

A Visually Significant Two
Dimensional Barcode

Doron Shaked, Avi Levy, Zachi Baharav1, Jonathan Yen2

HP Laboratories Israel3
HPL-2000-164 (R.1)
December 14th , 2001*

E-mail: dorons@hpli.hpl.hp.com, avi@hpli.hpl.hp.com

2-D Barcode,
information
hiding,
watermarking

2-D barcodes are two-dimensional graphical patterns that
encode information. They allow for higher information
density than the standard one-dimensional barcodes, but
usually have an unpleasant appearance. This report
describes a system, consisting of an encoder and a decoder,
producing a Visually Significant 2-D Barcode (VSB). The
VSB encodes information in a 2-D pattern that is visually
similar to a pre-specified 2-D gray scale image. It enjoys
the high information density typical to 2-D barcodes but
avoids their unpleasant appearance.

A note about this document: This report is a compilation
of a few separated documents, each describing a different
aspect of the VSB system. The reader may notice that
different sections were written separately, and often for
different purposes. The purpose of this report is to provide
a reference for details that are out of scope in subsequent
VSB related publications.

* Internal Accession Date Only Approved for External Publication?
1 Currently with Agilent Technologies
2 Currently with the HPL - Imaging System Laboratories in Palo Alto
3 HP Labs – Israel, Technion City, Haifa 32000, Israel
 Copyright Hewlett-Packard Company 2002

2

1. Introduction

1.1 Background:

Barcodes are information carrying graphical patterns designed for easy and reliable
automatic retrieval. The most common barcodes are known as one-dimensional barcodes.
These graphical patterns vary in a single dimension (e.g. horizontal), and are constant in
the other (vertical) dimension. In order to convey more information on the same surface
area, the constancy in the vertical dimension has to be abandoned for more intricate
patterns, known as two-dimensional barcodes.

One-dimensional barcodes are employed in low information content applications like
product index registry (e.g. automatic price tagging and inventory management), or serial
number registry (e.g. test-tube tagging in automated medical tests). Two-dimensional
barcodes are used in applications that require more information contents like mail
addresses (for automated mail reading and distribution systems), or compressed content
of a printed page (to avoid the need for optical character recognition).

Two-dimensional barcodes are graphical patterns composed usually of dots. They are
rendered using two-toned dots (e.g. black dots on a white background), and occupy,
usually a rectangular area. Two-dimensional barcodes incorporate various registration
and fiducial marks, enabling automated identification, and accurate registration of the
barcode, which might be read-in in arbitrary orientations. In addition, two dimensional
barcode systems employ various error correcting codes for reliable automated retrieval.

1.2 What is new:

We propose a two-dimensional barcode system that has any, or all, of the following new
features in addition to the above mentioned features:
• The barcode pattern has some visual significance. In contrast to current patterns the

proposed system uses patterns, which make sense as graphical entities. For example:
♦ Logo, like a company, application, or action logo.
♦ Graphics, like frames, button marks, or background.
♦ Text boxes, like a box reading “This box contains important data!” containing,

naturally the important data itself – as a barcode embedded in the graphical design
of the text, and or the background.

♦ Images.
• The barcode pattern is robust to:

1. Consecutive photocopying by common office copiers (analog and digital copiers).
2. Common office document degradations like folds, stains, marks, and staples.

• The barcode is printed and read by standard office equipment like printers, scanners,
copiers, and multi-functional equipment.

1.3 Why is it important:

3

In many consumer applications, the current visually meaningless barcode patterns are
prohibitive; since users are more likely to decline the benefits of the application than put
“a barcode” on their letterhead. In that sense, the proposed barcode is aimed at changing
the sentimental value attached to the use of barcodes, and move its context from the
impersonal commercial and industrial setting to the business and even the home
environments. Different applications may easily incorporate different logos or other
barcode graphic, thereby enabling a customized personalization of the barcode.

The ability to produce and to read back barcodes using office equipment is critical for
many applications, and so is the robustness to photocopying. These requirements impose
some very restrictive constraints on the barcode patterns and the barcode reading and
decoding methods, to name a few:
• Small dots are prohibited.
• Printer and scanner distortions should be expected and dealt with in the registration

and the error correction stages.
• Dot size and shape might have to be pre-compensated to be robust to expected

deformations in the photocopy process.
• Registration should align a pattern that underwent transformations more general than

translation, and rotation (e.g. affine transformation).

1.4 The organization of this document

This document is a compilation of few separated documents, each describing a different
aspect of the VSB system. The reader may notice that different sections were written
separately, and often for different purposes. Section 2 presents a general scheme of the
encoding and decoding procedures of the VSB. In section 3 the current implementation is
detailed. Section 4 elaborates on the XOR BarCode modulation scheme, which is the
method by which the information is encoded in 2-D patterns. In section 5 we details the
correction of geometric pattern deformations procedure, which is a preprocessing stage
that proceed the decoding stage. Section 6 describes the VSB decoding procedure. The
report is ended with an appendix that analyses some theoretical aspects of visual
significant 2-D barcodes. Related documents can be found in the bibliographic section.

2. Visually Significant Barcode – Encoding and Decoding
Schemes.

The proposed barcode is composed of two modules. The barcode-encoding module (red
blocks in Figure 2.1) processes a message and a predefined logo-image (containing a
logo, or any other graphical objet), and renders the image as a specific pattern, called the
barcode-pattern, on a hardcopy. Alternatively, it produces a representation of the barcode
pattern, which may be incorporated in a document and printed on a hardcopy. The
barcode pattern appears like the logo image, however, it contains a retrievable version of
the message. If the hardcopy containing the barcode pattern, or a copy of it, is scanned

4

and processed by the barcode-decoding module (green blocks in Figure 2.1), the original
message will be decoded. The two modules and the expected hardcopy-handling path
(cyan blocks labeled as channel) are detailed in Figure 2.1.

2.1 Barcode encoding:

The barcode-image is a binary image (black and white dot pattern) produced by the
barcode-encoding module as follows:
1. The message is initially compressed into a compact representation.
2. Next it is coded using an error correcting code with an output alphabet of size L . The

error correcting code provides robustness to errors due to degradations introduced in
the channel. Codes may be interleaved to protect against burst errors. At the end of
this stage the message is encoded in a sequence of Q symbols over },2,1{ LL .

3. The logo-image, an NM × pixel image is partitioned to a rectangular array of
KK × pixel sub-images, called logo-matrices (for simplicity we assume that N and

M are multiples of K).
4. Some image area (corresponding to R logo-matrices) is used for predefined fiducial

marks.

