[cickano

Modeling and Managing Interactions
among Business Processes

Fabio Casati, Angela Discenzal
Software Technology Laboratory
HP Laboratories Palo Alto

HPL-2000-159

December 4th | 2000*

E-mail: casati@hpl.hp.com, discenza@elet.polimi.it

Events,
workflows,
interoperability

Most workflow management systems (WFMSs) only support
the separate and independent execution of business processes. However,
processes often need to interact with each other, in order to synchronize the
execution of their activities, to exchange process data, to request execution
of services, or to notify progresses in process execution. Recent market
trends also raise the need for cooperation and interaction between
processes executed in different organizations, posing additional challenges.
In fact, in order to reduce costs and provide better services, companies are
pushed to increase cooperation and to form virtual enterprises, where
business processes span across organizational boundaries and are composed
of cooperating workflows executed in different organizations. Workflow
interaction in a cross-organizational environment is complicated by the
heterogeneity of workflow management platforms on top of which workflows
are defined and executed and by the different and possibly competing
business policies and business goals that drive process
execution in each organization. In this paper we propose a model and system
that enables interaction between workflows executed in the same or in
different organizations. We extend traditional workflow models by allowing
workflows to publish and subscribe to events, and by enabling the definition
of points in the process execution where events should be sent or received.
Event notifications are managed by a suitable event service that is capable
of filtering and correlating events, and of dispatching them to the
appropriate target workflow instances. The extended model can be easily
mapped onto any workflow model, since event specific constructs can be
specified by means of ordinary workflow activities, for which we provide the
implementation. In addition, the event service is easily portable to different
platforms, and does not require integration with WfMS that supports the
cooperating workflows. Therefore, the proposed approach is applicable in
virtually any environment and is independent on the specific platform
adopted.

* Internal Accession Date Only Approved for External Publication
1 Politecnico di Milano, Milan Italy, 20133
O Copyright Hewlett-Packard Company 2000

Modeling and Managing Interactions among
Business Processes

Fabio Casati Angela Discenza
Hewlett-Packard Laboratories Politecnico di Milano
1501 Page Mill Road Via Ponzio 34/5
Palo Alto, CA, USA 94304 Milan, Ttaly 20133
casati@hpl.hp.com discenza@elet.polimi.it

November 30, 2000

Abstract

Most workflow management systems (WfMSs) only support the sepa-
rate and independent execution of business processes. However, processes
often need to interact with each other, in order to synchronize the exe-
cution of their activities, to exchange process data, to request execution
of services, or to notify progresses in process execution. Recent market
trends also raise the need for cooperation and interaction between pro-
cesses executed in different organizations, posing additional challenges. In
fact, in order to reduce costs and provide better services, companies are
pushed to increase cooperation and to form virtual enterprises, where busi-
ness processes span across organizational boundaries and are composed of
cooperating workflows executed in different organizations. Workflow in-
teraction in a cross-organizational environment is complicated by the het-
erogeneity of workflow management platforms on top of which workflows
are defined and executed and by the different and possibly competing
business policies and business goals that drive process execution in each
organization.

In this paper we propose a model and system that enable interaction
between workflows executed in the same or in different organizations. We
extend traditional workflow models by allowing workflows to publish and
subscribe to events, and by enabling the definition of points in the process
execution where events should be sent or received. Event notifications are
managed by a suitable event service that is capable of filtering and corre-
lating events, and of dispatching them to the appropriate target workflow
instances. The extended model can be easily mapped onto any workflow
model, since event specific constructs can be specified by means of or-
dinary workflow activities, for which we provide the implementation. In
addition, the event service is easily portable to different platforms, and
does not require integration with the WfMS that supports the cooperat-
ing workflows. Therefore, the proposed approach is applicable in virtually
any environment and is independent on the specific platform adopted.

1 Introduction and Motivations

Most workflow management systems (WfMSs) only support the separate and
independent execution of business processes. However, processes often need to
interact with each other, in order to synchronize the execution of their activities,
to exchange process data, to request execution of services, or to notify progresses
in process execution.

Interaction among workflows is needed both within and between organiza-
tions. While in some cases interacting processes executed in the same orga-
nization may be unified within a single workflow, sometimes this approach is
not feasible or not satisfactory, the semantics of the processes may require that
workflows remain separate, not to introduce constraints which are absent in the
business processes they model. As an example, in the following we introduce
two processes involving the management of pacemakers and patients: while the
two workflows do need to interact, they must remain separate (even when they
are managed by the same organization and by the same WfMS), since a patient
may change several pacemakers and a pacemaker may be implanted in several
patients, thereby changing their “partner” patient process.

Recent market trends also raise the need for cooperation and interaction
between processes executed in different organizations, posing additional chal-
lenges. In fact, in order to reduce costs and provide better services, compa-
nies are pushed to increase cooperation and to form wvirtual enterprises, where
business processes span across organizational boundaries and are composed of
cooperating workflows executed in different organizations.

Workflow interaction across organization has additional complexity with re-
spect to interaction among workflows of the same organization, due to the
heterogeneity of the environments in which processes are executed. In fact,
workflows in different organizations are typically specified in different workflow
languages, executed on top of WfMSs of different vendors, and managed ac-
cording to different business policies and business goals. Furthermore, while
organizations do need to interact, they want to preserve the autonomy of their
processes, i.e., they do not want to expose the details of these processes and
they want to be able to modify and improve them without affecting cooperating
ones.

In this paper we present a model for specifying interaction among work-
flows and a system that implements the model and provides the communication
infrastructure.

The workflow model extends traditional approaches by allowing the defini-
tion of event nodes, that denote points in the workflow execution where events
should be sent to (or received from) cooperating workflows. Event nodes may
be used to synchronize execution of activities, to exchange data between work-
flows, to notify state changes (i.e., to notify that certain milestones have been
reached in process execution), or to request the activation of a remote process.
Events can also be used to handle exceptions. In fact, exceptions are often
asynchronous with respect to the flow of task executions. For this reason, as

observed by many authors (see, e.g., [10, 16, 32]), it is often difficult to capture
and represent exceptions within the graph of activities that describes the behav-
ior of the process. Event nodes are instead well-suited, since they can model the
occurrence of events that are asynchronous with respect to the execution flow
and can activate a separate (exception-handling) part of the flow, as explained
in this paper.

