have
added overhead to the mark phase, since an atomic

compare-and-swap typically is signi�cantly more ex-
pensive than a simple store instruction.

2. We expand each mark bit to a byte. To partially com-
pensate for the space overhead, we restrict object sizes
to be a multiple of two words, and thus only allocate

one mark byte for every two words in the heap. (Ex-
cept in the case of one word objects, this is usually
required for alignment reasons anyway.)

10It is unclear whether this is optimal. It allows the mark bit
to be retrieved quickly from the object address, and allows
single-word objects (e.g. for short character strings) to be
allocated eÆciently. But it adds more space overhead than
necessary.
11On an architecture such as MIPS or Compaq Alpha, we
would use a \load locked" instruction to read the mark word,
and a \store conditional" instruction to write it back. The
issues are otherwise the same.

This quadruples the space overhead for mark bits. On

32-bit machines, it becomes one eighth of the heap size.
This is likely to a�ect the number of cache misses en-
countered by the marker threads. It also forces single-
word objects to be allocated as double-word objects.

On the positive side, it reduces the number of instruc-
tions executed and memory operations below that of
the sequential case. Setting a mark bit now requires
just a byte store operation.

Unfortunately neither alternative is a clear winner in all

cases. Mark bytes are infeasible on architectures without
atomic byte stores, e.g. old Compaq Alpha machines. The
mark-bit-based approach is infeasible on machines without
something like an atomic compare-and-swap instruction.
Even on machines that support both, we found that either

could substantially outperform the other on di�erent plat-
forms. In particular, on the X86 machines we tried, the
cache overhead of the mark bytes appeared to outweigh the
cheaper instructions. However, on Itanium we decided to
use the mark-byte-based implementation after similar ex-
periments.

6.2 Thread-specific-data
Since we use thread-speci�c free-lists, we need a way to

quickly generate a pointer to the thread-speci�c data struc-
ture containing the free-lists. In most (all?) Java virtual
machines this is handled by maintaining a \thread context"
pointer in a register at all times. The \thread context"
would contain the free-list headers.
Unfortunately, this approach is not viable if we must obey

standard calling conventions. Such conventions often do in-
clude a register reserved for a thread identi�er, which may
in fact point to a data structure describing the thread.12

But the contents of this data structure are typically deter-
mined by the implementor of the thread library, opaque to

the client, and not directly extensible.
Thread interfaces such as the Posix one13 address this

issue by providing a way to store and retrieve per-thread
data. In the case of Posix threads, this is accomplished
primarily through three functions:

pthread key create Creates a key value that can be used to
refer to thread-local storage. (The approximate win32
equivalent is TlsAlloc.)

pthread setspecific Sets the value associated with a given
key and the current thread. (The approximate win32
equivalent is TlsSetValue.)

pthread getspecific Retrieves the thread-local value asso-

ciated to the given key and the current thread. (The
approximate win32 equivalent is TlsGetValue.)

In most cases, including ours, only pthread getspecific

is performance critical, since the per-thread data is actually
a pointer to a data structure containing the free-list headers,

not the header itself.

12On register poor architectures such as the X86, it may be
too expensive to dedicate a general register for this purpose,
possibly even in a JVM. The alternatives are to dedicate a
less useful register (e.g. a segment register on the X86) or
to use the techniques we discuss below.
13See, for example, the description of the pthread functions
at http://www.unix-systems.org/online.html

- -

A
A
A
A
A
AU

A
AU

�
�
�
�
�
�
�
��3

tid

qtid

val

hash

table

tid

indexed

cache

qtid

indexed

key

Figure 2: Thread speci�c value lookup

We started out using pthread getspecific in this way.
This requires that it be called once per allocation. Unfortu-
nately, its performance turned out to be inadequate, in spite

of individually reasonable design decisions in its implemen-
tation. We believe this is typical of many implementations
of thread-local storage.
Typical implementations of pthread getspecific use

small integers as keys. pthread getspecific typically in-
volves a call to a dynamic library routine, with its associ-

ated overhead. It proceeds by �rst obtaining a pointer to
the thread data structure maintained by the thread library.
This data structure could contain an array of thread-speci�c
values indexed by the key. In our environment (recent linux-
threads versions), it is actually a multilevel data structure,
which is used to avoid small upper bound on the number of

keys. The cost of pthread getspecific is increased slightly
more by the fact that it needs to error-check the key argu-
ment.
Fortunately, it is possible to implement nearly the same

interface entirely in our own code with better performance.
Instead of using small integers as keys, the keys themselves

will be pointers to data structures containing two kinds of
data:

1. A chained hash table mapping thread ids to the as-
sociated thread-speci�c data. Insertions and deletions
in this table require locking. We do however take care
that the �elds representing the thread id and the corre-
sponding thread-local value in each chain entry always
remains valid, even during hash table manipulations.