Figure 2.1: A coarse block diagram of the proposed barcode. The proposed barcode is composed of
two modules (barcode encoding, and barcode decoding), communicating through an assumed office-
type document-handling path (channel).

Encoding Graphic
modulation

Scanning Copying and
handling

Printing

Pixels
alignment

Graphic
Demodulatio

Decoding

Message

Message

Logo Image

Encoding Module

Decoding Module

Channel

Logo Image

5

5. The remaining RKKNMP −××=)/(logo-matrices are ordered in a sequence.
Each logo-matrix in that sequence encodes a single symbol of the coded message
sequence. Note that, if QP < the message cannot be encoded completely.

6. Logo-matrices are converted to KK × binary barcode-matrices, using one of a
predefined set of L distinct halftoning algorithms. The choice of the halftoning
algorithm is arbitrated by the corresponding symbol in the coded message sequence.
Note that the L halftoning algorithms are preferably designed to:
• Produce distinctly different barcode-matrices for any legitimate logo-matrix.
• Produce visually pleasing halftone patterns.

7. The barcode-image is composed of the fiducial marks and the barcode-matrices
placed at their corresponding locations. The barcode image is rendered using dots of
specific size and shape, designed so as to survive the channel degradations.

2.2 Barcode decoding:

The image acquired by the scanner and introduced to the barcode decoding module is a
degraded version of the barcode-image. These degradations are attributed to the channel,
namely, the printing and scanning processes, and potential office type degradations like
copying, stains, folds, staples, and marks. The scanned image is processed as follows:
1. Initially the barcode image has to be located on the scanned image (containing

usually, the whole page).
2. The fiducial marks are detected. The configuration of these fiducial marks indicates

the type of global deformation introduced by the channel
3. Viewing transformation distortions (translation, rotation, and affine) are corrected.
4. The scanned image processed to correct for the degradations due to the printing and

scanning channel. It is next partitioned to a rectangular array of sub-images,
corresponding each to a single barcode matrix. The scanned image pattern may help
to detect some other local or global transformations, which may be corrected at this
stage.

5. Each sub-image is compared against the set of L possible barcode-matrices (outputs
of the L distinct halftoning algorithms, given the corresponding logo-matrix). The
best match is selected to represent the sub-image in a sequence of P symbols over

},2,1{ LK .
6. Next the (possibly erroneous) sequence, originally coded with an error-correcting

code is decoded, thereby eliminating the effect of possible errors due to the
degradations of the channel.

7. The sequence is decompressed to give the original message.

6

3. Visually Significant Barcode Implementation

The above description of the proposed barcode is a general description. In this section the
current implementation is detailed in enumerated items corresponding to the items in the
previous section.

3.1 Barcode encoding:

1. Currently we do not implement any source compression. Any off-the-shelf

compression algorithm may fit in, though for some target implementations as URLs a
tailored compression scheme would be preferred.

2. We currently use a standard 3116 → bit BCH code correcting for 3 errors. In the
current implementation 4=L (2 bits). To ensure that each erroneously detected
symbol induces a single error in two different code words, rather than inducing two
errors in a single code word, the MS bits and the LS bits are coded separately and
interleaved, see Figure 3.2.

3. In the current implementation 2=K (larger K is a promising alternative). The size

of the logo image (N and M) should therefore be even. For simplicity let 80=N
and 40=M , however, the exact values are a free parameter of the logo designer (as
is the logo image itself).

4. We use the Four Corners of the image for fiducial marks. In each corner we take an
area of 44 × pixels (22 × matrices). The fiducial marks are as follows: The whole
area is rendered white, except for the extreme location in each corner, which are
rendered black (e.g. the upper-left pixel – for the upper-left fiducial mark).
• We chose this pattern, since in our channel model dots may be blurred or move

relative to each other. This pattern makes sure that the black fiducial dots do not
merge with neighboring dots, and stand out clearly on white background.

• Other fiducial patterns might be considered.
5. The remaining logo-matrices (784 for our choice of N and M) are ordered in raster

scan. More sophisticated interleaving methods are also considered. Those can provide

--- 16 bits --- --- 16 bits --- --- 16 bits --- --- 16 bits --- --- 16 bits --- --- 16 bits --- … … Input

Coding

Interleave

Output

--- 31 bits ---

--- 31 bits ---

MS

LS

--- 31 2-bit symbols ---

--- 31 bits ---

--- 31 bits ---

--- 31 2-bit symbols ---

Figure 3.2: The error correction code. Consecutive 16 bit batches are coded to 31 bit
code words. Code words are multiplexed to MS or LS symbol bits.

7

robustness to burst-type degradations expected from stains, marks, or systematic
printer/scanner distortions.
The 784 logo-matrices can accommodate slightly more than 25 batches of 31 matrices
()7753125 =×=Q . Each batch codes 2 batches of 16 input bits (one for the MS bits,
and another for the LS bits). Thus for the specified parameters the barcode may
encode 80021625 =×× bits of information.

6. There are many halftone methodologies from which one can choose the 4=L
distinct halftoning algorithms. In the current implementation we chose to use a
variation of the old, fixed-halftone-pattern halftoning method, however we consider
using dithering which may eliminate some of the following limitations:
• The logo image is limited to be a 2-tone image.
• If black is 0, and white is 1, the bright tone b , and the dark tone d , are such that

bd −= 1 .
• The L halftoning algorithms correspond to L distinct KK × pattern-matrices.

Each of which contains KKb ×• black dots on white background – notice that
this constitutes another limitation on b .

Given a logo-matrix, and the selected pattern-matrix, the resulting barcode-matrix
contains the pattern matrix values in the places corresponding to the bright pixels in
the logo-matrix, and their complementary otherwise. In our implementation we chose
the 4=L , 22 × matrices of Figure 3.3, with 25.0=b .

7. In the current implementation the dots are simply rendered as square dots at 85 dots-

per-inch (dpi). Larger dots are more robust to channel degradations, and smaller dots
enable more information on the same area of the paper. 85dpi is the smallest dot size
for which we can assure acceptable error resilience. Figure 3.4b is an example of the
proposed barcode visualizing the logo-image in Figure 3.4a.

Note that it is possible to vary the size of the dots:
• According to intensity, e.g. black dots should be slightly larger than white dots.
• According to neighborhood, e.g. minority colored dots should be larger.
It is also possible to change the shape of the dots. For example hexagonal dots on an
hexagonal grid are likely to be more robust to channel degradations, and thus be
rendered at smaller dpi.