Event dispatching is based on a publish-subscribe model, where workflows
may notify events to all interested partners and receive events of interest from
them. Events may include parameters, whose value is taken from workflow
variables of the sender and can be assigned to workflow variables of the receiver.
We also provide a simple but powerful language by which event nodes specify
filtering rules over events of interest, based on the values of event parameters
and on properties related to correlation among event instances.

The core of the system is the event service, which is capable of filtering
and correlating events and of dispatching them to the appropriate workflow
instances. The interaction between the workflow environment and the event
service is achieved by means of special-purpose workflow activities that, once
invoked by the WfMS, send or request events to the event service and manage
data exchange. This approach allows the implementation of event nodes and of
the proposed model on top of any existing WfMSs, which require no extension in
order for workflows to interact. In addition, the event service is easily portable
onto different platforms, and does not need to interface with the WfMSs on top
of which interacting workflows are executed. Therefore, the proposed approach
is applicable in virtually any environment and is independent on the specific
WIMS adopted.

2 A model for the specification of workflow in-
teractions

In order to enable workflow interoperability, we extend traditional, WfMC-like
models with the capability of exchanging events with other workflows (or even to
generic, non-workflow agents) executed in the same or in different organizations.

Interactions among workflows are defined by means of event nodes. Event
nodes denote points in the workflow where an event is sent or received, thereby
allowing synchronization and data exchange with other processes, as well as
notification of state changes or requests of service execution. Event nodes can
be part of the flow structure of a workflow, just like ordinary tasks, and can
be of two types: send (produce) nodes or request (consume) nodes. Send nodes
notify events to other processes; they are non-blocking, and thus they do not
affect the execution of the workflow in which they are defined: as the event
is sent, process execution proceeds immediately by activating the subsequent
task. Request nodes correspond instead to requests of events to be received
from other processes. They are blocking: as a request node is reached in the
control flow of a given workflow instance, the execution (along the path where

the request node is defined) stops until an event with the specified characteristics
is received. Having event nodes explicitly defined as part of the process model
allow the process designer to specify what to notify, when, and what data to
send along with the event notification. We do not impose any restriction on the
event semantics, which are application specific.

In the following, we first present the characteristics of events, and then we
show how event notifications and requests are modeled within workflow schemas.

2.1 Event classes

In the event-based model, every event belongs to an event class. An event class
groups events that share common semantics, and is characterized by a class
name, unique within an event service, and by an arbitrary number of parameters
with their respective name and type. Parameters can be of type integer, string,
real, boolean, datetime, record, or payload (the payload is a generic stream of
bytes).

Some parameters are user-defined and application specific, while others are
application-independent. Some application-independent parameters must be
defined for each event, while others are optional but, when defined, they have
specific semantics, known to the event service. Mandatory parameters are:

e className: a string, set by the sender process, that identifies the class to
which the event belongs.

e identifier: an integer, automatically assigned by the event service, that
identifies each single event instance.

o timestamp: the date and time of the event notification, also automatically
assigned by the event service.

Optional parameters are:

e sourceOrganization: a string that identifies the organization that produced
the event.

e sourceCase: a string that identifies the process instance that produced the
event.

e destOrganization: a string that identifies the organization to which the
event is intended.

e destCase: a string that identifies the process instance to which the event
is intended.

As an example, consider a pacemaker management system, handling the
process of building, charging, delivering, maintaining, and replacing pacemakers,
and a patient management system, concerning patients whose heart disease is
cared by means of pacemakers. We will describe these processes in detail in the
following section.

The two processes require a tight interoperability, but are managed by (and
executed within) different organizations (patients are managed by hospitals,
while pacemakers are managed by companies that produce medical equipment).
In addition, a hospital may get pacemakers from several companies, and a pace-
maker producer may provide medical devices to several hospitals.

These processes will need to exchange several events in order to interact and
synchronize the execution of their activities. For instance, one of these events
may inform the pacemaker management process that a given pacemaker has
been explanted. For this purpose, an event class pmExplant has been defined,
with the following parameters (mandatory parameters identifier and timestamp
are implicit and their values are not defined by the process designer but rather
assigned by the event service):

define event class pmExplant {
sourcelrganization: string
destOrganization: string
serialNumber: integer
explantDate: datetime
physician: string

}

2.2 Send nodes

Send nodes denote points in the flow where events are produced. They are
characterized by a name, unique within a workflow schema, and by a set of
parameters that define the event to be produced. Event parameters are specified
by pairs (parameter_name,value). Values may be constants or may refer to the
name of a workflow variable, meaning that the actual parameter is set at the
value of the workflow variable at the time the event is sent.

As an example, consider the send node pmExplanted in the patient workflow.
The send node has the purpose of notifying the explant to the organization
managing the explanted pacemaker. The send node generates an event of class
pmExplant, and specifies three parameters (besides the class name): the target
organization to which the event is intended, the pacemaker serial number, and
the explant date. The syntax used for the definition of the events is as follows:
((className, "pmExplant")

(destOrganization, pmSenderOrg)
(serialNumber, pmSerialNumber)
(explantDate, pmExplantDate))

The class name is defined by a constant, written between quotes, while the
other parameters are specified (in this example) by references to local variables
of the workflow instance in which the send node is executed. As the send node
pmExplanted is reached, the sender workflow generates one event instance with
the above parameters, and references to workflow variables are replaced by their
respective value, computed at the time the event is raised.

Event producers do not have to specify all the parameters when they notify
an event instance of a given class. The only parameter they have to specify is
the class name. However, if parameters are specified, they must be a subset of
the parameters defined for that class.

2.3 Request nodes

Request nodes denote points in a process where the execution is suspended,
waiting for an event to be delivered. Each event request receives at most one
event instance, and only events that occur after the request has been issued
can be delivered to the node. As the instance is delivered, process execution
proceeds with the activation of the task connected in output to the request
node.

For each request node, the workflow designer specifies a name unique in
the workflow schema and a request expression, that defines the kind of events
the request nodes is interested in (specified by a filtering rule) and the event
parameters whose value should be captured within workflow variables (specified
by a capturing rule). The syntax of the request expression is the following:

<request expression> := <filtering rule> [":" <capturing rule>];

The filtering rule is mandatory, while the capturing rule must be specified
only if the requesting workflow needs to capture the value of event parameters
into local workflow variables. In the following we describe these components in
detail.