Thus lookups never need to acquire a lock.

2. A second hash table used as a cache for faster lookups,
as described below.

The data structure is pictured in �gure 2. Note that in
our case the val �eld represents a pointer to the thread-
speci�c free-list headers. The fast path of the lookup proce-
dure works as follows: We �rst quickly compute a value, the
quick thread id that uniquely identi�es our thread. Unlike
a conventional thread id, we do not require that the quick

thread id be unique for a thread, but only that two di�erent

threads never generate the same quick thread id. We could

use the in-register thread-pointer, if available. However, for
our experiments we use the top bits of the stack pointer,
which we approximate by the address of a local variable.14

The quick thread id is used as an index into the cache
array. Each entry in the cache array is either a pointer
to a recognizably invalid hash chain entry, or points to a

hash chain entry corresponding to a quick thread id with
the appropriate hash value. To quickly check that we found
the right entry, we store the quick thread id that was most
recently used to access a particular entry in the entry itself.
If we �nd a non-matching quick thread id, we revert to a
lookup through the main hash table.

Thus a successful lookup through the cache requires some-
thing like 4 memory references and a test: We load the key
value, load the cache entry, load the quick thread id in its
target, check that it matches, and load and return the asso-
ciated value. Further this code can easily be inlined in the
allocator.15

The resulting execution times for one of our benchmarks
is given in table 1. Note that thread-library-independent im-
plementation is consistently faster than the thread-library-
provided one.
Unfortunately, it appears to be nontrivial to carry this

over to a non-garbage-collected environment. In our envi-

ronment, hash chain entries are simply dropped on thread
exit. If another reader thread happens to be accessing that
entry, it will continue to be able to do so. When the last
such thread �nishes, the collector reclaims the entry. It ap-
pears nontrivial to explicitly deallocate hash chain entries

without requiring some kind of synchronization for readers
of the data structure. This is of course only an issue for ap-
plications that start an unbounded number of threads over
their lifetime.

7. COLLECTOR MEASUREMENTS
We measured the performance of both the sequential and

parallel collectors on a 4 processor Pentium Pro 200 ma-
chine running RedHat 7 Linux.16 This machine has a single
66MHz system bus. As we will see, it is possible for the

garbage collector to become memory bandwidth limited.17

7.1 Allocators
We compare the following allocators, though not all of

them are included in all cases:

RH7 This is the standard glibc malloc/free implemen-

tation as distributed with the RedHat 7 Linux dis-
tribution. This is a somewhat scalable allocator de-

14This requires that thread stacks have some spacing between
them. This is normally true anyway, since unmapped pages
are used to help detect thread stack overows.
15This approach does require careful attention to the un-
derlying memory model, e.g. to make sure that new hash-
chain entries are fully initialized before they become visible
to other threads.
16We unfortunately cannot yet release measurements mea-
surements for our primary target platform. We hope be able
to use a more modern machine and additional benchmarks
for the �nal paper.
17The prefetching techniques of [5] were not used in the mark
phase, since Pentium Pro processors do no implement the
Pentium III prefetch instruction.

rived from Doug Lea's malloc. We liked against the

pthreads library to force locking.

RH7-single The above allocator, but with the application
not linked against the pthreads library. This is of
course not thread-safe, but avoids locking, and is there-

fore measurably faster in the single-threaded case than
RH7.

Hoard The Hoard scalable memory allocator.[3]. Also re-

quires explicit deallocation.

GC-extrapolated Our garbage collector run on one pro-
cessor. The multiprocessor throughput numbers were
computed by multiplying the uniprocessor number by

the number of processors. This is included only for
reference purposes, since it is not achievable. All mea-
surements of our garbage collector were performed with
a version similar to 6.0alpha5, and should be repro-
ducible with 6.0alpha5.

