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2-D barcodes are two-dimensional graphical patterns that 
encode information. They allow for higher information 
density than the standard one-dimensional barcodes, but 
usually have an unpleasant appearance. This report 
describes a system, consisting of an encoder and a decoder, 
producing a Visually Significant 2-D Barcode (VSB). The 
VSB encodes information in a 2-D pattern that is visually 
similar to a pre-specified 2-D gray scale image. It enjoys 
the high information density typical to 2-D barcodes but 
avoids their unpleasant appearance. 
 
A note about this document: This report is a compilation 
of a few separated documents, each describing a different 
aspect of the VSB system. The reader may notice that 
different sections were written separately, and often for 
different purposes. The purpose of this report is to provide 
a reference for details that are out of scope in subsequent 
VSB related publications. 

 

* Internal Accession Date Only    Approved for External Publication?  
1   Currently with Agilent Technologies 
2   Currently with the HPL - Imaging System Laboratories in Palo Alto 
3   HP Labs – Israel, Technion City, Haifa 32000, Israel 
 Copyright Hewlett-Packard Company 2002 



 

2 

1. Introduction 
 
1.1 Background: 
 
Barcodes are information carrying graphical patterns designed for easy and reliable 
automatic retrieval. The most common barcodes are known as one-dimensional barcodes. 
These graphical patterns vary in a single dimension (e.g. horizontal), and are constant in 
the other (vertical) dimension. In order to convey more information on the same surface 
area, the constancy in the vertical dimension has to be abandoned for more intricate 
patterns, known as two-dimensional barcodes. 
 
One-dimensional barcodes are employed in low information content applications like 
product index registry (e.g. automatic price tagging and inventory management), or serial 
number registry (e.g. test-tube tagging in automated medical tests). Two-dimensional 
barcodes are used in applications that require more information contents like mail 
addresses (for automated mail reading and distribution systems), or compressed content 
of a printed page (to avoid the need for optical character recognition). 
 
Two-dimensional barcodes are graphical patterns composed usually of dots. They are 
rendered using two-toned dots (e.g. black dots on a white background), and occupy, 
usually a rectangular area. Two-dimensional barcodes incorporate various registration 
and fiducial marks, enabling automated identification, and accurate registration of the 
barcode, which might be read-in in arbitrary orientations. In addition, two dimensional 
barcode systems employ various error correcting codes for reliable automated retrieval. 
 
1.2 What is new: 
 
We propose a two-dimensional barcode system that has any, or all, of the following new 
features in addition to the above mentioned features: 
• The barcode pattern has some visual significance. In contrast to current patterns the 

proposed system uses patterns, which make sense as graphical entities. For example: 
♦ Logo, like a company, application, or action logo. 
♦ Graphics, like frames, button marks, or background. 
♦ Text boxes, like a box reading “This box contains important data!” containing, 

naturally the important data itself – as a barcode embedded in the graphical design 
of the text, and or the background. 

♦ Images. 
• The barcode pattern is robust to: 

1. Consecutive photocopying by common office copiers (analog and digital copiers).  
2. Common office document degradations like folds, stains, marks, and staples. 

• The barcode is printed and read by standard office equipment like printers, scanners, 
copiers, and multi-functional equipment. 

 
 
1.3 Why is it important: 



 

3 

 
In many consumer applications, the current visually meaningless barcode patterns are 
prohibitive; since users are more likely to decline the benefits of the application than put 
“a barcode” on their letterhead. In that sense, the proposed barcode is aimed at changing 
the sentimental value attached to the use of barcodes, and move its context from the 
impersonal commercial and industrial setting to the business and even the home 
environments. Different applications may easily incorporate different logos or other 
barcode graphic, thereby enabling a customized personalization of the barcode.  
 
The ability to produce and to read back barcodes using office equipment is critical for 
many applications, and so is the robustness to photocopying. These requirements impose 
some very restrictive constraints on the barcode patterns and the barcode reading and 
decoding methods, to name a few: 
• Small dots are prohibited. 
• Printer and scanner distortions should be expected and dealt with in the registration 

and the error correction stages. 
• Dot size and shape might have to be pre-compensated to be robust to expected 

deformations in the photocopy process. 
• Registration should align a pattern that underwent transformations more general than 

translation, and rotation (e.g. affine transformation). 
 
1.4 The organization of this document 
 
This document is a compilation of few separated documents, each describing a different 
aspect of the VSB system. The reader may notice that different sections were written 
separately, and often for different purposes. Section 2 presents a general scheme of the 
encoding and decoding procedures of the VSB. In section 3 the current implementation is 
detailed. Section 4 elaborates on the XOR BarCode modulation scheme, which is the 
method by which the information is encoded in 2-D patterns. In section 5 we details the 
correction of geometric pattern deformations procedure, which is a preprocessing stage 
that proceed the decoding stage. Section 6 describes the VSB decoding procedure. The 
report is ended with an appendix that analyses some theoretical aspects of visual 
significant 2-D barcodes. Related documents can be found in the bibliographic section. 
 
 
2. Visually Significant Barcode – Encoding and Decoding 
Schemes.  
 
The proposed barcode is composed of two modules. The barcode-encoding module (red 
blocks in Figure 2.1) processes a message and a predefined logo-image (containing a 
logo, or any other graphical objet), and renders the image as a specific pattern, called the 
barcode-pattern, on a hardcopy. Alternatively, it produces a representation of the barcode 
pattern, which may be incorporated in a document and printed on a hardcopy. The 
barcode pattern appears like the logo image, however, it contains a retrievable version of 
the message. If the hardcopy containing the barcode pattern, or a copy of it, is scanned 
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and processed by the barcode-decoding module (green blocks in Figure 2.1), the original 
message will be decoded. The two modules and the expected hardcopy-handling path 
(cyan blocks labeled as channel) are detailed in Figure 2.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.1 Barcode encoding: 
 
The barcode-image is a binary image (black and white dot pattern) produced by the 
barcode-encoding module as follows: 
1. The message is initially compressed into a compact representation. 
2. Next it is coded using an error correcting code with an output alphabet of size L . The 

error correcting code provides robustness to errors due to degradations introduced in 
the channel. Codes may be interleaved to protect against burst errors. At the end of 
this stage the message is encoded in a sequence of Q  symbols over },2,1{ LL . 

3. The logo-image, an NM ×  pixel image is partitioned to a rectangular array of 
KK ×  pixel sub-images, called logo-matrices (for simplicity we assume that N  and 

M  are multiples of K ). 
4. Some image area (corresponding to R  logo-matrices) is used for predefined fiducial 

marks. 