2.3.1 Filtering rule

The filtering rule defines the characteristics of the (composite) event in which
the request node is interested. Filtering rules define a constraint over event
instances in terms of names and values of event

parameters. In addition, it is possible to define constraints over multiple
event instances by requesting composite events, defined as sequences, disjunc-
tion, conjunction, or negation of event instances. The event service will deliver
to the requesting node the first (possibly composite) event instance matching
the filtering rule and produced after the request has been issued. If an event
instance matches the filtering rule of several requests, it is delivered to all of
them.

As an example, consider a pacemaker process managed by the MediPace
company: the process needs to be notified when the pacemaker it manages is
explanted from a patient, in order to trigger the appropriate actions (such as
arranging for the shipment of the pacemaker back to the factory, its recharge,
etc.) In order to specify this behavior, the pacemaker schema includes a request
node explanted, that captures all events of class pmExplant related to the
pacemaker at hand, qualified by the organization name and by the pacemaker
serial number. This semantics can be specified by associating the following
filtering rule to the request node explanted:

({ className, "pmExplant")
(destOrganization, "MediPace")
(serialNumber, pmId))

In the expression above, the event class (pmExplant) and the name of the
pacemaker company (MediPace) are constants, and are independent from the
specific process instance. The rule then specifies that the event parameter
serialNumber must be equal to the value of the workflow variable pmId (this
will be true for only one workflow instance). No requirement is set on the ex-
plant date, meaning that the node is interested in the event regardless of the
explant date. At the time the request node is reached by the control flow,
the pacemaker process issues a request to the event service, where references
to names of workflow variables (e.g., pmId) are replaced by the values of such
variables. Issued requests are not affected by subsequent changes in the values
of these variables.

Formally, a filtering rule is defined according to the following syntax:

<filtering rule> := "<" <event filter> '">"|
"Seq" "(<" <event filter> "> , <" <event filter> ">)" |
"Or" " (<" <event filter> "> , <" <event filter> ">)" |
"And" " (<" <event filter> "> , <" <event filter> ">)" |
"Not" " (<" <event filter> "> , <" <event filter> " > ,
<" <event filter> ">)"

while an event filter is defined as follows:

<event filter> := "<" <attribute name> "," <attribute term> ">" [<
event filter>]

Attribute terms are constants, workflow variables, or event variables. Workflow
variables (denoted by strings starting with a lowercase letter, such as pmId)
allows the specification of filters that depend on the state of the requesting
workflow instance, and are replaced by the value of the variable at the time the
request is issued. Event variables (denoted by strings starting with an upper-
case letter) allows the designer to specify filtering rules that include correlation
constraints, as clarified below.

An event instance matches an event filter (i.e., satisfies the filtering rule and
can be delivered to the corresponding request node) when (1) all the attribute
names in the event filter occur also in the event, and (2) for each attribute name
occurring both in the event instance and in the event filter, the corresponding
value in the event instance is equal to the attribute term in the event filter.

If the attribute term is an event variable, then any value matches it, and
unification of that variable with the respective value is performed, as in logic

programming languages. For instance, the expression <explantDate, X> does
not actually filter events on the basis of the explant date (it only requires the ez-
plantDate parameter to be part of the event instance). The filter <explantDate,
X>, <shipmentDate,X> also does not impose requirements on the explant date
in itself, but it does requires that it is equal to the date the pacemaker is shipped
back.

The semantics of composition operators Seq, Or, And, and Not is defined
below. Consider event filters ef, efs and efs:

e Sequence: Seq(efy,efs) is satisfied by two events e; and e, such that e
matches ef, e; matches efs, and e; occurs before es.

e Disjunction: Or(ef;,efs) is satisfied by any event that matches either
ef, or efs.

e Conjunction: And(ef;,ef>) is satisfied by two events e; and es such that
e; matches ef; and ey matches ef,.

e Negation: Not(ef;,efs,efs) is satisfied by two events e; and e; such
that e; and e, satisfy Seq(ef;,efs) and no event that matches efs has
occurred between e; and es.

For a formal specification of the semantics of the filtering language and of
the detail of the event composition semantics we refer the reader to the technical
report [12].

We now present an example of filtering rule involving an event correlation:
in a workflow managing a stock portfolio, the designer might need to define a
request node sensible to two successive raise of the same stock title, and perform
suitable actions as the (composite) event occurs, such as buying some stocks of
that title. The filtering rule can be specified as follows:

Not (<<Stock, X> <Raise, R;>>
<<Stock, X> <Raise, Ry>>
<<Stock, X> <Fall, F>>)

The filtering rule is matched by the composite event formed by two raises
in the stock price of a title not interleaved by a fall in the price of the same
title. The evaluation of the filtering rule binds event variable X to the stock
title and event variables R; and R» to the amount of the two raises. R; and
Ry do not actually contribute to the computation of the composite event: the
only constraints are imposed by the not operator and by the presence of event
variable X in all the three event filters, meaning that all events must refer to
the same stock title. Event variables R; and Ry will be used instead in the
capturing rule to pass data to the requesting workflow instance, as detailed in
the following subsection.

2.3.2 Capturing rule

Besides defining the event of interest by means of a filter over event parame-
ters, a request node may also capture the value of event parameters into local
workflow variables. For this purpose, the filtering rule is coupled with a cap-
turing rule. For instance, assume that the pacemaker process is also interested,
upon notifications of explants, in capturing the explant date, needed for track-
ing purposes. Therefore, the request node explanted also needs to capture
the value of parameter explantDate of event pmExplant into the local variable
wfExplantDate. The capturing rule that defines this behavior is defined as
follows:

((wfExplantDate, explantDate))

If event variables have been introduced in the filtering rule, the value to be
assigned to a given workflow variable can be taken from the value of an event
variable, assigned during the evaluation of the filtering rule.

For instance, in the stock raise example, if the workflow designer wants to
capture the stock title that had two successive raises as well as the amount of
the raises, she can define the following capturing rule (stockTitle, firstRaise, and
secondRaise are names of variables in the workflow that requested the event):

((stockTitle, X)
(firstRaise, R;)
(secondRaise, Ry))

The syntax for the definition of the capturing rule is the following;:

<capturing rule> "<" <single capturing rule> ">"

<single capturing rule> := "<" <workflow variable name> ","

<event attribute term> ">"

[<single capturing rule>]

<event parameter name> | <event variable name>

<event attribute>

The event service also takes care of data conversion between the different
data type representations adopted by the event service and by the WIMS where
the requesting workflow is executed. We will come back on this issue in Section 4.