GC-process Multiple copies of the single-threaded, but
thread-safe benchmark are run concurrently in sepa-
rate processes. Scalability here should be limited by
memory and kernel issues, but not by garbage collec-

tor scalability, since the multiple garbage collector in-
stances do not interact.

GC-thread Our parallel garbage collector run with multi-
ple client threads. Except when stated otherwise, we

set the number of marker threads to be equal to the
number of client threads.

GC-seq Our collector with parallel collection and thread-

local allocation disabled. This is similar to our original
collector.

GC-single Our collector in thread-unsafe mode.

SGC The University of Tokyo scalable collector in its de-
fault con�guration.

7.2 Benchmarks
We give throughput measurements for various benchmarks.

In many cases, speedup graphs would hide much of the infor-
mation, since we are as interested in the base uniprocessor
performance as anything else, and that varies tremendously
between allocators.
For each test, we used between 1 and 4 processors, with

the number of processors appearing along the bottom axis.
The number of marker threads, and (when applicable) the
number of concurrent client threads, was set to the number
of \in-use" processors.
Like most low-end multiprocessors, our machine appears

to have memory bandwidth limitations which sometimes

limit scalability even for programs which otherwise paral-
lelize perfectly.
Note that the arti�cial benchmarks do very little other

than allocate memory. Thus one would expect them to point
out allocation contention issues on 4 processors that would
only be exhibited on larger machines with real code.

We discuss each benchmark in turn:

Number of processors 1 2 3 4

PThread 11.62 14.61 15.57 19.27

GC custom 10.68 12.97 14.99 19.11

Table 1: MT GCBench2 execution times vs. thread-local storage impl.

0

2

4

6

8

10

12

1 2 3 4

RH7-single

3 3 3 3

3

RH7

+ + + +

+

Hoard

2 2 2 2

2

GC-thread

�

�

�
�

�

GC-single

4 4 4 4

4

GC-seq

? ? ? ?

?

Figure 3: Throughput for Ghostscript Benchmark

7.2.1 Ghostscript
This is one of the Zorn allocation benchmarks18. Ar-

guably, it is the most interesting member of the publicly
available suite, in that the runtime on the largest input is
still long enough to be accurately measurable, and the heap
size signi�cantly exceeds the cache size on most commodity

machines. It is an older version of Ghostscript, built with
the custom memory allocator disabled.
This is the only real program in our collection. Unfor-

tunately, it is hard to it turn into a multi-threaded bench-
mark, and we did not attempt to do so. Thus only the

parallel-garbage-collected case bene�ts from multiple pro-
cessors, and only the garbage collector itself is running in
multi-threaded mode. This benchmark has not been tai-
lored for garbage collection. Like the two versions of the
Larson benchmark below, the deallocation logic remains in
the garbage-collected case, but no deallocation is actually

performed.
We let the garbage collector use its heuristics for setting

the heap size.
Throughput measurements, in benchmark iterations per

minute, are given in �gure 3.
As in in [7], this benchmark appears relatively unfavorable

to garbage collection. It appears that with explicit deallo-
cation, a signi�cant amount of memory can be deallocated

18These are available from
ftp://ftp.cs.colorado.edu/pub/misc/malloc-
benchmarks

and reallocated without leaving the cache, something that
is unlikely to happen with a garbage collector. Its average

object size in our environment is 97 bytes, which is rela-
tively large, and thus leads to more frequent collections. We
present it here, since it exhibits signi�cantly di�erent per-
formance characteristics from the arti�cial benchmarks that
follow, though real programs that repeatedly build and de-

stroy large data structures and allocate smaller objects may
in fact behave more like the arti�cial benchmarks.

7.2.2 MT GCBench2
MT GCBench2 essentially runs multiple concurrent copies

of GCBench, a commonly used, and sometimes criticized
[13], garbage collector benchmark.19

For the garbage collected runs, the heap size is set to the
number of client threads times 32 MB. The benchmark itself
alternately builds and drops complete binary trees of various
heights. In the explicit deallocation case, further recursive
tree traversals are added to explicitly deallocate the trees.

Throughput measurements, expressed in benchmark iter-
ations per minute, are given in �gure 4. Note that, at least in
this case, GC-thread performs nearly as well as GC-process,
suggesting that our GC algorithm is highly parallel, at least
when tracing complete binary trees.
The tree nodes allocated by this benchmark are 16 bytes

in size, plus allocator-required overhead. This, as well as
the relatively large heap size, are favorable to the garbage
collecting allocators. Nonetheless, it is surprising that both
SGC and GC-thread outperform the malloc/free imple-
mentations by such a wide margin.