Figure 2.1: A coarse block diagram of the proposed barcode. The proposed barcode is composed of 
two modules (barcode encoding, and barcode decoding), communicating through an assumed office-
type document-handling path (channel).  

Encoding Graphic 
modulation 

Scanning  Copying and 
handling 

Printing 

Pixels 
alignment  

Graphic 
Demodulatio

Decoding 

Message 

Message 

Logo Image 

Encoding Module 

Decoding Module 

Channel 

Logo Image 



 

5 

5. The remaining RKKNMP −××= )/(  logo-matrices are ordered in a sequence. 
Each logo-matrix in that sequence encodes a single symbol of the coded message 
sequence. Note that, if QP <  the message cannot be encoded completely. 

6. Logo-matrices are converted to KK ×  binary barcode-matrices, using one of a 
predefined set of L  distinct halftoning algorithms. The choice of the halftoning 
algorithm is arbitrated by the corresponding symbol in the coded message sequence. 
Note that the L  halftoning algorithms are preferably designed to: 
• Produce distinctly different barcode-matrices for any legitimate logo-matrix. 
• Produce visually pleasing halftone patterns. 

7. The barcode-image is composed of the fiducial marks and the barcode-matrices 
placed at their corresponding locations. The barcode image is rendered using dots of 
specific size and shape, designed so as to survive the channel degradations. 

 
 
2.2 Barcode decoding: 
 
The image acquired by the scanner and introduced to the barcode decoding module is a 
degraded version of the barcode-image. These degradations are attributed to the channel, 
namely, the printing and scanning processes, and potential office type degradations like 
copying, stains, folds, staples, and marks. The scanned image is processed as follows: 
1. Initially the barcode image has to be located on the scanned image (containing 

usually, the whole page). 
2. The fiducial marks are detected. The configuration of these fiducial marks indicates 

the type of global deformation introduced by the channel 
3. Viewing transformation distortions (translation, rotation, and affine) are corrected.  
4. The scanned image processed to correct for the degradations due to the printing and 

scanning channel. It is next partitioned to a rectangular array of sub-images, 
corresponding each to a single barcode matrix. The scanned image pattern may help 
to detect some other local or global transformations, which may be corrected at this 
stage. 

5. Each sub-image is compared against the set of L  possible barcode-matrices (outputs 
of the L  distinct halftoning algorithms, given the corresponding logo-matrix). The 
best match is selected to represent the sub-image in a sequence of P  symbols over 

},2,1{ LK . 
6. Next the (possibly erroneous) sequence, originally coded with an error-correcting 

code is decoded, thereby eliminating the effect of possible errors due to the 
degradations of the channel. 

7. The sequence is decompressed to give the original message. 
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3. Visually Significant Barcode Implementation  
 
The above description of the proposed barcode is a general description. In this section the 
current implementation is detailed in enumerated items corresponding to the items in the 
previous section. 
 
3.1 Barcode encoding: 
 
1. Currently we do not implement any source compression. Any off-the-shelf 

compression algorithm may fit in, though for some target implementations as URLs a 
tailored compression scheme would be preferred. 

2. We currently use a standard 3116 →  bit BCH code correcting for 3 errors. In the 
current implementation 4=L  (2 bits). To ensure that each erroneously detected 
symbol induces a single error in two different code words, rather than inducing two 
errors in a single code word, the MS bits and the LS bits are coded separately and 
interleaved, see Figure 3.2.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
3. In the current implementation 2=K  (larger K  is a promising alternative). The size 

of the logo image ( N  and M ) should therefore be even. For simplicity let 80=N  
and 40=M , however, the exact values are a free parameter of the logo designer (as 
is the logo image itself).  

4. We use the Four Corners of the image for fiducial marks. In each corner we take an 
area of 44 ×  pixels ( 22 ×  matrices). The fiducial marks are as follows: The whole 
area is rendered white, except for the extreme location in each corner, which are 
rendered black (e.g. the upper-left pixel – for the upper-left fiducial mark). 
• We chose this pattern, since in our channel model dots may be blurred or move 

relative to each other. This pattern makes sure that the black fiducial dots do not 
merge with neighboring dots, and stand out clearly on white background. 

• Other fiducial patterns might be considered. 
5. The remaining logo-matrices (784 for our choice of N  and M ) are ordered in raster 

scan. More sophisticated interleaving methods are also considered. Those can provide 

--- 16 bits --- --- 16 bits --- --- 16 bits --- --- 16 bits --- --- 16 bits --- --- 16 bits --- … … Input 

Coding 

Interleave 

Output 

--- 31 bits --- 

--- 31 bits --- 

MS 

LS 

--- 31 2-bit symbols --- 

--- 31 bits --- 

--- 31 bits --- 

--- 31 2-bit symbols --- 

Figure 3.2: The error correction code. Consecutive 16 bit batches are coded to 31 bit 
code words. Code words are multiplexed to MS or LS symbol bits. 
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robustness to burst-type degradations expected from stains, marks, or systematic 
printer/scanner distortions. 
The 784 logo-matrices can accommodate slightly more than 25 batches of 31 matrices 
( )7753125 =×=Q . Each batch codes 2 batches of 16 input bits (one for the MS bits, 
and another for the LS bits). Thus for the specified parameters the barcode may 
encode 80021625 =××  bits of information. 

6. There are many halftone methodologies from which one can choose the 4=L  
distinct halftoning algorithms. In the current implementation we chose to use a 
variation of the old, fixed-halftone-pattern halftoning method, however we consider 
using dithering which may eliminate some of the following limitations: 
• The logo image is limited to be a 2-tone image. 
• If black is 0, and white is 1, the bright tone b , and the dark tone d , are such that 

bd −= 1 . 
• The L  halftoning algorithms correspond to L  distinct KK ×  pattern-matrices. 

Each of which contains KKb ×•  black dots on white background – notice that 
this constitutes another limitation on b . 

Given a logo-matrix, and the selected pattern-matrix, the resulting barcode-matrix 
contains the pattern matrix values in the places corresponding to the bright pixels in 
the logo-matrix, and their complementary otherwise.  In our implementation we chose 
the 4=L , 22 ×  matrices of Figure 3.3, with 25.0=b . 
 
 
 
 
 
 

 
7. In the current implementation the dots are simply rendered as square dots at 85 dots-

per-inch (dpi). Larger dots are more robust to channel degradations, and smaller dots 
enable more information on the same area of the paper. 85dpi is the smallest dot size 
for which we can assure acceptable error resilience. Figure 3.4b is an example of the 
proposed barcode visualizing the logo-image in Figure 3.4a. 