3 Patients and pacemakers

We next present a case study that illustrates how event nodes are used to model
complex processes. The case study involves a patient and a pacemaker man-
agement process. The workflow schemas of the two processes are depicted in
Figures 1, 2, and 3. They are defined by means of activity graphs (where boxes
represent activities and diamonds model decision points), with the addition of
send and receive nodes (graphically represented by a circle with an outgoing and

Pacemaker Workflow

Legenda

OQ@QD

Figure 1: Pacemaker Workflow.

an incoming arrow respectively). We first describe the patient and pacemaker
processes, and then detail the events exchanged between the two.

The pacemaker process, managed by a medical equipment company, starts
with the construction of a new pacemaker (Figure 1). As the pacemaker is
built, a notification is sent to a third-party, non-profit health care organization
that supports patients and hospitals in finding pacemakers with the required
characteristics. We are not concerned in this example with the business logic of
this component, and we do not a priori assume that it is driven by a workflow
engine. We only assume that it collects information about available pacemakers
and makes it available to hospitals. Next, the pacemaker company waits for a
notification from the health care organization that informs it on the identity of
the patient and hospital that has selected the pacemaker. After receiving the
notification, the pacemaker company contacts the hospital’s physician to agree
on technical, economical, and logistic issues. If no agreement is reached or if
the physician decides, after a discussion with the pacemaker company, that the
pacemaker is not suitable, then the pacemaker re-issues the notification of the
pacemaker availability. Otherwise, the pacemaker is delivered to the selected
hospital. The shipment is performed by another organization, thereby requiring
interaction with the business processes of the shipping company, which can also
be specified and implemented with the model and architecture presented in this
paper, although for brevity it is not discussed here.

After the delivery, the pacemaker is managed by the hospital, and the pace-
maker process is required to take no action, until the hospital notifies that the
pacemaker has been explanted and that is going to be returned (this can happen
if the pacemaker needs to be recharged, or if it is not working properly, or if the
patient does not need it any more). After the hospital notifies the explant, the
pacemaker company picks-up the pacemaker at the hospital site (again through
a shipping company), repairs and tests the pacemaker, and notifies its availabil-
ity. If instead the pacemaker cannot be repaired, it is trashed and the process

10

terminates.

The patient workflow (Figure 2) starts with the registration of the patient
that needs a pacemaker. Next, a suitable pacemaker is selected through the
health care organization, and the pacemaker company is contacted in order to
check the details about the selected pacemaker and agree on times, terms, and
conditions with the pacemaker organization (subprocess Get pacemaker and
schedule surgery of Figure 3). Then, a surgery is scheduled and a task that
manages pacemaker reception and registration is activated. When the pace-
maker has been delivered and the surgery has been scheduled, the pacemaker is
implanted. Next, the patient undergoes follow up visits, until either the pace-
maker is not working properly or it is not needed any more. In the first case, the
patient process selects and gets a new pacemaker and schedules the surgery to
explant the old pacemaker and implant the new one. If no pacemaker is needed,
after the old one has been explanted, the process terminates.

Note that with traditional workflow models it is very difficult to describe
such interactions, even between processes executed with the same WIMS. In
fact, in commercial WEMSs, workflows are typically executed in isolation with
respect to other workflows. Every required synchronization and data exchange
between workflows must be designed and implemented, for instance by defining
ad hoc tasks that interact with the database or with the WfMS API. Further-
more, interactions would be hidden in the task implementations, instead of being
explicitly specified in the workflow, with obvious disadvantages.

In the following, we show how interactions between workflows can be mod-
eled within workflow specifications, we detail the interactions occurring in the
patient/pacemaker case study, and we show the architecture and implementa-
tion of the system that supports workflow interaction on top of a generic WfMS
platform.

3.1 Event nodes in the patient/pacemaker case study

This section summarizes the inter-process interaction occurring in the patient /pacemaker
case study. Figure 4 shows the scenario in which the patient and pacemaker
workflows operate and interact. We assume the existence of several pacemaker
producers and several hospitals. For simplicity, we assume that there is just

one health care organization, called HeartCare, that helps physicians and hospi-

tals in finding a suitable pacemakers, and we also assume that there is a single

event service (possibly managed by the same HeartCare organization) through

which hospitals and pacemaker producer companies cooperate. We will discuss
architectures with several distributed event service components in a following
section.

In the pacemaker workflow, as a new pacemaker is built (or after it has
been repaired), an event is sent (send node pmAvailable of Figure 1) to the
HeartCare organization in order to notify the availability of the pacemaker. We
assume that the HeartCare organization accepts and recognizes events of class
newPm that inform about available pacemakers. Class newPm includes parameters
sourceOrganization and destOrganization of type string, serialNumber of

11

pm3

!

Register Patient

Get pacemaker/
Schedule surgery

Implant

A

Patient
Workflow

Check

"Keep”)\ pm="Change"

%m:"No"

Schedule
Surgery

Get pacemaker/
Schedule surgery

Explant/implant

pm="Change"

pmExplanted

pm="No"

Figure 2: Patient Workflow

12

Get pacemaker/
Schedule surgery

A

Select
pacemaker

Contact Pmaker

Agreement not reached

IAgreement reached

Schedule
Surgery

Receive
pacemaker

Figure 3: Expansion of the Select and get pacemaker subprocess

Patient workflow

13

of the

Consortium web site

A

Visit pmaker web site,
select pacemaker, make offer

Patient328

GoodWill Hospital

WEMS (Staffware)

,,,,,,,,,,,,,,,, Visit pmaker web site, - - - - - - - - - ...

select pacemaker, make offer

HeartCare

Patient834

Event Service

Veteran Hospital

WEMS (Cosa-WF)

Pacemaker25

MediPace

WEMS (COSA-FWF

Figure 4: Interactions among patients, pacemaker, and the health-care organi-

zation HeartCare

14

type integer, and dataSheet of type payload.
Within send node pmAvailable of a pacemaker workflow run at the Medi-
Pace company, the event is formed in the following way:

({ className, "newPm")

(destOrganization, "HeartCare")
(sourcelrganization, "MediPace")
(serialNumber, pmSerialNumber)

(dataSheet, pmDataSheet))

Information about the class name and the target organization will be used
by HeartCare in order to filter the events it is willing to receive (i.e., those of
class newPm intended to HeartCare). Information about the sender organization,
the pacemaker serial number, and the data sheet is needed in order to properly
modify a web site that includes information available to physicians.