Figure 3.3: The four pattern-matrices used for graphical
encoding.

a b

Figure 3.4: Logo-image in a, and corresponding barcode in b.

8

3.2 Barcode decoding:

1. Currently we do not implement any barcode location procedure; the barcodes are

located roughly at the same location in the scanned image, surrounded by white
pixels. We refer to that location as the barcode-zone.

2. In the current implementation the barcode-zone is scanned in a zigzag scan from all
the Four Corners. Figure 3.5 depicts one such scan (marked by cyan) at the upper-left
corner. The first dark pixel of each scan (requires a threshold) is considered to be a
part of the corresponding fiducial pixel, and is used as an anchor pixel for that mark
(red dot in Figure 3.5). A standard flood-fill algorithm locates all the dark pixels
connected to these anchors (green outline in Figure 3.5). The centers of the fiducial
marks are then computed as the average (center of mass) of the pixels of each mark
(blue dot in Figure 3.5). This zigzag scan enables a robust detection of the anchor
points even in the presence of significant rotations.

3. Initially we set the center of our coordinate system 10 pixels above and to the left of

the center of the upper-left fiducial mark. That eliminates the translation problem.
Next we find the relative rotation of the center of the upper-right fiducial mark, and
rotate the image back. Last we find the skew factor as the horizontal translation of the
centers of the lower marks relative to the centers of the upper mark. If a skew is
detected, the image is corrected also for the detected skew. The transformation
procedures are standard procedures in computer vision and image processing
algorithms. We use bilinear interpolation. Note that:
• It is possible to use many other interpolators here.
• It is possible to correct for both the rotation and the skew in a single

transformation,
• The 4 fiducial marks enable correction of global transformations with up to 8

degrees of freedom. In the current implementation we use only 4 (2 - translation,
1 – rotation, and 1- skew).

4. The previous step results in a rectangular image. We can measure it and slice it to
4020 × rectangular sub-images (in our case 20/ =KM , and 40/ =KN).

Significant improvements are gained when this simple procedure is replaced by the
deformation correction procedures detailed in section 5.

Figure 3.5: The zigzag scan order (cyan), the anchor point (red), the set
of connected dark points (green), and their center of mass
(blue).

9

5. Considering the simple halftone patterns used, and the fact that we further limit the
logo design to have a constant brightness in every logo-matrix, we chose to apply 4
simple vector products to every sub-image. The 4 vectors are Gaussian profiles,
centered each at the center of a quadrant of the sub-image. For dark sub-images, the
pattern (see Figure 3.3) corresponds to the quadrant having the maximal value, and
for bright sub-images, the pattern corresponds to the quadrant having the minimal
value.
In the more general case, it is possible to apply any maximum-likelihood-type of
detector to determine, which of the L possible halftones is the most likely to have
produced the corresponding sub-image.

6. The corresponding standard BCH error correction is performed followed by the
appropriate reordering of the bits (see Figure 3.2).

7. Since we do not use compression, no decompression is necessary.

4. XOR BarCode Modulation

The modulation stage for the Barcode is the stage where binary information (usually
coded for error-correction and such), turns into an image. This has to be done considering
two requirements:
1. The information should be retrievable from the image
2. The resulting image should render the input image (it should look like it).
For that purpose it is important to note that the input image is made of pixels whose gray
values are limited to g and 1-g.

In the previous barcode modulation scheme we rendered each pixel from the input image,
by expanding it to one of four different 2x2 dot patterns. Patterns rendering bright pixels
(g=0.25 gray value) were composed of 3 white dots and a single black dot, and vise versa
for dark pixels. Note that the two modulation requirements were naturally fulfilled:
1. The location of the minority dot codes 2 bits of information.
2. Average brightness of output patterns is identical to the value of the respective inputs.
The table below depicts the 2x2 dot patterns as a function of the input pixel and the code.

Input Code

0 1 2 3

10

In the new barcode modulation method (XOR modulation) we take NxN input pixel
patterns, and render them as NxN dot patterns. The rendering patterns are the XOR
between the input pattern and the relevant code pattern. Let us detail the method for the
simple case of N=2, and for the actual implementation for which N=3.

For N=2, we have four code template patterns, the four modulation patterns for a bright
input pixel in the previous modulation method (the first line in the table above). The table
below depicts 2x2 dot pattern corresponding to a few examples of input pixel patterns.

Note that here also the two modulation requirements were fulfilled, in a similar manner to
the previous modulation method:
1. The hamming distance between outputs is identical to the distance between the codes.

In other words, theoretically, for every 2x2 input pattern, the four corresponding
output patterns are as different from each other as the code patterns. Since the code
patterns are the modulation patterns of the previous method, the information is,
theoretically not less retrievable in the new modulation, than in the previous one.

2. In the new modulation method each pixel is rendered as a single dot, thus in the
output it is either black or white. However, the probability of bright pixels to be
rendered white is 0.75, and the probability of dark pixels to be rendered white is 0.25.
Thus on the average the input gray value is maintained.

Input
Examples

Code

0 1 2 3

11

For N=3 we first have to choose g, and then select an appropriate set of code template
patterns. We chose g=2/9, which enhances the visual quality of the output pattern, since
the contrast (1-g)-g = 1-2g, is larger for g=2/9, then for g=0.25. The corresponding set of
code template patterns is all the possible combinations of two pixels in a 3x3 set,
altogether 36 patterns. Some of these patterns are shown in the context of XOR
modulation in the following table.

We could have used all the 36 code template patterns efficiently coding log236=5.17 bits
in every pattern. In the current implementation we chose however to give up the
fractional capacity, and limited ourselves to 32 codes. In order not to be biased by the
selection of a predefined set of codes, we keep toggling through the 36 codes as follows:
The code C36 (one of 36) is obtained from the desired code C32 (one of 32) by:
 C36 = mod36 (C32 + counter)
Where the counter is incremented after every use. During decoding C32 is decoded from
C36 by:
 C32 = mod36 (C36 - counter)

4
Input
Examples

Code

0 1 2 3

…

12

The new modulation method is a natural extension of the previous modulation method.
This is obvious from the last two rows in the table, where constant patterns result in
patterns identical to previous modulation. Furthermore, it is straightforward to extend the
proposed modulation method to more complex nxn modulation patterns.

The problem with the new modulation is at the decoding stage. Where previously the
code was determined simply by looking for the maximal/minimal average gray value in a
dot, now it involves Bayesian estimation (we handled this as well, though for coherence it
is not detailed here).