 
 
 
 
 
 
 
 

Note that it is possible to vary the size of the dots: 
• According to intensity, e.g. black dots should be slightly larger than white dots. 
• According to neighborhood, e.g. minority colored dots should be larger. 
It is also possible to change the shape of the dots. For example hexagonal dots on an 
hexagonal grid are likely to be more robust to channel degradations, and thus be 
rendered at smaller dpi. 

Figure 3.3: The four pattern-matrices used for graphical 
encoding. 

a b 

Figure 3.4: Logo-image in a, and corresponding barcode in b. 
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3.2 Barcode decoding: 
 
1. Currently we do not implement any barcode location procedure; the barcodes are 

located roughly at the same location in the scanned image, surrounded by white 
pixels. We refer to that location as the barcode-zone. 

2. In the current implementation the barcode-zone is scanned in a zigzag scan from all 
the Four Corners. Figure 3.5 depicts one such scan (marked by cyan) at the upper-left 
corner. The first dark pixel of each scan (requires a threshold) is considered to be a 
part of the corresponding fiducial pixel, and is used as an anchor pixel for that mark 
(red dot in Figure 3.5). A standard flood-fill algorithm locates all the dark pixels 
connected to these anchors (green outline in Figure 3.5). The centers of the fiducial 
marks are then computed as the average (center of mass) of the pixels of each mark 
(blue dot in Figure 3.5). This zigzag scan enables a robust detection of the anchor 
points even in the presence of significant rotations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
3. Initially we set the center of our coordinate system 10 pixels above and to the left of 

the center of the upper-left fiducial mark. That eliminates the translation problem. 
Next we find the relative rotation of the center of the upper-right fiducial mark, and 
rotate the image back. Last we find the skew factor as the horizontal translation of the 
centers of the lower marks relative to the centers of the upper mark. If a skew is 
detected, the image is corrected also for the detected skew. The transformation 
procedures are standard procedures in computer vision and image processing 
algorithms. We use bilinear interpolation. Note that: 
• It is possible to use many other interpolators here. 
• It is possible to correct for both the rotation and the skew in a single 

transformation, 
• The 4 fiducial marks enable correction of global transformations with up to 8 

degrees of freedom. In the current implementation we use only 4 (2 - translation, 
1 – rotation, and 1- skew).  

4. The previous step results in a rectangular image. We can measure it and slice it to 
4020 ×  rectangular sub-images (in our case 20/ =KM , and 40/ =KN ). 

Significant improvements are gained when this simple procedure is replaced by the 
deformation correction procedures detailed in section 5. 

Figure 3.5: The zigzag scan order (cyan), the anchor point (red), the set 
of connected dark points (green), and their center of mass 
(blue). 
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5. Considering the simple halftone patterns used, and the fact that we further limit the 
logo design to have a constant brightness in every logo-matrix, we chose to apply 4 
simple vector products to every sub-image. The 4 vectors are Gaussian profiles, 
centered each at the center of a quadrant of the sub-image. For dark sub-images, the 
pattern (see Figure 3.3) corresponds to the quadrant having the maximal value, and 
for bright sub-images, the pattern corresponds to the quadrant having the minimal 
value. 
In the more general case, it is possible to apply any maximum-likelihood-type of 
detector to determine, which of the L  possible halftones is the most likely to have 
produced the corresponding sub-image. 

6. The corresponding standard BCH error correction is performed followed by the 
appropriate reordering of the bits (see Figure 3.2). 

7. Since we do not use compression, no decompression is necessary. 
 
 
4. XOR BarCode Modulation 
 
The modulation stage for the Barcode is the stage where binary information (usually 
coded for error-correction and such), turns into an image. This has to be done considering 
two requirements: 
1. The information should be retrievable from the image 
2. The resulting image should render the input image (it should look like it). 
For that purpose it is important to note that the input image is made of pixels whose gray 
values are limited to g and 1-g. 
 
In the previous barcode modulation scheme we rendered each pixel from the input image, 
by expanding it to one of four different 2x2 dot patterns. Patterns rendering bright pixels 
(g=0.25 gray value) were composed of 3 white dots and a single black dot, and vise versa 
for dark pixels. Note that the two modulation requirements were naturally fulfilled: 
1. The location of the minority dot codes 2 bits of information.  
2. Average brightness of output patterns is identical to the value of the respective inputs. 
The table below depicts the 2x2 dot patterns as a function of the input pixel and the code. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Input Code 

0 1 2 3 
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In the new barcode modulation method (XOR modulation) we take NxN input pixel 
patterns, and render them as NxN dot patterns. The rendering patterns are the XOR 
between the input pattern and the relevant code pattern. Let us detail the method for the 
simple case of N=2, and for the actual implementation for which N=3. 
 
For N=2, we have four code template patterns, the four modulation patterns for a bright 
input pixel in the previous modulation method (the first line in the table above). The table 
below depicts 2x2 dot pattern corresponding to a few examples of input pixel patterns. 
 
Note that here also the two modulation requirements were fulfilled, in a similar manner to 
the previous modulation method: 
1. The hamming distance between outputs is identical to the distance between the codes. 

In other words, theoretically, for every 2x2 input pattern, the four corresponding 
output patterns are as different from each other as the code patterns. Since the code 
patterns are the modulation patterns of the previous method, the information is, 
theoretically not less retrievable in the new modulation, than in the previous one. 

2. In the new modulation method each pixel is rendered as a single dot, thus in the 
output it is either black or white. However, the probability of bright pixels to be 
rendered white is 0.75, and the probability of dark pixels to be rendered white is 0.25. 
Thus on the average the input gray value is maintained. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Input 
Examples 

Code 

0 1 2 3 
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For N=3 we first have to choose g, and then select an appropriate set of code template 
patterns. We chose g=2/9, which enhances the visual quality of the output pattern, since 
the contrast (1-g)-g = 1-2g, is larger for g=2/9, then for g=0.25. The corresponding set of 
code template patterns is all the possible combinations of two pixels in a 3x3 set, 
altogether 36 patterns. Some of these patterns are shown in the context of XOR 
modulation in the following table. 
 