Note that we do not require business processes of the health care organiza-
tion to be supported by workflow managers. Indeed, workflows can use events to
interact with non-workflow applications. In this case, we only require the Heart-
Care company to “listen” to notifications of newPm events by issuing requests to
the event service filtered as follows:

((className, "newPm")
(destOrganization, "HeartCare"))

After notifying the pacemaker availability, the pacemaker process waits for
a message from HeartCare informing that the pacemaker has been selected by
a patient. We assume that HeartCare produces events of class pmSelected in
order to inform that a given pacemaker has been selected for a patient by a
physician, also including event parameter physicianNameAndAddress, of type
string, that the pacemaker process captures into the local workflow variable
contactInfo.

This behavior is specified by request node patientSelection, that has the
following request expression:

((className, "pmSelected")

(destOrganization, "MediPace")

(serialNumber, pmId)) :

((contactInfo, physicianNameAndAddress))

Finally, the pacemaker workflow includes request node explanted, that cap-
tures all events of type pmExplant related to the pacemaker at hand, qualified
by the pacemaker serial number. The following request expression is associated
to the request node explanted:

((className, "pmExplant")
(destOrganization, "MediPace")
(serialNumber, pmId)) : ((wfExplantDate, explantDate))

15

pmExplant events are produced by the patient workflow (Figure 2) to notify
to the pacemaker organization that the pacemaker has been explanted. The
event expression of the send node is as follows:

({ className, "pmExplant")
destOrganization, pmSender(Or
g p g
serialNumber, pmSerialNumber
p
(explantDate, pmExplantDate))

4 The DERPA event service

This section presents the architecture and implementation of the DERPA event
service and shows how the interaction between the workflow environment and
the event service is managed. The interested reader is referred to [12] for details
on DERPA.

The DERPA event service is based on a publish/subscribe model, and allows
generic software agents to interact by producing and consuming events. Agents
are qualified as event sources when they produce events and as event receivers
when they receive them. An agent can play both roles. The goal of the event
service is to capture all the events generated by event sources and to deliver
them to all interested receivers. DERPA controls and directs the event traffic
according to publication and subscription requests issued by agents. In addi-
tion, the event service provides correlation and filtering capabilities, achieved by
programming the event service to recognize a small number of relevant events
out of sequences of elementary events, according to filtering rules. Events pro-
duced through filtering will be called filtered events, to distinguish them from
the input ones, called raw events.

When an event E is published, DERPA checks if any filtered (composite)
event F Fy,.., FE, has also occurred due to the occurrence of E. Next, it delivers
each of these occurred raw or filtered events to all the agents who have subscribed
to those events. The order in which events are delivered is non-deterministic.

4.1 Architecture and implementation of DERPA

The architecture of the DERPA event service is depicted in Figure 5. DERPA
implements two orthogonal features: it filters events and it manages the sub-
scriptions and unsubscriptions. Subscriptions and unsubscriptions are handled
by the Filter Machines Manager, that generates a Filter Machine for each sub-
scription that it receives. Each subscription includes the request expression,
defined according to the syntax defined in Section 2.

DERPA filters events as follows: as a raw event is received, it is inserted into
the Incoming Event Queue. Raw events are processed one at a time by an Event
Matcher that filters and correlates events. The Event Matcher is composed of an
Event Distributor and several Filter Machines. The Event Distributor receives

16

subscriptions / raw events
unsubscriptions

Incoming
Event

Filter Machines

M anager

Queue

(v A
Event ‘

Matcher Event Distributor

f Filter Machines

Filter Machine,

Filter Unit
PRODUCES Filtered Event
Generator

v v

Filter Machine,

Filter Unit

Filtered Event
Generator

filtered events filtered events

Figure 5: Architecture of the event service

an event from the Incoming Event Queue and produces several copies of the
event, that are distributed to the Filter Machines. The number of copies of
an event depends on the number of Filter Machines that are waiting for it,
which equals the number of subscriptions to events of the same class of the raw
events (or that include events of that class in the filtering rule). Each Filter
Machine performs two tasks: it has a Filter Unit, which verifies whether the
event matches the filtering rule, and a Filtered Event Generator, which produces
one or more events as output of the filtering, including the parameters specified
in the capturing rule.

The behavior of the Event Filter can be modeled by means of statecharts,
derived from the filtering rule. We refer the interested reader to [12] for a
detailed and formal description of the behavior of the event service.

A prototype of DERPA has been developed at CEFRIEL and Politecnico
di Milano as the evolution and generalization of software components devel-
oped in previous projects. The event service has been implemented in Java,
and each subscription corresponds to the generation of a new thread Java, that
processes raw events, generates filtered events, and delivers them to the appro-
priate request application. Events are delivered to agents either by invoking

17

callback functions that accepts a DERPAEvent object (basically, an hash map)
or by sending XML messages over HTTP (this modality is typically used for
inter-organizational interactions).

4.2 using DERPA to enable interactions among workflows

We next describe how the DERPA event service is exploited in order to enable
interactions among workflows. We recall that one of our main goals is to en-
able workflow interoperability across organizations by reusing existing, “legacy”
W{MSs. The WIMS is unaware of the interaction, which is achieved without
the need of modifying the WfMS in place.

The interfacing between the event service and the workflow environment is
managed by means of send and request applications, provided with DERPA,
that implement the logic of the send and request nodes. When a workflow
designer needs to specify a send node, she actually defines an ordinary workflow
task, performed by the send application provided with the event service. The
send application (i.e., the task) receives from the calling environment the name,
type, and value of the workflow variables as well as the send expression that
will be used to form the event to be sent. The send application terminates
immediately after the event is sent, thereby allowing case execution to proceed.
The application is independent from the specific event being sent, although a
different version of the application must be provided for each WfMS type, in
order to take into account data conversion issues between the representation
adopted by the event service and that of the WfMS.