5. Correction of Geometric Pattern Deformations

We describe a correction method for VSB binary patterns that have undergone geometric
deformations due to office-type degradations including photocopy. Copies of barcode dot
patterns are deformed as follows:
1. Shape deformations are responsible for the fact that black dots change their size and

either shrink or expand. This deformation depends usually on the brightness setting of
the copier. In a dark setting black dots expand, and in bright settings they shrink.

2. Space deformations are responsible for the fact that dots corresponding to certain
coordinates in the original image are located at different coordinates in the copy.
Global space deformations like translation, rotation, and affine transformation are
corrected using the registration marks. However, additional local deformations occur
which are harder to characterize and correct for. Most deformations due to copying
are approximately separable, namely, copies of coordinates (⋅,0x) in the original are
located at coordinates (⋅∆+ ,0x), and likewise (0, y⋅) are mapped to (∆+⋅ 0, y).

The correction is composed of two stages. In the first we use morphological operations to
correct for shape deformations, and in the second we use row/column gradient statistics
to correct for local approximately separable space deformations.

5.1 General Scheme of Geometric Pattern Correction

The proposed correction module for geometric pattern deformations is located between a
pre-process module and a decoding module, as in Figure 5.1.

Figure 5.1: A coarse block diagram of a barcode decoding system in which the proposed geometric
deformation correction module may be located.

Pre-Process
Information Geometric

Deformation
Correction

Scanned Image Barcode
Decoding

13

The correction module is composed of two main parts, described below, and in Figure
5.2:

1. A correction module for shape deformations is composed of:

1.1. A module for determining whether black dots have eroded or expanded relative
to the original pattern, and if so, to what extent. The extent is quantified as a real
number standing for the radius of erosion or dilation. This module may be
implemented in several ways, for example:

1.1.a. Analyzing average darkness of the pattern, and comparing it to the average
darkness in the original pattern, and translating the darkness differences to
erosion or dilation radius. This method requires the availability of the
average darkness of the original image, a reasonable assumption in some
applications (including ours).

1.1.b. Analyzing dot shapes, locating single dots in the pattern, and comparing
their radius to the radius of single dots in the original barcode pattern. This
method requires the availability of the original dot radius, a reasonable
assumption in all applications.

1.2. A module for shrinking or expanding black dots to compensate for the respective
expansion or shrinkage of the pattern due to the shape deformation. This module
may be implemented in several ways, for example:

1.2.a. Morphological operations eroding or dilating the black pattern at the
specified radius.

1.2.b. Modifying the threshold defining the black pattern in the scanned image.
2. A correction module for local space deformations determines the dot grid in the

scanned image by locating the interfaces of dot-rows and dot-columns. This module
is composed of:
2.1. A module for detecting horizontal and vertical edges. Horizontal edges are used

for locating dot-column interfaces, and vertical edges for dot-row interfaces. This
module may be implemented in several ways, for example:

2.1.a. Directed (horizontal and vertical) gradient estimation.
2.1.b. Zero crossing of the directed (horizontal and vertical) Laplacian.

2.2. A module for locating dot-row and dot-column interfaces from the edge
information. This module may be designed to correct either separable space
deformations or general ones, and may be implemented in several ways, for
example:

2.2.a. To correct for separable space deformations the absolute value of the
horizontal gradient may be summed in columns. A large value is an
indication of dot-column interface. And vise versa for row interfaces.

2.2.b. To correct for general space deformations column interfaces may be
estimated row by row requiring consistency with: gradient magnitudes, near
by interface locations, and interface locations in previous rows. And vise
versa for row interfaces.

2.3. A dot alignment module, correcting for the space deformations according to the
dot interfaces, which may be implemented in several ways, for example:

2.3.a. Augmenting the image with a list of true dot centers.

14

2.3.b. Virtually moving the dots into their original location by composing a new
image made of sub-images cropped around warped dot centers.

5.2 Current implementation of Geometric Pattern Correction

The Barcode decoding system, for which the proposed pattern correction was designed
and built, reads in a scanned document containing the image of a known visually
significant 2D Barcode. It first enhances the scanned image, locates the synchronization
marks, and uses them to correct for global space transformations (translation, rotation,
and shear). In the next stage it corrects for the other geometric deformations, which are
the subject of this subsection. Subsequently it analyzes the barcode pattern (graphic
demodulation), and decodes it to give the embedded information, see Figure 5.3.

Figure 5.3: A coarse block diagram of the barcode decoding system in which the preferred
implementation of the geometric deformation correction module is located.

Enhancement
and Alignment

Information

Original Image

Geometric
Deformation
Correction

Graphic
Demodulation
and Decoding

Scanned Image

Figure 5.2: A block diagram of the proposed geometric deformation correction module.

Shape-Deformation Correction

Scanned
Image Dot Size

Modification

Erosion or
Dilation
Extent

Rad

Space-Deformation Correction

Dot
Alignment

Directed
Edge
Detection Edg

Interface
Detection

Interf

Aligned
Image

1 2

1.1

1.2

2.1

2.3

2.2

Original
Image

15

The preferred implementation is composed of the (a) implementations of the previous
section. Next, the various implementations will be detailed. The (a) implementations fit
in well with each other. Other system combinations may require some fitting.

5.3.1 Details of Erosion/Dilation Extent Determination Module (1.1.a)

In the preferred system the relative area of the black pattern is equal to the average gray
value of the original image (the image which the barcode renders). This is a reasonable
assumption for general visually significant barcodes. Therefore, the scanned image is first
binarized using a threshold function and the relative area, ,b of the white part is
compared to the average gray value, ,g of the original image. If b is smaller than ,g the
required morphological operation is dilation of the black dots, (erosion if larger). The
radius, ,r of the required morphological correction is a function of the absolute
difference || bg − . For our implementation we approximated this function as a linear
function: ||9 bgr −⋅= , where b and g are represented as fractions in the range]1,0[.

5.3.2 Details of Erosion/Dilation Extent Determination Module (1.1.b)

For another possibility to implement this module one first applies super-resolution edge-
detection on the deformed dot shapes, after which horizontal and vertical black runs are
measured. Runs originating in n dots are measured rRn 2+⋅ , where R is the dot radius,
and r the deformation radius. The deformation radius r is the one minimizing the best
robust square fit of the measurements to the above model. For a similar algorithm look in
[1].