We could have used all the 36 code template patterns efficiently coding log236=5.17 bits 
in every pattern. In the current implementation we chose however to give up the 
fractional capacity, and limited ourselves to 32 codes. In order not to be biased by the 
selection of a predefined set of codes, we keep toggling through the 36 codes as follows: 
The code C36 (one of 36) is obtained from the desired code C32 (one of 32) by: 
 C36 = mod36 (C32 + counter) 
Where the counter is incremented after every use. During decoding C32 is decoded from 
C36 by: 
 C32 = mod36 (C36 - counter) 
 

 
 
 

4 
Input 
Examples 

Code 

0 1 2 3
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The new modulation method is a natural extension of the previous modulation method. 
This is obvious from the last two rows in the table, where constant patterns result in 
patterns identical to previous modulation. Furthermore, it is straightforward to extend the 
proposed modulation method to more complex nxn modulation patterns. 
 
The problem with the new modulation is at the decoding stage. Where previously the 
code was determined simply by looking for the maximal/minimal average gray value in a 
dot, now it involves Bayesian estimation (we handled this as well, though for coherence it 
is not detailed here). 
 
 
5. Correction of Geometric Pattern Deformations 
 
We describe a correction method for VSB binary patterns that have undergone geometric 
deformations due to office-type degradations including photocopy. Copies of barcode dot 
patterns are deformed as follows: 
1. Shape deformations are responsible for the fact that black dots change their size and 

either shrink or expand. This deformation depends usually on the brightness setting of 
the copier. In a dark setting black dots expand, and in bright settings they shrink. 

2. Space deformations are responsible for the fact that dots corresponding to certain 
coordinates in the original image are located at different coordinates in the copy. 
Global space deformations like translation, rotation, and affine transformation are 
corrected using the registration marks. However, additional local deformations occur 
which are harder to characterize and correct for. Most deformations due to copying 
are approximately separable, namely, copies of coordinates ( ⋅,0x ) in the original are 
located at coordinates ( ⋅∆+ ,0x ), and likewise ( 0, y⋅ ) are mapped to ( ∆+⋅ 0, y ). 

 
The correction is composed of two stages. In the first we use morphological operations to 
correct for shape deformations, and in the second we use row/column gradient statistics 
to correct for local approximately separable space deformations. 
 
5.1 General Scheme of Geometric Pattern Correction  
 
The proposed correction module for geometric pattern deformations is located between a 
pre-process module and a decoding module, as in Figure 5.1.  
 
 
 
 
 
 
 
 
 

Figure 5.1: A coarse block diagram of a barcode decoding system in which the proposed geometric 
deformation correction module may be located.  
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The correction module is composed of two main parts, described below, and in Figure 
5.2: 
 
1. A correction module for shape deformations is composed of: 

1.1. A module for determining whether black dots have eroded or expanded relative 
to the original pattern, and if so, to what extent. The extent is quantified as a real 
number standing for the radius of erosion or dilation. This module may be 
implemented in several ways, for example: 

1.1.a. Analyzing average darkness of the pattern, and comparing it to the average 
darkness in the original pattern, and translating the darkness differences to 
erosion or dilation radius. This method requires the availability of the 
average darkness of the original image, a reasonable assumption in some 
applications (including ours). 

1.1.b. Analyzing dot shapes, locating single dots in the pattern, and comparing 
their radius to the radius of single dots in the original barcode pattern. This 
method requires the availability of the original dot radius, a reasonable 
assumption in all applications. 

1.2. A module for shrinking or expanding black dots to compensate for the respective 
expansion or shrinkage of the pattern due to the shape deformation. This module 
may be implemented in several ways, for example: 

1.2.a. Morphological operations eroding or dilating the black pattern at the 
specified radius. 

1.2.b. Modifying the threshold defining the black pattern in the scanned image. 
2. A correction module for local space deformations determines the dot grid in the 

scanned image by locating the interfaces of dot-rows and dot-columns. This module 
is composed of: 
2.1. A module for detecting horizontal and vertical edges. Horizontal edges are used 

for locating dot-column interfaces, and vertical edges for dot-row interfaces. This 
module may be implemented in several ways, for example: 

2.1.a. Directed (horizontal and vertical) gradient estimation. 
2.1.b. Zero crossing of the directed (horizontal and vertical) Laplacian. 

2.2. A module for locating dot-row and dot-column interfaces from the edge 
information. This module may be designed to correct either separable space 
deformations or general ones, and may be implemented in several ways, for 
example: 

2.2.a. To correct for separable space deformations the absolute value of the 
horizontal gradient may be summed in columns. A large value is an 
indication of dot-column interface. And vise versa for row interfaces.  

2.2.b. To correct for general space deformations column interfaces may be 
estimated row by row requiring consistency with: gradient magnitudes, near 
by interface locations, and interface locations in previous rows. And vise 
versa for row interfaces. 

2.3. A dot alignment module, correcting for the space deformations according to the 
dot interfaces, which may be implemented in several ways, for example: 

2.3.a. Augmenting the image with a list of true dot centers. 
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2.3.b. Virtually moving the dots into their original location by composing a new 
image made of sub-images cropped around warped dot centers. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5.2 Current implementation of Geometric Pattern Correction 
 
The Barcode decoding system, for which the proposed pattern correction was designed 
and built, reads in a scanned document containing the image of a known visually 
significant 2D Barcode. It first enhances the scanned image, locates the synchronization 
marks, and uses them to correct for global space transformations (translation, rotation, 
and shear). In the next stage it corrects for the other geometric deformations, which are 
the subject of this subsection. Subsequently it analyzes the barcode pattern (graphic 
demodulation), and decodes it to give the embedded information, see Figure 5.3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.3: A coarse block diagram of the barcode decoding system in which the preferred 
implementation of the geometric deformation correction module is located.  
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Figure 5.2: A block diagram of the proposed geometric deformation correction module. 
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The preferred implementation is composed of the (a) implementations of the previous 
section. Next, the various implementations will be detailed. The (a) implementations fit 
in well with each other. Other system combinations may require some fitting. 
 
5.3.1 Details of Erosion/Dilation Extent Determination Module (1.1.a) 
 
In the preferred system the relative area of the black pattern is equal to the average gray 
value of the original image (the image which the barcode renders). This is a reasonable 
assumption for general visually significant barcodes. Therefore, the scanned image is first 
binarized using a threshold function and the relative area, ,b  of the white part is 
compared to the average gray value, ,g  of the original image. If b  is smaller than ,g  the 
required morphological operation is dilation of the black dots, (erosion if larger). The 
radius, ,r  of the required morphological correction is a function of the absolute 
difference || bg − . For our implementation we approximated this function as a linear 
function: ||9 bgr −⋅= , where b  and g  are represented as fractions in the range ]1,0[ . 
 