Similarly, request nodes are modeled by means of ordinary tasks, imple-
mented through a request application provided with the event service. Besides
event parameters, the request application also receives a well-formed string that
describes the request expression and that will be passed along to the event ser-
vice in order to define the kind of events the request application is interested
into. Request nodes, in order to request an event to the DERPA event service,
actually subscribe to receive events, and informs the DERPA filter about the
structure of the events to be received (defined by the capturing rule) and about
how raw events should be filtered in order to generate the event (defined by the
filtering rule).

4.3 Centralized and distributed configurations

The DERPA event service supports local, centralized, hierarchical, and dis-
tributed event service configurations. The choice of the optimal configuration
is application-specific, and depends on many factors such as the number and
the location of the cooperating processes or the business agreements established
among partners. In the patient-pacemaker example we have presented the cen-
tralized configuration (see Figure 6(b)), where a single event service act as an
event broker for several different organizations.

In the context of a single WfMS, a local event service can be exploited to
allow interoperation among the workflows in the WfMS (see Figure 6(a)). A

18

local event service ignores parameters source Organization and destOrganization,
since events are always sent and received locally.

gk

Centralized
event service

Local event
service

(@ (b)

WfMS 1 WFfMS 2
WF WF
Local event Local event
service service
A
A4
Local event
External service
Centralized event service
event service
WF
WFfMS 3

(© (d)

Figure 6: Event service architectures

The hierarchical configuration (Figure 6(c)) combines the local and the cen-
tralized approach: a local event service is used to exchange events among work-
flows in an organization, while a centralized event service distributes events
among the local event services. When the value of the destOrganization (source-
Organization) parameter has not been defined or has been set to the special key-
word local, the event notification (request) is managed locally, and the event
can be only notified to (received from) a local workflow. When the organiza-
tion name is specified (or the special keyword external is used), the event is
forwarded to (requested from) the centralized event service. The keyword any
denotes instead that the node is willing to receive (send) events from (to) both
local and remote event services. Forwarding a request for an event (i.e., a fil-

19

tering rule) to the centralized event service actually causes the local service to
subscribe to events matching the filtering rule at the centralized service. When
an event matching that rule is notified to the centralized service, it is in turn
forwarded to the local service that subscribed to it, that will in turn forward it
to the local requesting workflow.

Publish/subscribe event-based architectures naturally allow for a fully dis-
tributed architecture (Figure 6(d)), where event services can subscribe in order
to receive selected events from other event services. This is also possible with
DERPA, that is indeed capable of managing publications and subscriptions. In
a fully distributed architecture there is no a priori, fixed topology. However,
each event service must be configured in order to specify the set of event ser-
vice(s) to which the event requests or notifications should be forwarded. The
specification can be made at the event service level, but it is also possible to
specify a different set of event services to notify or request for each event class.

5 Related work

Several hundreds business process models have been proposed by the research
literature and by commercial WEMSs in the last decade. Most of them (and
the totality of the one supported by successful commercial products, such as
Changengine [17], MQ Workflow [18], Staffware [29], Forte [21], Cosa[3], or
InConcert [23]) are based on activity graphs, since this seems to be the referred
way for users to model business processes. However, the large majority of these
activity-graph models do not allow for the specification of any kind of workflow
interactions. A few of them, such as Staffware and Cosa, allow the definition of
simple events (qualified by their name) in the flow. COSA, by Cosa Solutions
[3], includes in its workflow model the notion of trigger, defined as an event-
action rule that can be triggered by external events or upon deadline expiration,
and can react to the triggering event by activating a task or a new (sub)process
instance. InConcert, by InConcert Inc. [23], also includes event-action triggers
in its workflow model. Triggering events can be process state changes (e.g., a
task becomes ready for execution), external (user defined) events, or temporal
events. Allowed actions include notification of messages to agents, activation
of a new process, or invocation of a user-supplied procedure. In Staffware,
by Staffware Corporation [28], a special kind of task called event step can be
defined. The event step suspend case execution until a defined event occurs.
Event notifications must include the specification of the workflow, case, and
step identifier in order to identify the event step.

These approaches have several limitations with respect to supporting work-
flow interactions:

e the designer can only model request for events. No facility for sending
events is provided;

e when an application (or the system administrator) need to send an event,
they explicitly specidy the process instance to which the event is directed.

20

It is not possible to raise an event and let all interested process instances
capture the event, and it is necessary to have a priori knowledge of which
instance is interested in which event. In large-scale systems, this is unfea-
sible;

e there is no provision for event filtering and for capturing event data into
process variables.

Recently, the issue of interactions among processes has received more atten-
tion in the research community, especially in the context of cross-organizational
workflows. However, many projects are still in their infancy and many issues
are still to be identified and resolved. One of the first contribution in the field
of interorganizational workflows comes from Van Der Aalst [31]. In that paper,
the author presents a taxonomy of possible interaction types: chained execu-
tion occurs when the completion of a process on one system should trigger the
activation of a process on another system. Subcontracting occurs when a sub-
process is assigned for execution to a remote WIMS, possibly operated by a
different organizational entity. In case transfer, each WIMS has a copy of the
workflow specifications, and cases can be transferred from a WfMS to another
one. Finally, loosely coupled interaction occurs when two or more parts of a
process managed by different WfMSs may be concurrently active. The coupling
is loose since each process definition only needs to make interaction points pub-
licly available, while it is free to change the remainder of the workflow at will.
The paper then focuses on loosely coupled workflows: in particular, it defines an
interorganizational workflow as a set of loosely coupled workflows and an inter-
action structure. The interaction structure basically allows the definition of two
types of dependencies among activities in component workflows: asynchronous
dependencies allow data exchange and the specification of causal dependencies
among activities. (e.g., activity B in process instance P, can only be executed
after activity A in process instance P; has been completed.) Synchronous depen-
dencies allow the designer to specify that two specific tasks should be activated
at the same time. Our event-based approach also allows the definition of syn-
chronous and asynchronous dependencies, but it is more flexible in that it allows
for dynamic virtual enterprises, where a process is not required to know in ad-
vance the processes it will interact with. This is an important requirement in a
dynamic environment such as the Internet.