7.2.3 Larson
This is a slightly modi�ed version of a benchmark orig-

inally introduced by Larson and and Krishnan.[15] It was
also used in [3] We obtained the benchmark from the Hoard
web site, and modi�ed it to call memset to fully initialize
each newly allocated object. The original touches only the

�rst cache line of newly allocated objects, thus producing
unrealistically favorable results if the allocator also fails to
touch most of the object.20 Unlike the �rst benchmark, we
run the garbage collector in its default mode as a malloc
replacement, without explicit heap expansion.
This benchmark is a challenge to the malloc/free imple-

mentations in that it allocates memory in one thread and
deallocates it in a di�erent one. It is a bit of a challenge to
our garbage collector in that it creates and destroys many
threads, each of which initially allocate from the global heap.21

19Both are available from http:
www.hpl.hp.com/personali/Hans Boehm/gc
/gc bench.html
20Since the garbage-collecting allocator already initializes ob-
jects, they are e�ectively written twice in the garbage col-
lected case. But the second write is extremely likely to hit
in the cache, this is a relatively minor cost.
21This points out that it is probably preferable to pass free-
list headers on from completed threads to new ones, and only
reclaim long-unused free-list headers occasionally. However,

0

5

10

15

20

25

30

35

40

1 2 3 4

GC-extrapolated

3

3

3

3

3

GC-process

+

+

+
+

+

GC-thread

2

2

2 2

2

SGC

�

�

� �

�

Hoard

4

4

4

4

4

RH7

?
?

?
?

?

GC-seq

b

b
b b

b

Figure 4: Throughput for MT GCBench2 Bench-
mark

We ran the benchmark with the parameters suggested
in the README �le. This results in allocation of objects
whose size is uniformly distributed between 10 and 500 bytes,
i.e. probably larger than for most real applications.
Throughput measurements, expressed in allocations/second,

are given in �gure 5.

7.2.4 Larson-small
This is the same benchmark as above, but with parame-

ters set to allocate objects between 10 and 50 bytes.
Throughput measurements, again expressed in allocations

/second, are given in �gure 6.

8. OBSERVATIONS ABOUT EXPLICIT DE-
ALLOCATION

In the MT GCBench2 and Larson-small benchmarks, the
parallel garbage collectors signi�cantly outperformed the par-
allel malloc implementations.22 Both of these allocate pri-

marily small objects, and gain only limited cache bene�t
from more immediate memory reuse.
In the single-threaded case, this also occurs occasionally,

even for a conservative garbage collector, since it tends to be
much cheaper to recycle large groups of objects than to pro-

cess them individually. But it requires the average object
size and heap occupancy to be suÆciently low that deal-
location economy-of-scale outweighs the tracing cost. And
this situation appears to be getting less common, due to the
cache issues we observed in connection with the Ghostscript
benchmark.

In the parallel case, garbage collectors appear to have
some additional advantages:

we haven't yet implemented that.
22We observed similar results with the threadtest benchmark
used in [3], though we did not report those results here.

0

50000

100000

150000

200000

250000

300000

350000

1 2 3 4

Hoard

3

3

3 3

3

GC-thread

+

+
+ +

+

RH7

2

2
2 2

2

GC-seq

�
�

� �

�

Figure 5: Throughput for Larson Benchmark

0

200000

400000

600000

800000

1e+06

1.2e+06

1 2 3 4

GC-thread

3

3

3

3

3

Hoard

+

+

+

+

+
GC-seq

2
2

2
2

2

RH7

�

�
� �

�

Figure 6: Throughput for Larson-small Benchmark

� No per-object lock acquisition for deallocation. Since

objects are deallocated en masse, there is no need to
acquire and release a lock for each object deallocated.

� No per-object lock acquisition for allocation. It is easy
to allocate objects from memory which has previously
been assigned to a thread-local free-list or arena. Thus
we can also allocate with much less than one lock ac-

quisition release cycle per object. It is relatively easy
to obtain a group of approximately adjacent objects at
once, since we allocate from free-lists which are nat-
urally sorted. Other collectors are likely to allocate
contiguous memory. In the explicit deallocation case,

free-lists are less likely to be sorted, and the idea of
operating on a group of objects is less natural.