5.3.2 Details of Erosion/Dilation Extent Determination Module (1.1.b) 
 
For another possibility to implement this module one first applies super-resolution edge-
detection on the deformed dot shapes, after which horizontal and vertical black runs are 
measured. Runs originating in n  dots are measured rRn 2+⋅ , where R  is the dot radius, 
and r  the deformation radius. The deformation radius r  is the one minimizing the best 
robust square fit of the measurements to the above model. For a similar algorithm look in 
[1]. 
 
5.3.3 Details of Dot-Size Modification Module (1.2.a) 
 
In the preferred system the deformations are best modeled as a morphological dilation or 
erosion of the black pattern, which are best corrected for by erosion or dilation 
respectively. In the preferred implementation the structuring element is a cross shape 
with entries: 0b  in the center, 1b  in coordinates )0,1(±  and )1,0( ± , 2b  in coordinates 

)0,2(±  and )2,0( ± , and so on, as in Figure 5.4. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.4: The preferred morphological structuring 
element. 
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The corrected image is the morphological gray scale dilation or erosion of the image with 
the above structuring element. Namely, one places the structuring element on every pixel 
in the input image. The value of the dilation at the corresponding pixel is the maximum 
of the differences of neighborhood pixel values with corresponding structuring-element 
values. For erosion one simply takes the minimum of sums: 
 
 { }lkljki

S Elk

SIDilate ji ,
,

,,  Max −= ++
∈

     and     { }lkljki
SElk

SIrode ji ,
,

,,  E Min += ++
∈

 

where SE  is the set of valid structuring-element coordinates, and nmI , , nmS ,  are image 
and structuring-element values at coordinates ),( nm .  
 
The values K,,, 210 bbb  should be such that they perform as a structuring element of a 
given radius. For integer-valued radii this is simple: 
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For non-integer radii we used the following transformation: 
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which was found to give a linear correction in terms of deformation radius as measured 
by module 1.1.a. Namely, if an image with a measured deformation radius of 0r , is 
corrected with radius 1r− , the subsequent deformation radius will measure 10 rr − . 
 
5.3.4 Details of Dot-Size Modification Module (1.2.b) 
 
Anther possibility to implement this module is simply to modify the threshold defining 
the black pattern. Since the black pattern is obtained from the scanned image by a 
threshold, one can modify it thereby modifying the area of the black pattern up to the 
required ratio. However, in our implementation we found this simple correction to be not 
satisfactory, probably because the morphological deformation model was more accurate. 
 
5.3.5 Details of Directed Edge Detection Module (2.1.a) 
 
In the preferred implementation we simply used forward derivative in the horizontal or 
vertical direction to estimate the directed edges in the respective direction. One may use 
equivalently any directed edge detection kernel. 
 
5.3.6 Details of Directed Edge Detection Module (2.1.b) 
 
Another possibility to implement this module is to use zero crossing. 
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5.3.7 Details of Interface Detection Module (2.2.a) 
 
In the preferred system the barcode covers a relatively small area on the paper. In such 
applications one can safely approximate the space deformation to be separable. This 
means that the row and column interfaces are aligned with pixel rows and columns, and 
the deformation is expressed only in their uneven distribution. 
 
At column interfaces one can expect to see many transients between black dots on the 
right of the interface and white dots on the left, or vise versa. We therefore sum up the 
absolute values of horizontal gradients in columns and determine the interface at columns 
with high peaks of gradient figure. To find row interfaces one can transpose the image 
and do the same (or transpose the above procedure). 
 
In the preferred implementation we also provide for outlier interfaces, in which for some 
reason there was a weak gradient activity (e.g. in most rows dots on both sides of the 
interface had identical value). This is possible by determining a range (measured from the 
last interface) in which to look for the new interface. If a no interface is detected in that 
range, it is determined to be a standard dot-size away from the last interface. 
 
5.3.8 Details of Interface Detection Module (2.2.b) 
 
Another possibility to implement this module, which is necessary in applications where 
the space deformation is distinctly not separable, is the following procedure described for 
column interfaces. Column interfaces are estimated row by row. In every row the location 
of each column interface is determined so as to satisfy a few, potentially conflicting 
consistency requirements. The interface should preferably agree with local large gradient 
magnitudes, it should not deviate much from its location in the previous row, and finally 
it should form a quasi-uniform pattern with near by interface locations in the same row. 
 
All this can be implemented as follows (we used it in our watermark demo). Interfaces 
are recorded in sub-pixel accuracy. Binary gradients are determined by thresholding the 
scanned image. If a gradient is located within 1.5 pixels from an interface location in the 
previous row it is associated with that interface. Interfaces with no gradient association 
keep their location from the previous row. Interfaces with multiple gradient associations 
relate only to the closest, and determine their new location as a weighted average 
between its location (weight=0.3), and their location in the previous line (weight 0.7). 
When all the interfaces for a row have been determined this way, their final location is a 
weighted average between these locations and the average location of their respective 
neighbors on the left and right (average extent may range up to several interfaces on each 
side). 
 
5.3.9 Details of Dot Alignment Module (2.3.a) 
 
In the preferred implementation, dots are only virtually aligned by augmenting the 
scanned image with a list (describing a potentially non-uniform square grid) of dot 
centers. Dot center coordinates may be computed as either the center of the interface 
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coordinates on both sides (for separable deformations), or the center-of-mass of the dot 
for non-separable deformations. 
 
5.3.10 Details of Dot Alignment Module (2.3.b) 
 
Another possibility to implement this module is to actually compose a new image from 
sub-images cropped around located dot centers. Dot centers in the aligned image are thus 
located on a uniform square grid, each dot covering a square patch of pixels around it. 
This square patch is cropped out of the respective dot location in the scanned image. This 
way there are pixels in the scanned image that will not be found in the aligned image, and 
other pixels that will be copied to several locations in it. 
 
 
6. VSB Decoding Procedure  
 
For the VSB code to be robust under printing, photocopying and scanning each pixel of 
the halftoned image B is duplicated and printed as an rectangular area of t x t printed 
pixels (p-pixels). These areas are homogeneously composed of either black p-pixels (for 
black original pixel) or white p-pixels (for white original pixel). The printed image is 
going through consecutive photocopying, after which it is scanned in high resolution. S 
denotes the scanned image. Suppose that the scanning resolution is such that each 
original pixel is now represented by an array of rxr scanned pixels (s-pixels). Due to 
visual degradation caused by the printing and scanning processes, the resulting arrays of 
s-pixels in S are no longer homogeneous but contain s-pixels of different gray levels.  
 