The problem of interorganizational processes is also addressed by the WISE
project [1, 2]. WISE aims at developing an infrastructure for business-to-
business electronic commerce. The WISE architecture includes a component
for the specification of virtual business processes, a component for their enact-
ment, a component for process monitoring and analysis, and finally a component
that manages context-aware communication among process participants. These
papers do not however present a concrete process model for the specification of
cooperating processes and do not show how the interaction is achieved.

Virtual enterprises are also addressed by CrossFlow [11], a newly started Es-
prit project aiming at the definition of an infrastructure for crossorganizational
workflows. CrossFlow assumes a centralized description of the process that is

21

to be executed in cooperation, which is then translated into the workflow lan-
guages of the participating WfMSs. Suitable gateway components, configured
according to the business agreements that have been reached among participat-
ing organizations, manage the interactions among the WfMSs. The approach
of [19], also developed within CrossFlow, focuses on a particular form of work-
flow interaction, where an organization refers to another organization for the
execution of part of its business process (subcontracting, in the terminology
of [31]). An organization acts as a service provider, receives service requests
and input data, carries out the requested process (possibly by periodically no-
tifying progresses in process execution), and eventually completes the service,
returning output data to the calling organization. The proposed approaches are
interesting, although the papers only provide high-level descriptions but do not
present any concrete workflow interaction model.

Eder and Panagos [13] propose an event based infrastructure to support
cooperative workflows. In their approach, workflow participants, workflow en-
gines, and workflow administrators can subscribe to several types of events,
possibly published by different workflow engines. Allowed events are process
state changes, activation and completion of activities, and changes in the or-
ganization. By subscribing to this kind of events, a workflow engine becomes
aware of advancements in the execution of processes enacted by other engines,
and can use this information to trigger the execution of activities in its own
processes. Our approach differs in that we allow the process designer to define
application-specific events and to specify when they should be notified (as well
as which data they should carry along), thereby providing for autonomy of co-
operating processes. In addition, we allow event filtering and the definition of
composite events by means of a powerful filtering and correlation language.

A very interesting and detailed approach to process management in virtual
enterprises has been developed in the context of the CMI project at MCC [14].
The project focuses on methods and tools for defining processes that compose
services provided by different companies. The authors present an advanced
workflow model with several new primitives for managing coordination among
services. One of the main features of the model is that it allows, for each
service, the definition of application-specific states (e.g., loan requested or loan
approved for a loan management service) and operations (e.g., cancel loan re-
quest). When the designer specifies a process by composing services, she can
define control flow conditions based on the (application-specific) states of com-
ponent services, and can specify when (application-specific) operations should
be invoked on the component service. CMI does not aim at designing a new
workflow management system from scratch: instead, they assume that pro-
cesses are enacted by a commercial WIMS, and that the advanced model will be
mapped on top of the selected WfMSs. Our approach is similar, in that we also
allow application-specific notifications of advancement in process execution, we
allow a high degree of autonomy of cooperating processes (services), and we do
not aim at designing a new workflow management system. However, we do not
define a new complete workflow model but rather provide some extensions to
existing ones, that can be applied to any existing workflow model. The mapping

22

of such extension is very simple, and therefore the extended model can be eas-
ily implemented on top of any WfMS. In addition, the event-based model and
the filtering language allows for greater expressive power, since processes can
also exchange application-specific data and since the event service can monitor
composite events, i.e., can monitor conjunctions, disjunctions, or sequences of
process events.

In summary, the original features of our model with respect to existing ap-
proaches are the following:

1. we introduce events as part of the workflow model, in order to make ex-
plicit in the workflow schema when and how workflows interact.

2. we allow the use of user-defined events which include event parameters,
that are set according to the state of the sending workflows and affect the
state of the receiving workflows;

3. we allow workflows to specify complex filtering and correlation conditions
in order to identify the events of interest.

4. we define an approach that is immediately applicable with current tech-
nology and with “legacy” systems;

5. through the publish-subscribe approach, the model allow for dynamic in-
teraction, so that the workflow designer does not need to know (and to
specify) at compile time which are the interacting processes.

Event-based workflow interoperability requires an event service that manages
event notifications and subscriptions and dispatches event to the appropriate
receivers. Event services are becoming very popular, and a number of models,
systems, and architectures have been proposed as a natural mechanisms for
achieving interoperability between software applications.

Many event services, based on publish/subscribe models or on its varia-
tions have been developed in recent years, (e.g., RAPIDE [20], Polylith [25],
Field [26], ToolTalk [30], Softbench’s BMS [15], GEM [22]), also by standard-
ization bodies such as OMG [24], and by the active database and Telecom-
munication Management Network communities (see. e.g., the active databases
Snoop [9] and Chimera [8], and the network event correlator platforms ECS by
Hewlett-Packard [27] or SMARTS by InCharge [33]).

For supporting our model, we needed an event dispatching service capable of
managing publications and subscriptions, of allowing the definition of filtering
rules over events and their parameters, and of performing event correlation, in
order to enable the specification of interest in composite events. In addition, we
needed a system that is easily portable over different platform, in order to pro-
vide a component that could be used in any environment where the interaction
take place. For these reasons, we exploited the capabilities of the DERPA event
service [7], which already provides many of these features, such as advanced
event filtering and correlation facility, and we extended it in order to make it
applicable for our purposes.

23

6 Concluding remarks

In this paper we have presented a model and system that enable interaction
between workflows executed in the same or in different organizations. We have
extended traditional workflow models by allowing workflows to publish and sub-
scribe to events, and by enabling the definition of points in the process execution
where events should be sent or received. Event notifications are managed by
a suitable event service that filters, correlates, and dispatches them to the ap-
propriate target workflow instances. The model can be used to define a variety
of behaviors, by exploiting (possibly pre-defined) workflow fragments: for in-
stance, in [4] we present a set of workflow fragments that allow the definition
of many typical interaction structures. Events are also the base for manag-
ing asynchronous behaviors and for handling expected exceptions, as discussed
in [5, 6].

A distinguished feature of the proposed model is that it can be easily imple-
mented on top of any WfMS, since event specific constructs can be specified by
means of ordinary workflow activities, for which we provide the implementation.
In addition, the event service has been developed in Java, in order to ease its
portability, and does not require integration with the WfMS that supports the
cooperating workflows.