5.3.3 Details of Dot-Size Modification Module (1.2.a)

In the preferred system the deformations are best modeled as a morphological dilation or
erosion of the black pattern, which are best corrected for by erosion or dilation
respectively. In the preferred implementation the structuring element is a cross shape
with entries: 0b in the center, 1b in coordinates)0,1(± and)1,0(± , 2b in coordinates

)0,2(± and)2,0(± , and so on, as in Figure 5.4.

Figure 5.4: The preferred morphological structuring
element.

b2

b1

b1

b2

b0 b1 b1 b2 b2

M

M

L L

16

The corrected image is the morphological gray scale dilation or erosion of the image with
the above structuring element. Namely, one places the structuring element on every pixel
in the input image. The value of the dilation at the corresponding pixel is the maximum
of the differences of neighborhood pixel values with corresponding structuring-element
values. For erosion one simply takes the minimum of sums:

 { }lkljki

S Elk

SIDilate ji ,
,

,, Max −= ++
∈

 and { }lkljki
SElk

SIrode ji ,
,

,, E Min += ++
∈

where SE is the set of valid structuring-element coordinates, and nmI , , nmS , are image
and structuring-element values at coordinates),(nm .

The values K,,, 210 bbb should be such that they perform as a structuring element of a
given radius. For integer-valued radii this is simple:

>
≤

=⇒= ij
ij

bi j for 1
for 0

ρ

For non-integer radii we used the following transformation:

>
=−⋅
<

=⇒−∈
ij
iji
ij

bii j
for 1
for)(22.0
for 0

],1[ρρ

which was found to give a linear correction in terms of deformation radius as measured
by module 1.1.a. Namely, if an image with a measured deformation radius of 0r , is
corrected with radius 1r− , the subsequent deformation radius will measure 10 rr − .

5.3.4 Details of Dot-Size Modification Module (1.2.b)

Anther possibility to implement this module is simply to modify the threshold defining
the black pattern. Since the black pattern is obtained from the scanned image by a
threshold, one can modify it thereby modifying the area of the black pattern up to the
required ratio. However, in our implementation we found this simple correction to be not
satisfactory, probably because the morphological deformation model was more accurate.

5.3.5 Details of Directed Edge Detection Module (2.1.a)

In the preferred implementation we simply used forward derivative in the horizontal or
vertical direction to estimate the directed edges in the respective direction. One may use
equivalently any directed edge detection kernel.

5.3.6 Details of Directed Edge Detection Module (2.1.b)

Another possibility to implement this module is to use zero crossing.

17

5.3.7 Details of Interface Detection Module (2.2.a)

In the preferred system the barcode covers a relatively small area on the paper. In such
applications one can safely approximate the space deformation to be separable. This
means that the row and column interfaces are aligned with pixel rows and columns, and
the deformation is expressed only in their uneven distribution.

At column interfaces one can expect to see many transients between black dots on the
right of the interface and white dots on the left, or vise versa. We therefore sum up the
absolute values of horizontal gradients in columns and determine the interface at columns
with high peaks of gradient figure. To find row interfaces one can transpose the image
and do the same (or transpose the above procedure).

In the preferred implementation we also provide for outlier interfaces, in which for some
reason there was a weak gradient activity (e.g. in most rows dots on both sides of the
interface had identical value). This is possible by determining a range (measured from the
last interface) in which to look for the new interface. If a no interface is detected in that
range, it is determined to be a standard dot-size away from the last interface.

5.3.8 Details of Interface Detection Module (2.2.b)

Another possibility to implement this module, which is necessary in applications where
the space deformation is distinctly not separable, is the following procedure described for
column interfaces. Column interfaces are estimated row by row. In every row the location
of each column interface is determined so as to satisfy a few, potentially conflicting
consistency requirements. The interface should preferably agree with local large gradient
magnitudes, it should not deviate much from its location in the previous row, and finally
it should form a quasi-uniform pattern with near by interface locations in the same row.

All this can be implemented as follows (we used it in our watermark demo). Interfaces
are recorded in sub-pixel accuracy. Binary gradients are determined by thresholding the
scanned image. If a gradient is located within 1.5 pixels from an interface location in the
previous row it is associated with that interface. Interfaces with no gradient association
keep their location from the previous row. Interfaces with multiple gradient associations
relate only to the closest, and determine their new location as a weighted average
between its location (weight=0.3), and their location in the previous line (weight 0.7).
When all the interfaces for a row have been determined this way, their final location is a
weighted average between these locations and the average location of their respective
neighbors on the left and right (average extent may range up to several interfaces on each
side).

5.3.9 Details of Dot Alignment Module (2.3.a)

In the preferred implementation, dots are only virtually aligned by augmenting the
scanned image with a list (describing a potentially non-uniform square grid) of dot
centers. Dot center coordinates may be computed as either the center of the interface

18

coordinates on both sides (for separable deformations), or the center-of-mass of the dot
for non-separable deformations.

5.3.10 Details of Dot Alignment Module (2.3.b)

Another possibility to implement this module is to actually compose a new image from
sub-images cropped around located dot centers. Dot centers in the aligned image are thus
located on a uniform square grid, each dot covering a square patch of pixels around it.
This square patch is cropped out of the respective dot location in the scanned image. This
way there are pixels in the scanned image that will not be found in the aligned image, and
other pixels that will be copied to several locations in it.

6. VSB Decoding Procedure

For the VSB code to be robust under printing, photocopying and scanning each pixel of
the halftoned image B is duplicated and printed as an rectangular area of t x t printed
pixels (p-pixels). These areas are homogeneously composed of either black p-pixels (for
black original pixel) or white p-pixels (for white original pixel). The printed image is
going through consecutive photocopying, after which it is scanned in high resolution. S
denotes the scanned image. Suppose that the scanning resolution is such that each
original pixel is now represented by an array of rxr scanned pixels (s-pixels). Due to
visual degradation caused by the printing and scanning processes, the resulting arrays of
s-pixels in S are no longer homogeneous but contain s-pixels of different gray levels.

In order to decode the message M from the halftoned image B the following steps are
required:
(a) Align the scanned image S.
(b) For each pixel in the halftoned image B - identify the borders of the corresponding s-
pixel array in the scanned image S.
(c) For each s-pixel array – estimate the probability that this array have been originated
from a black (white) pixel.
(a) Based on these probabilities, decide for each sub-image of (n x n) pixels in the

original image I, which of the code words was used for its halftoning.
(e) Having identified the code words for each sub-image, the message M can now be
decoded using an error correcting decoding.

Steps (a), (b) and a preprocessing for (c) are described in section5 and step (e) is
considered in section 3.