In order to decode the message M from the halftoned image B the following steps are 
required: 
(a) Align the scanned image S.  
(b) For each pixel in the halftoned image B - identify the borders of the corresponding s-
pixel array in the scanned image S.  
(c) For each s-pixel array – estimate the probability that this array have been originated 
from a black (white) pixel. 
(a) Based on these probabilities, decide for each sub-image of (n x n) pixels in the 

original image I, which of the code words was used for its halftoning. 
(e) Having identified the code words for each sub-image, the message M can now be 
decoded using an error correcting decoding. 
 
Steps (a), (b) and a preprocessing for (c) are described in section5 and step (e) is 
considered in section 3. 
 
Assume now that for each pixel in B, the corresponding s-pixel array in S has been 
identified. On this basis we describe in detail steps (c) and (d) above. 
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6.1 Estimating the probability for a pixel to be white or black 
 
6.1.1 Discrimination function 
 
Let s be an array of s-pixels corresponding to one original pixel and denote the gray 
levels of its s-pixels by si,j  where i,j=1,..,r. We are looking for a function of the si,j that 
discriminates between arrays that corresponds to black original pixels and those 
corresponding to white original pixels. We found experimentally that a good linear 
discrimination function is of the form ∑

=

=
rji

jiji scsf
,1,

,,)( where the coefficients ci,j are 

taken as grid values of a two dimensional gaussain shaped surface. More explicitly -  
})/))2/()2/exp{((,max( 22

, σrjricc ji −+−=  where  c and σ are constants.  
A histigram of the discrimination function computed for each pixel in a scanned 
halftoned image is demonstrated in figure 6.1. The right side population belongs to  
“white” pixels and the left side population belongs to  “black” pixels. 
 
6.1.2 Estimating probablistic model parameters 
Based on the shape of such histograms we modeled the distribution of f(s) by a bi-modal  
non-symmetric exponential distributions. More explicitly, we assume that for black 
(white) pixels y=f(s) is distributed according to: 
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Since the parameters αL, αR and µ are different for the “black” pixels and the “white” 
pixels populations, the overall number of parametrs to be estimated in this model is 6. To 
simplify notations we denote black pixels by 0 and white pixels by 1 and the parameters 
are index  correspondingly - α0L, α1L etc. 
In order to reduced the computational burden,  we devide the estimation procedure into 
two steps: 
 
(a) Estimating µ0 and µ1. 
We partition the observations yi=f(gi) into two populations, using the known expected 
number of “black” pixels – N0, and “white” pixels – N1. The “black” population 
comprises of  the smallest N0 observations and the “white” populations comprises of the 
rest (biggest N1). For each of these populations we estimate its mode µ by the following 
ML approximated method: 
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figure 6.1 
 
We look for the value of µ (for the sake of simplicity we ignore the 0/1 subscript) that 
maximizes the ML estimator for µ: 
(2.1) ∑∑

∈∈

−−+−−=
RL Ii

iRR
Ii

iLL yyArg )]}(log)(log{max[ µααµααµ . 

To find the value that yield the maximum we enumerate all the averages of two 
consecutive observations in the given populations. Since the true values of αL and αR are 
not known we estimate them, for each tested value of µ by: 
(2.2) ∑

∈

−=
LIi

iLL yN µα )/1(/1      

(2.3) (2.3) µα −= ∑
∈ RIi

iRR yN )/1(/1  

Where IL is the set of observations smaller than µ, IR is the set of observations larger than 
µ, NL=| IL | and NR=| IR |. 
 
Substituting (2.2) and (2.3) in (2.1) and simplifying the expression one gets: 
 

∑∑
∈∈

−−+−−=
RL Ii

iRR
Ii

iLL yNNyNNArg ))]}(log(log))(log(log{max[ µµµ  

(Note that IL and IR and hence NL and NR are both functions of µ.) 
 
The estimates for α0L and α1R are derived directly from (2.1) and (2.2) using the 
corresponding estimates for  µ0 and µ1. 
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Having estimated µ0, µ1, α0L and α1R we proceed to estimate the parameters α1L and α0R 
(Since there is no place for confusion we use the notations α1 and α0). We ignore all 
observations below µ0 and above µ1 and define }|{ 10 µµ ≤≤= yyI M , NM = |IM|. We 
assume that the observations }:{ Mi Iiy ∈  are samples from a random vector with 

distribution }exp{),(
iiii

M
xixxx

Ii
ii yPxyP µαα −−Π=

∈
 where xi takes the values 0 or 1 with 

the probabilities P0 and P1 respectively. We use the EM paradigm to estimate α1 and α0 . 
The EM algorithm  start with initial values for the parameters and perform a series of 
updating stages that converges to a (local) maximum of the mean ML objective function.  
To estimate the values of α1 and α0 the conditional expectation  
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should be maximized at each stage of the algorithm. The estimation for α1L and α0R are 
the values of the estimates for α1 and α0 at the last updating stage.  
 
The EM algorithm includes the following steps: 
 
Initialization: 
For each yi denote the gray-level of the original pixel by gi. Using the XOR modulation 
scheme the halftone pixel corresponding to gi has probability gi to be 0 and (1- gi) to be 1. 
We define p0(0|yi)= gi for each i∈IM. 
 
Updating step: 
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where pj(1|yi)= 1-pj(0|yi). 
 
Set α0(j)=1/E0(j) and α1(j)=1/E1(j) then: 
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6.2 Scoring code words 
 
Given the probability of each pixel in the scanned image S to originate from a black  
(white) pixel, the appropriate code words can be scored according to the Maximum 
Likelihood (ML) principle.  
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Let w=(w1,.., wL) be a code-word form the codebook of a given sub-image p=(p1,.., pL) in 
I. Assume that the corresponding scanned sub-image in S has discriminative function 
values y=(y1,.., yL). The ML score for w is given by s(w)=P(w|y). Since each code word 
has equal a-priory probability this score is equivalent, under the assumption that 
observations are stochastically independent, to ∏

=

==
Li

ii wyPwyPws
,1

)|()|()( .  

The log likelihood score is given by: 
))1|(/)0|(log()1()|(log)|(log)(

,1,1
i

Li
i

w

Li
ii yPyPwyPwyPwscr i∑∑

==

−≅==    (2.5) 

where ≅ means - equal up to a constant that does not depend on w. 
Substituting P(yi|0) and P(yi|1) in (2.5) for the expressions of the bi-modal non-symmetric 
exponential distribution estimated before the score for w becomes  
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The code word that achieves the highest score scr(w) is chosen for decoding the message 
M. 
 