The Hoard allocator, for example, still requires a lock ac-
quisition and release for each of object allocation and deal-
location.

This raises the question of whether a more GC-like strat-
egy that operates mostly on larger batches of objects could
also improve the performance of explicit deallocation, while
preserving the performance advantages that explicit deallo-
cation has in some cases. If objects were moved to thread-
local control in groups, and then enqueued to be deallocated

in groups, the lock acquisitions could be amortized over mul-
tiple objects. We do not know of an allocator that attempts
this.

9. REFERENCES
[1] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke,

P. Cheng, J.-D. Choi, A. Cocchi, S. J. Fink, D. Grove,
M. Hind, S. F. Hummel, D. Lieber, V. Litvinov, M. F.
Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J.

Serrano, J. C. Shepherd, S. E. Smith, V. C. Sreedhar,
H. Srinivasan, and J. Whaley. The Jalapeno virtual
machine. IBM Systems Journal, 39(1), 2000.

[2] A. W. Appel, J. R. Ellis, and K. Li. Real{time

concurrent collection on stock multiprocessors. In
SIGPLAN '88 Conference on Programming Language

Design and Implementation, pages 11{20, June 1988.

[3] E. Berger, K. S. McKinley, R. D. Blumofe, and P. R.

Wilson. Hoard: A scalable memory allocator for
multithreaded applications. In Proceedings of the 2000

International Conference on Architectural Support for

Programming Languages and Operating Systems,
pages 117{128, November 2000.

[4] M. Blasgen, J. Gray, M. Mitoma, and T. Price. The
convoy phenomenon. Operating Systems Review,
13(2):20{25, 1979.

[5] H.-J. Boehm. Reducing garbage collector cache misses.
In Proceedings of the 2000 International Symposium

on Memory Management, pages 59{64, 2000.

[6] H.-J. Boehm, A. J. Demers, and S. Shenker. Mostly

parallel garbage collection. In SIGPLAN '91

Conference on Programming Language Design and

Implementation, pages 157{164, June 1991.

[7] D. Detlefs, A. Dosser, and B. Zorn. Memory allocation

costs in large C and C++ programs. Software Practice

and Experience, 24(6):527{547, 1994.

[8] E. W. Dijkstra, L. Lamport, A. J. Martin, C. S.
Scholten, and E. Ste�ens. On-the-y garbage

collection: An exercise in cooperation.

Communications of the ACM, 21(11):965{975,

November 1978.

[9] R. Dimpsey, R. Arora, and K. Kuiper. Java server
performance: A case study of building eÆcient,
scalable Jvms. IBM Systems Journal, 39(1), 2000.

[10] D. Doligez and G. Gonthier. Portable unobtrusive
garbage collection for multiprocessor systems. In
Conference Record of the Twenty-First Annual ACM

Symposium on Principles of Programming Languages,

pages 113{123, 1994.

[11] T. Domani, E. K. Kolodner, and E. Petrank. A
generational on-the-y garbage collector for Java. In
SIGPLAN '00 Conference on Programming Language

Design and Implementation, pages 274{284, June

2000.

[12] T. Endo, K. Taura, and A. Yonezawa. A scalable
mark-sweep garbage collector on large-scale shared
memory machines. In Proceedings of High

Performance Networking and Computing (SC97),
November 1997.

[13] T. L. Harris. Dynamic adaptive pre-tenuring. In
Proceedings of the International Symposium on

Memory Management 2000, pages 127{136, October
2000.

[14] A. Karlin, K. Li, M. Manasse, and S. Owicki.
Empirical studies of competitive spinning for a

shared-memory multiprocessor. In Proceedings of the

1991 ACM Symposium on Operating System

Principles, 1991.

[15] P.-A. Larson and M. Krishnan. Memory allocation for

long-running server applications. In Proceedings of the

International Symposium on Memory Management

1998, pages 176{185, October 1998.

[16] T. Printezis and D. Detlefs. A generational mostly

concurrent garbage collector. In Proceedings of the

International Symposium on Memory Management

2000, pages 143{154, October 2000.

[17] B. Steensgard. Thread-speci�c heaps for

multi-threaded programs. In Proceedings of the 2000

International Symposium on Memory Management,
pages 18{24, 2000.