Assume now that for each pixel in B, the corresponding s-pixel array in S has been
identified. On this basis we describe in detail steps (c) and (d) above.

19

6.1 Estimating the probability for a pixel to be white or black

6.1.1 Discrimination function

Let s be an array of s-pixels corresponding to one original pixel and denote the gray
levels of its s-pixels by si,j where i,j=1,..,r. We are looking for a function of the si,j that
discriminates between arrays that corresponds to black original pixels and those
corresponding to white original pixels. We found experimentally that a good linear
discrimination function is of the form ∑

=

=
rji

jiji scsf
,1,

,,)(where the coefficients ci,j are

taken as grid values of a two dimensional gaussain shaped surface. More explicitly -
})/))2/()2/exp{((,max(22

, σrjricc ji −+−= where c and σ are constants.
A histigram of the discrimination function computed for each pixel in a scanned
halftoned image is demonstrated in figure 6.1. The right side population belongs to
“white” pixels and the left side population belongs to “black” pixels.

6.1.2 Estimating probablistic model parameters
Based on the shape of such histograms we modeled the distribution of f(s) by a bi-modal
non-symmetric exponential distributions. More explicitly, we assume that for black
(white) pixels y=f(s) is distributed according to:

>−−
<−−

=
µµαα
µµαα

µαα
yy
yy

yP
RR

LL
RL)}(exp{

)}(exp{
),,|(

Since the parameters αL, αR and µ are different for the “black” pixels and the “white”
pixels populations, the overall number of parametrs to be estimated in this model is 6. To
simplify notations we denote black pixels by 0 and white pixels by 1 and the parameters
are index correspondingly - α0L, α1L etc.
In order to reduced the computational burden, we devide the estimation procedure into
two steps:

(a) Estimating µ0 and µ1.
We partition the observations yi=f(gi) into two populations, using the known expected
number of “black” pixels – N0, and “white” pixels – N1. The “black” population
comprises of the smallest N0 observations and the “white” populations comprises of the
rest (biggest N1). For each of these populations we estimate its mode µ by the following
ML approximated method:

20

figure 6.1

We look for the value of µ (for the sake of simplicity we ignore the 0/1 subscript) that
maximizes the ML estimator for µ:
(2.1) ∑∑

∈∈

−−+−−=
RL Ii

iRR
Ii

iLL yyArg)]}(log)(log{max[µααµααµ .

To find the value that yield the maximum we enumerate all the averages of two
consecutive observations in the given populations. Since the true values of αL and αR are
not known we estimate them, for each tested value of µ by:
(2.2) ∑

∈

−=
LIi

iLL yN µα)/1(/1

(2.3) (2.3) µα −= ∑
∈ RIi

iRR yN)/1(/1

Where IL is the set of observations smaller than µ, IR is the set of observations larger than
µ, NL=| IL | and NR=| IR |.

Substituting (2.2) and (2.3) in (2.1) and simplifying the expression one gets:

∑∑
∈∈

−−+−−=
RL Ii

iRR
Ii

iLL yNNyNNArg))]}(log(log))(log(log{max[µµµ

(Note that IL and IR and hence NL and NR are both functions of µ.)

The estimates for α0L and α1R are derived directly from (2.1) and (2.2) using the
corresponding estimates for µ0 and µ1.

21

Having estimated µ0, µ1, α0L and α1R we proceed to estimate the parameters α1L and α0R
(Since there is no place for confusion we use the notations α1 and α0). We ignore all
observations below µ0 and above µ1 and define }|{ 10 µµ ≤≤= yyI M , NM = |IM|. We
assume that the observations }:{ Mi Iiy ∈ are samples from a random vector with

distribution }exp{),(
iiii

M
xixxx

Ii
ii yPxyP µαα −−Π=

∈
 where xi takes the values 0 or 1 with

the probabilities P0 and P1 respectively. We use the EM paradigm to estimate α1 and α0 .
The EM algorithm start with initial values for the parameters and perform a series of
updating stages that converges to a (local) maximum of the mean ML objective function.
To estimate the values of α1 and α0 the conditional expectation

=],,|),([log 10 iii yxyPE αα

)()log(),,|1()()log(),,|0(111110000010 µααααµαααα −−+−−∑
∈

iiii
Ii

yPyPyPyP
M

should be maximized at each stage of the algorithm. The estimation for α1L and α0R are
the values of the estimates for α1 and α0 at the last updating stage.

The EM algorithm includes the following steps:

Initialization:
For each yi denote the gray-level of the original pixel by gi. Using the XOR modulation
scheme the halftone pixel corresponding to gi has probability gi to be 0 and (1- gi) to be 1.
We define p0(0|yi)= gi for each i∈IM.

Updating step:

∑

∑

∈

∈

−
=

M

M

Ii
i

j
Ii

ii
j

yp

yyp
jE

)|0(

))(|0(
)(

0

0

µ
 and

∑

∑

∈

∈

−
=

M

M

Ii
i

j
Ii

ii
j

yp

yyp
jE

)|1(

))(|1(
)(

1

1

µ

where pj(1|yi)= 1-pj(0|yi).

Set α0(j)=1/E0(j) and α1(j)=1/E1(j) then:

})(exp{)()|1(})(exp{)()|0(
})(exp{)()|0(

)|0(
11

0
00

0
00

0
1

iiii

ii
i

j

yjjypyjjyp
yjjyp

yp
αααα

αα
−+−

−
=+

6.2 Scoring code words

Given the probability of each pixel in the scanned image S to originate from a black
(white) pixel, the appropriate code words can be scored according to the Maximum
Likelihood (ML) principle.

22

Let w=(w1,.., wL) be a code-word form the codebook of a given sub-image p=(p1,.., pL) in
I. Assume that the corresponding scanned sub-image in S has discriminative function
values y=(y1,.., yL). The ML score for w is given by s(w)=P(w|y). Since each code word
has equal a-priory probability this score is equivalent, under the assumption that
observations are stochastically independent, to ∏

=

==
Li

ii wyPwyPws
,1

)|()|()(.

The log likelihood score is given by:
))1|(/)0|(log()1()|(log)|(log)(

,1,1
i

Li
i

w

Li
ii yPyPwyPwyPwscr i∑∑

==

−≅== (2.5)

where ≅ means - equal up to a constant that does not depend on w.
Substituting P(yi|0) and P(yi|1) in (2.5) for the expressions of the bi-modal non-symmetric
exponential distribution estimated before the score for w becomes

∑
=

−=
Li

i
w yFwscr i

,1

)()1()(where

<−−−+

<<−−−+

>−−−+

=

00011
1

0

100011
1

0

10011
1

0

)()(log

)()(log

)()(log

)(

µµαµα
α
α

µµµαµα
α
α

µµαµα
α
α

yyy

yyy

yyy

yF

LL
L

L

RL
L

R

RR
R

R

i

The code word that achieves the highest score scr(w) is chosen for decoding the message
M.