 
Appendix A – Theoretical analysis of Visually Significant 2-D 
Barcode 
 
We consider a coding scheme that produces a 2-D barcode patterns with visual 
resemblance to a pre-specified 2-D gray scale image. This scheme is termed Visually 
Significant Barcode (VSB). 
 

A.1. VSB coding scheme: 
 
Let I be an (m x l) gray level image, and let M be a (binary) message to be transmitted. 
For the sake of simplicity we assume that I can be divided to sub-images of fixed size – 
(n x n). By mapping each sub-image to a binary (n x n) array a halftoned version, denoted  
B, of the original image is produced. The message M can be encoded in B in the 
following way: 
Given a collection of distinct halftone mappings the message M determines uniquely, the 
half-tone mapping for each sub-image. Hence, each message produces a distinct 



 

23 

halftoned image B(M). For decoding, one needs to identify the mappings used for  
halftoning and then one can reconstruct the message. This procedure is possible since the 
decoder has the original image and therefore can extract the halftone mappings by 
comparing it to the halftoned version produced uniquely by the message. 
 
In order to achieve visual resemblance between the original image and its halftoned 
version, the halftone mappings should preserve the visual content of the gray scale sub-
images. At the same time, in order to allow unique decoding these mappings should be 
distinct. Moreover, since the decoder receives the halftoned image with some quality 
degradations, the halftone mapping should not only be distinguishable but also distant 
enough (with respect to a suitable measure) to allow robust decoding procedure.  
 
The preceding discussion implies that the VSB coding scheme has an intrinsic trade-off 
between visual fidelity and reliable transmission rate. We present a mathematical 
description of the VSB coding scheme that formularizes this trade-off. 
  
VSB mathematical model 
  
Let p = (p1,..,pL), where L = n2, be  a gray scale sub-image, that is an (n x n) pixel array. 
The corresponding set of output binary arrays, C(p)={w1,..,wN

 }, where  N=|C(p)|, 
constitutes a code-book (a set of code words. Note that this set depends on the gray-level 
pattern of the sub-image p since the visual content is to be approximated by all binary 
code-words. For the rest of this section we fix a sub-image and consider the properties of 
the corresponding code-book in relation to visual requirements and transmission rate 
considerations.  
 
Definition: Capacity 
The capacity of the code is defined as Cap(C(p))=log2(|C(p)|)/L bits per symbol.  
 
Features of the VSB code book: 
 
(1) The members of C(p) should be well separated with respect to some distance measure 
pertaining to the noise contaminating the transmitted half-toned sub-image, e.g. 
Hamming distance. We denote this distance measure by Dc and require that for some 
constant d: 
 
Dc(wi ,wj) ≥ d, for each  ji ≠ , i,j = 1,.., L.  
 
In order to preserve the visual content of the gray-scale sub-image, we impose two sets of 
constrains on the code-book:  
 
(2) The average gray level of each code word in C(p) should be as close as possible to the 
average gray level of p:  

 Kpw
L j

j
j

i
j <− ∑∑1

 for each i, where K is a constant. 
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(3) The average (over all code words) gray level of each binary pixel should equal the 
gray level of the corresponding pixel in p. Under the assumption that code words are 
drawn uniformly this constraint implies that: 

  j
i

i
j pw

N
=∑1

  for each j=1,..,L. 

 
Under constrains (1), (2) and (3), a good codebook is one that minimizes a distance  
measure that implies good visual quality.  
 
In the sequel, we propose three approaches for finding good codebooks, but prior to this 
we give a rough estimation for the VSB capacity: 
 
Estimating the VSB capacity 
 
We consider, as a starting point, sub-images of constant gray level g and assume that 
k=g*L is an integer. In this case constraint (2) is satisfied with K=0 if there are exactly k 
ones in any of the code words. Such codes are termed - constant weight codes. 
Restricting the discussion to the case d=2 in constraint (1) the capacity of the code is: 

L
k
L

pCcap
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Substituting k=g*L and using Stirling approximation for n! one gets: 
 

)1(log)1()(log)())(( 22 gggggHbCcap −∗−+∗=≅ , where ≅  means assimptoticly 
equal for large L. 
 
It turns out (to be proven regorously) that cap(C(p)) is an increasing  monotone function 
of L and an increasing monotone function of ]5.0,0(∈g . The optimum capacity, for each 
L is achieved at g=0.5 where it is equel to 1. However, if all sub-images in an image have 
constant gray level, then this image has no visual significant. Therefore, at least two gray 
levels should be allowed and the capacity is strictly smaller than 1. Choosing the gray 
levels g and 1-g the capacity of the code is asymptotically equal to H(g)=H(1-g). 
The gray levels g and 1-g should be separated enough to allow visual distinction. On the 
Other end g should be close to 0.5 to increase capacity. A reasonable compromise is to 
choose gray level values in the interval (0.25-0.35). We comment that for g in (0.25-0.35)  
the H(g) bound is reached to within 10% for  L values of 16 (4x4 array) to 25 (5x5 array).   
 
Remark: We have seen that the capacity is H(g) only in those cases that each sub-image 
has constant gray-level (g or 1-g). We will show in the sequel that the same capacity can 
be achieved for mixed (g and 1-g) sub-images. 
 
 
 
Constructing VSB codebooks.    
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We return now to the problem of finding a good VSB codebook. Unfortunately, this 
problem is rather difficult, due to the big number of constrains implies by constraint (1).  
In what follows we propose three heuristic approaches for constructing such codebooks. 
 

Sub-Optimized VSB codebook. 
 
A VSB codebook can be constructed by a greedy algorithm that adds one code word at 
each stage. Since an iterative algorithm can’t satisfy all the constraints imposed on the 
codebook at each stage, these constraints are replaced by related objective functions. The 
new code word is chosen to be the optimal word with respect to a visual objective 
function (pertaining to constraints (2) and (3)) that satisfies constraint (1) in relation to all 
the code words previously chosen. 
This approach suffers from two main drawbacks: 
(a) It does not guaranty finding an optimal or even a sub-optimal codebook.  
(b) Encoding and decoding with different codebooks for each gray-scale sub-image is 

hardly practical, except for very small values of L.  
Due to these draw backs we have not pursue this approach. 
   
Computable codebooks. 
 