In our future work, we will address the development of methods and tools
that enable the conversion of DERPA events into several different XML formats,
as defined by B2B standards such as RosettaNet, CBL, or cXML. These conver-
sions will be performed by suitable DERPA agents. Another orthogonal issue
in our research agenda is related to the DERPA event service, and involves the
definition and implementation of security features, managing authentication of
the involved organizations and secure notification of events over the Internet.

References

[1] G. Alonso, U. Fiedler, C. Hagen, A. Lazcano, H. Schuldt, and N. Weiler.
Processes in electronic commerce. In ICDCS Workshop on Electronic Com-
merce and Web-Based Applications (ICDCS 99), Austin, Texas, USA, May
1999.

[2] G. Alonso, U. Fiedler, C. Hagen, A. Lazcano, H. Schuldt, and N. Weiler.
WISE: Business to business e-commerce. In Proceedings of RIDE-VE’99,
Sidney, Australia, Mar. 1999.

[3] COSA Reference Manual, 1998.

[4] F. Casati. Models, Semantics, and Formal Methods for the Design of Work-
flows and Their Ezceptions. PhD thesis, Dipartimento di Elettronica e
Informazione, Milano, Italy, Dec. 1998.

24

[5] F. Casati, S. Ceri, S. Paraboschi, and G. Pozzi. Specification and Implemen-
tation of Exceptions in Workflow Management Systems. ACM Transactions
on Database Systems, 1999. to appear.

[6] F. Casati and G. Pozzi. Modeling and managing exceptions in commercial
workflow management systems. In Proceedings of CooplS’99, Edimburgh,
UK, Sept. 1999.

[7] S. Ceri, E. Di Nitto, A. Discenza, A. Fuggetta, and G. Valetto. DERPA: a
generic distributed event-based reactive processing architecture. Technical
report, CEFRIEL, Mar. 1998.

[8] S. Ceri, R. Meo, and G. Psaila. Composite events in Chimera. In Proceed-
ings of the 6th International Conference on Extending Database Technology
(EDBT’96), Avignon, France, Mar. 1996. Springer-Verlag, Berlin.

[9] S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S.-K. Kim. Composite
events for active databases: Semantics, contexts, and detection. In Pro-
ceedings of the 20th International Conference on Very Large Data Bases
(VLDB’94), pages 606-617, Santiago, Chile, 1994.

[10] D. Chiu, K. Karlapalem, and Q. Li. Exception handling with work-
flow evolution in ”adome-wfms”: a taxonomy and resolution tech-
niques. In Proceedings of the First Workshop on Adapive Work-
flow Systems, Seattle, Washington, USA, Nov. 1998. Available at
http://ccs.mit.edu/klein/cscw98/paper06.

[11] CrossFlow. Esprit project n. 28635. Information available from
www.crossflow.org, 2000.

[12] A. Discenza. Filtering events in a distributed architecture. Technical Report
98.079, Dipartimento di Elettronica e Informazione, 1998.

[13] J. Eder and E. Panagos. Towards distributed workflow process manage-

ment. In Proceedings of the WACC workshop on Cross-organizational work-
flows, San Francisco, CA, USA, Feb. 1999.

[14] D. Georgakopoulos, H. shuster, A. Cichocki, and D. Baker. Managing
process and service fusion in virtual enterprises. Information Systems, 1999.
to appear.

[15] C. Gerety. HP SoftBench: A New Generation of Software Devlopment
Tools. Hewlett-Packard Journal, 41(3):48-59, 1990.

[16] C. Hagen and G. Alonso. Flexible exception handling in the OPERA pro-
cess support system. In Proceedings of the 18th International Conference
on Distributed Computing Systems (ICDCS’98), Amsterdam, The Nether-
lands, May 1998.

[17] Changengine Process Designe Guide, 2000.

25

[18] MQ Series Workflow - Concepts and Architectures, 1998.

[19] J. Klingemann, J. W. sch, and K. Aberer. Adaptive outsourcing in cross-
organizational workflows. Technical Report REP-IPSI-1998-30, Diparti-
mento di Elettronica e Informazione, GMD-German National Research
Center for Information Technology, Aug. 1998.

[20] D. Luckham and J. Vera. An event-based architecture definition language.
IEEFE Transactions on Software Engineering, 21(9):717-734, Sept. 1995.

[21] J. Mann. Forte’ fusion. Patricia Seybold Group report, 1999.

[22] M. Mansouri-Samani and M. Sloman. GEM: A Generalised Event Monitor-
ing Language for Distributed Systems. IEE/IOP/BCS Distributed Systems
Engineering Journal, 4(2), June 1997.

[23] R. T. Marshak. Inconcert workflow. Workgroup Computing report, Patricia
Seybold Group, 20(3), 1999.

[24] Object Management Group. Event Service Specification. OMG Document.
Available at ftp://ftp.omg.org/pub/docs/formal /97-02-09.ps, Mar. 1995.

[25] J. Purtilo. The POLYLITH software bus. "ACM” Transactions on Pro-
gramming Language and Systems, 16(1):151-174, 1994.

[26] S. Reiss. Connecting tools using message passing in the field program
development environment. IEEE Software, 7(4), July 1990.

[27] K. Sheers. HP OpenView event correlation service. Hewlett-Packard Jour-
nal, Oct. 1996.

[28] Staffware Corporation. Staffware Global - Staffware for In-
tranet based Workflow Automation, 1997. Available at
http://www.staffware.com/home/whitepapers/data/globalwp.htm.

[29] Staffware2000 White Paper, 1998. Available at
http://www.staffware.com/home/products/Staffware2000WP.zip.

[30] Sun Microsystems, Inc. Remote Method
Invocation Specification. Available at

http://www.javasoft.com/products/jdk/1.1/docs/guide/rmi/spec/rmiTOC.doc.html,
1999.

[31] W. van der Aalst. Interorganizational workflows: an approach based on
message sequence charts and Petri nets. Information Systems, 1999. to
appear.

[32] R. van Stiphout, T. D. Meijler, A. Aerts, D. Hammer, and R. le Comte.
TREX: Workflow transaction by means of exceptions. In Proceedings of
the EDBT Workshop on Workflow Management Systems, Valencia, Spain,
Mar. 1998.

26

[33] S. Yemini, S. Kliger, E. Mozes, Y. Yemini, and D. Ohsie.
High speed and robust event correlation. Available at
http://www.smarts.com/products.html, 1997.

27