Appendix A – Theoretical analysis of Visually Significant 2-D
Barcode

We consider a coding scheme that produces a 2-D barcode patterns with visual
resemblance to a pre-specified 2-D gray scale image. This scheme is termed Visually
Significant Barcode (VSB).

A.1. VSB coding scheme:

Let I be an (m x l) gray level image, and let M be a (binary) message to be transmitted.
For the sake of simplicity we assume that I can be divided to sub-images of fixed size –
(n x n). By mapping each sub-image to a binary (n x n) array a halftoned version, denoted
B, of the original image is produced. The message M can be encoded in B in the
following way:
Given a collection of distinct halftone mappings the message M determines uniquely, the
half-tone mapping for each sub-image. Hence, each message produces a distinct

23

halftoned image B(M). For decoding, one needs to identify the mappings used for
halftoning and then one can reconstruct the message. This procedure is possible since the
decoder has the original image and therefore can extract the halftone mappings by
comparing it to the halftoned version produced uniquely by the message.

In order to achieve visual resemblance between the original image and its halftoned
version, the halftone mappings should preserve the visual content of the gray scale sub-
images. At the same time, in order to allow unique decoding these mappings should be
distinct. Moreover, since the decoder receives the halftoned image with some quality
degradations, the halftone mapping should not only be distinguishable but also distant
enough (with respect to a suitable measure) to allow robust decoding procedure.

The preceding discussion implies that the VSB coding scheme has an intrinsic trade-off
between visual fidelity and reliable transmission rate. We present a mathematical
description of the VSB coding scheme that formularizes this trade-off.

VSB mathematical model

Let p = (p1,..,pL), where L = n2, be a gray scale sub-image, that is an (n x n) pixel array.
The corresponding set of output binary arrays, C(p)={w1,..,wN

 }, where N=|C(p)|,
constitutes a code-book (a set of code words. Note that this set depends on the gray-level
pattern of the sub-image p since the visual content is to be approximated by all binary
code-words. For the rest of this section we fix a sub-image and consider the properties of
the corresponding code-book in relation to visual requirements and transmission rate
considerations.

Definition: Capacity
The capacity of the code is defined as Cap(C(p))=log2(|C(p)|)/L bits per symbol.

Features of the VSB code book:

(1) The members of C(p) should be well separated with respect to some distance measure
pertaining to the noise contaminating the transmitted half-toned sub-image, e.g.
Hamming distance. We denote this distance measure by Dc and require that for some
constant d:

Dc(wi ,wj) ≥ d, for each ji ≠ , i,j = 1,.., L.

In order to preserve the visual content of the gray-scale sub-image, we impose two sets of
constrains on the code-book:

(2) The average gray level of each code word in C(p) should be as close as possible to the
average gray level of p:

 Kpw
L j

j
j

i
j <− ∑∑1

 for each i, where K is a constant.

24

(3) The average (over all code words) gray level of each binary pixel should equal the
gray level of the corresponding pixel in p. Under the assumption that code words are
drawn uniformly this constraint implies that:

 j
i

i
j pw

N
=∑1

 for each j=1,..,L.

Under constrains (1), (2) and (3), a good codebook is one that minimizes a distance
measure that implies good visual quality.

In the sequel, we propose three approaches for finding good codebooks, but prior to this
we give a rough estimation for the VSB capacity:

Estimating the VSB capacity

We consider, as a starting point, sub-images of constant gray level g and assume that
k=g*L is an integer. In this case constraint (2) is satisfied with K=0 if there are exactly k
ones in any of the code words. Such codes are termed - constant weight codes.
Restricting the discussion to the case d=2 in constraint (1) the capacity of the code is:

L
k
L

pCcap

=
2log

))((

Substituting k=g*L and using Stirling approximation for n! one gets:

)1(log)1()(log)())((22 gggggHbCcap −∗−+∗=≅ , where ≅ means assimptoticly
equal for large L.

It turns out (to be proven regorously) that cap(C(p)) is an increasing monotone function
of L and an increasing monotone function of]5.0,0(∈g . The optimum capacity, for each
L is achieved at g=0.5 where it is equel to 1. However, if all sub-images in an image have
constant gray level, then this image has no visual significant. Therefore, at least two gray
levels should be allowed and the capacity is strictly smaller than 1. Choosing the gray
levels g and 1-g the capacity of the code is asymptotically equal to H(g)=H(1-g).
The gray levels g and 1-g should be separated enough to allow visual distinction. On the
Other end g should be close to 0.5 to increase capacity. A reasonable compromise is to
choose gray level values in the interval (0.25-0.35). We comment that for g in (0.25-0.35)
the H(g) bound is reached to within 10% for L values of 16 (4x4 array) to 25 (5x5 array).

Remark: We have seen that the capacity is H(g) only in those cases that each sub-image
has constant gray-level (g or 1-g). We will show in the sequel that the same capacity can
be achieved for mixed (g and 1-g) sub-images.

Constructing VSB codebooks.

25

We return now to the problem of finding a good VSB codebook. Unfortunately, this
problem is rather difficult, due to the big number of constrains implies by constraint (1).
In what follows we propose three heuristic approaches for constructing such codebooks.

Sub-Optimized VSB codebook.

A VSB codebook can be constructed by a greedy algorithm that adds one code word at
each stage. Since an iterative algorithm can’t satisfy all the constraints imposed on the
codebook at each stage, these constraints are replaced by related objective functions. The
new code word is chosen to be the optimal word with respect to a visual objective
function (pertaining to constraints (2) and (3)) that satisfies constraint (1) in relation to all
the code words previously chosen.
This approach suffers from two main drawbacks:
(a) It does not guaranty finding an optimal or even a sub-optimal codebook.
(b) Encoding and decoding with different codebooks for each gray-scale sub-image is

hardly practical, except for very small values of L.
Due to these draw backs we have not pursue this approach.

Computable codebooks.