In this approach, the code word is computed on the fly, for each sub-image, using a 
suitable pre-defined halftone function that maps gray-scale sub-images to binary arrays. 
This function depends on the message M (as a parameter) and produces unique halftone 
patterns for different messages. We have considered two types of half-tone functions: 
 
Dithering matrices – arrays of gray-scale values that act as thresholds on the input sub-
image. Given a collection of such matrices, a matrix can be chosen, for each sub-image 
based on the message to be encoded. This approach can handle multi-gray level images. 
Unfortunately, it is possible to prove that the number of dithering matrices that produce 
unique half-tone pattern even for relatively small sub-images is restricted to below the 
VSB capacity computed in section 1.2.  
 
XOR patterns  – binary arrays that produce half-tone patterns by XOR operation. This 
approach is limited to images having only 2 gray level: g and 1-g. 
Each sub-image is represented by an (n x n) array of ones and zeros, where zero 
represents the low input gray level and one the high input gray level. Assuming that 
k=g*L is an integer, the “generating” codebook consists of (n x n) binary arrays with k 
ones and L-k zeros. For each sub-image - p, a generating code pattern - v is chosen (by 
the message M) and the code word w is the XOR of these two arrays vbw ⊕= . 
  
 
 
 
Proposition: 
The VSB generated by XOR patterns code-book that consists of all (n x n) binary arrays 
with exactly k ones, has the following properties: 
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(a) The hamming distance between each couple of code words is greater or equal to 2.   
(This fact relates to constraint (1) with d=2).  

(b) Constraint (2) is satisfied with )(*2 2ggK −= . 
(c) Constraint (3) is satisfied. 

(d) The capacity of the XOR code is equal to 
L

k
L









2log

 

Proof:  
(b) Since the number of  “ones” in each XOR pattern is exactly k, the distance between 

any different two patterns is greater or equal two. It is easy to verify that the XOR 
operation preserves this property. 

(c) The worst value for ∑∑ −
j

j
j

i
j pw  is reached when the sub-image has L-k zeros and 

and all the k ones of the Xor pattern correspond to sub-image ones.  In this case the 
output pattern is all zeros, but the average gray level is: 
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jv ,..,1}{ = of entries in location j of all Xor-patterns has ones to zeros ratio of 

k to n-k. Since  xoring a bit with zero preserves its values and xoring it with one flips 
its value it follows that: 
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 for each j,  

where c is the ratio 
L
N

c = . 

(e) See section 1.2 € 
 
The XOR patterns approach has the advantage of simplicity and high capacity. The 
corresponding VSB capacity, reaches asymptotically the bound of H(g). However, the 
visual quality might suffer from XOR patterns that have blobs of ones or zeros. Hence it 
is preferable that such unpleasant patterns will be removed from the codebook.  This 
removal reduces the capacity of the code, but improved the visual fidelity.  
 
Tilling with small binary arrays (constrained system). 
This approach can be utilized as a method for half-toning multi gray-level images or for 
improving visual quality of the XOR patterns approach.  We demonstrate it by 
considering tiling with (2 x 2) binary arrays and limit the discussion to images with only 
two gray-levels: 0.25 and 0.75. Generalizations to higher dimensions and multi gray-level 
images are conceivable. 
 
Given an image with gray levels in the set  {0.25,0.75}, each pixel is mapped to a (2 x 2) 
binary array, in such a way that the average pixel intensity is preserved. To improve 
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visual fidelity, some constraints are imposed on the way arrays are tiled together. These 
constraints are designed to prevent the production of unpleasant patterns such as blobs of 
ones or zeros. The tilling method with (2 x 2) arrays can be viewed as an algorithm to 
remove unpleasant patterns from a codebook with higher dimensionality. 
The tilling algorithm can be described as a finite state system defined on a directed graph 
whose vertices are the tiling arrays and whose edges represent the permitted transitions. 
Encoding is implemented by selecting, at each tiling step, one of the outgoing edges of 
the current vertex, according to the input message.  At decoding, the edges are 
reconstructed from the original image and its encoded version.  
 
The performance (capacity) of the Tilling approach to VSB can be analyzed via the 
theory of constrained systems. Under suitable conditions, the capacity of a one-
dimensional constrained system can be computed from the biggest eigenvalue of the 
adjacency matrix of the graph describing the system. The proposed tilling system is two- 
dimensional; hence our analysis provides lower and upper bound for the capacity. 
 
To demonstrate this analysis we construct an example of a constraint code graph for the 
case of constant gray level (0.25) image and compare its capacity to the estimation 
presented in section (1.2). An equivalent graph can implement the code for 0.75 gray 
level images. Appropriate switching between these two graphs implements the code for 
the two gray-level images.  
 
(2 x 2) Tiling example  
To achieve the average gray level of 0.25 we use the following binary arrays: 
1 array with no 1’s – represented by vertex A0 ,  
4 arrays with one 1 – grouped in each of the vertices A1 and B1,  
6 arrays with two 1’s – grouped in vertex B2.  
The following diagram describes the system graph: 
 
 
 
 
 
 
 
 
 
 
 
 
The digit on each edge indicates the number of outgoing edges from each vertex inside 
the group.  
 

A1 A0 

B2 B1 

4 

1 

6 
4 

1 
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The adjacency matrix is: 



















0041
6400
0041
6400

 and its biggest eigenvalue is 6.4495.   

Hence the capacity of the corresponding one dimensional tilling code is log2(6.45)/4= 
0.672; This value is an upper bound for the capacity of the tilling system, since the one 
dimensional system  is less constrained then the two dimensional one. The difference 
being that the one-dimensional code is not constrained by vertical tilling limitations. 
Computing a lower bound can be achieved by considering a two dimensional tilling 
system that uses the one dimensional system for odd rows and tilling with A1 arrays only 
for even rows. It is easy to verify that this system satisfies the constraints imposed on the 
original two dimensional system but has lower capacity which is the average of the two 

one dimensional tilling methods. This average is given by: 585.0)5.067.0(
2
1

=+ . 

To conclude, the capacity of the constrained tilling system satisfies 0.585 < cap < 0.672. 
This result can be compared with the 0.5 capacity of the (2 x 2) XOR code and the 0.677 
capacity of the (4 x 4) XOR code, both corresponding to the same gray level of 0.25.  
 
Remark: 
In order to trade capacity with visual quality, one can remove certain edges from the code 
graph, e.g. those that tiles two arrays with adjacent ones.  
 
 
4. Reference 
 
 [1] Carl Staelin, and Larry McVoy, “mhz: Anatomy of a micro-benchmark”, in 

Proceedings of USENIX 1998 Annual Technical Conference, pp. 155, New Orleans, 
Louisiana, June 1998. 

 
 
 