In this approach, the code word is computed on the fly, for each sub-image, using a
suitable pre-defined halftone function that maps gray-scale sub-images to binary arrays.
This function depends on the message M (as a parameter) and produces unique halftone
patterns for different messages. We have considered two types of half-tone functions:

Dithering matrices – arrays of gray-scale values that act as thresholds on the input sub-
image. Given a collection of such matrices, a matrix can be chosen, for each sub-image
based on the message to be encoded. This approach can handle multi-gray level images.
Unfortunately, it is possible to prove that the number of dithering matrices that produce
unique half-tone pattern even for relatively small sub-images is restricted to below the
VSB capacity computed in section 1.2.

XOR patterns – binary arrays that produce half-tone patterns by XOR operation. This
approach is limited to images having only 2 gray level: g and 1-g.
Each sub-image is represented by an (n x n) array of ones and zeros, where zero
represents the low input gray level and one the high input gray level. Assuming that
k=g*L is an integer, the “generating” codebook consists of (n x n) binary arrays with k
ones and L-k zeros. For each sub-image - p, a generating code pattern - v is chosen (by
the message M) and the code word w is the XOR of these two arrays vbw ⊕= .

Proposition:
The VSB generated by XOR patterns code-book that consists of all (n x n) binary arrays
with exactly k ones, has the following properties:

26

(a) The hamming distance between each couple of code words is greater or equal to 2.
(This fact relates to constraint (1) with d=2).

(b) Constraint (2) is satisfied with)(*2 2ggK −= .
(c) Constraint (3) is satisfied.

(d) The capacity of the XOR code is equal to
L

k
L

2log

Proof:
(b) Since the number of “ones” in each XOR pattern is exactly k, the distance between

any different two patterns is greater or equal two. It is easy to verify that the XOR
operation preserves this property.

(c) The worst value for ∑∑ −
j

j
j

i
j pw is reached when the sub-image has L-k zeros and

and all the k ones of the Xor pattern correspond to sub-image ones. In this case the
output pattern is all zeros, but the average gray level is:

)(*2*)1()(*
11 2ggkgkLg
L

p
L j

j −=−+−=∑

(d) The set Ni
i
jv ,..,1}{ = of entries in location j of all Xor-patterns has ones to zeros ratio of

k to n-k. Since xoring a bit with zero preserves its values and xoring it with one flips
its value it follows that:

 For a zero bit in location j: g
Lc
kc

v
N

w
N i

i
j

i

i
j ==⊕= ∑∑ *

*
0

11
 ,

and for a one bit in location j: g
Lc

knc
v

N
w

N i

i
j

i

i
j −=

−
=⊕= ∑∑ 1

*
)(*

1
11

 for each j,

where c is the ratio
L
N

c = .

(e) See section 1.2 €

The XOR patterns approach has the advantage of simplicity and high capacity. The
corresponding VSB capacity, reaches asymptotically the bound of H(g). However, the
visual quality might suffer from XOR patterns that have blobs of ones or zeros. Hence it
is preferable that such unpleasant patterns will be removed from the codebook. This
removal reduces the capacity of the code, but improved the visual fidelity.

Tilling with small binary arrays (constrained system).
This approach can be utilized as a method for half-toning multi gray-level images or for
improving visual quality of the XOR patterns approach. We demonstrate it by
considering tiling with (2 x 2) binary arrays and limit the discussion to images with only
two gray-levels: 0.25 and 0.75. Generalizations to higher dimensions and multi gray-level
images are conceivable.

Given an image with gray levels in the set {0.25,0.75}, each pixel is mapped to a (2 x 2)
binary array, in such a way that the average pixel intensity is preserved. To improve

27

visual fidelity, some constraints are imposed on the way arrays are tiled together. These
constraints are designed to prevent the production of unpleasant patterns such as blobs of
ones or zeros. The tilling method with (2 x 2) arrays can be viewed as an algorithm to
remove unpleasant patterns from a codebook with higher dimensionality.
The tilling algorithm can be described as a finite state system defined on a directed graph
whose vertices are the tiling arrays and whose edges represent the permitted transitions.
Encoding is implemented by selecting, at each tiling step, one of the outgoing edges of
the current vertex, according to the input message. At decoding, the edges are
reconstructed from the original image and its encoded version.

The performance (capacity) of the Tilling approach to VSB can be analyzed via the
theory of constrained systems. Under suitable conditions, the capacity of a one-
dimensional constrained system can be computed from the biggest eigenvalue of the
adjacency matrix of the graph describing the system. The proposed tilling system is two-
dimensional; hence our analysis provides lower and upper bound for the capacity.

To demonstrate this analysis we construct an example of a constraint code graph for the
case of constant gray level (0.25) image and compare its capacity to the estimation
presented in section (1.2). An equivalent graph can implement the code for 0.75 gray
level images. Appropriate switching between these two graphs implements the code for
the two gray-level images.

(2 x 2) Tiling example
To achieve the average gray level of 0.25 we use the following binary arrays:
1 array with no 1’s – represented by vertex A0 ,
4 arrays with one 1 – grouped in each of the vertices A1 and B1,
6 arrays with two 1’s – grouped in vertex B2.
The following diagram describes the system graph:

The digit on each edge indicates the number of outgoing edges from each vertex inside
the group.

A1 A0

B2 B1

4

1

6
4

1

6
4 4

28

The adjacency matrix is:

0041
6400
0041
6400

 and its biggest eigenvalue is 6.4495.

Hence the capacity of the corresponding one dimensional tilling code is log2(6.45)/4=
0.672; This value is an upper bound for the capacity of the tilling system, since the one
dimensional system is less constrained then the two dimensional one. The difference
being that the one-dimensional code is not constrained by vertical tilling limitations.
Computing a lower bound can be achieved by considering a two dimensional tilling
system that uses the one dimensional system for odd rows and tilling with A1 arrays only
for even rows. It is easy to verify that this system satisfies the constraints imposed on the
original two dimensional system but has lower capacity which is the average of the two

one dimensional tilling methods. This average is given by: 585.0)5.067.0(
2
1

=+ .

To conclude, the capacity of the constrained tilling system satisfies 0.585 < cap < 0.672.
This result can be compared with the 0.5 capacity of the (2 x 2) XOR code and the 0.677
capacity of the (4 x 4) XOR code, both corresponding to the same gray level of 0.25.

Remark:
In order to trade capacity with visual quality, one can remove certain edges from the code
graph, e.g. those that tiles two arrays with adjacent ones.

4. Reference

 [1] Carl Staelin, and Larry McVoy, “mhz: Anatomy of a micro-benchmark”, in

Proceedings of USENIX 1998 Annual Technical Conference, pp. 155, New Orleans,
Louisiana, June 1998.

