

Ve rifiable Partial Escrow of Inte ge r Factors

W enbo Mao
Trusted E-Se rvice s Laboratory
H P Laboratorie s Bristol
H PL-2000-155
De ce m b e r 12th , 2000*

partial k e y
e scrow , RSA,
z e ro-k now ledge
protocols

W e construct an e fficie n t inte ractive protocol for re aliz ing
ve rifiable partial e scrow of th e factors of an inte ge r n w ith tim e -
de layed and th re sh old k e y re cove ry fe ature s. Th e
com putational cost of th e n e w sch e m e am ounts to 10k log2P
m ultiplications of num b e rs of siz e of P, w h e re P is a protocol
param e te r w h ich pe rm its n of siz e up to (log2 P) -4 to b e d ealt
w ith and k is a se curity param e te r w h ich controls th e e rror
probability for corre ct k e y e scrow under 1/2 k . Th e n e w sch e m e
re aliz e s a practical m e th od for fine tuning th e tim e com ple xity
for factoring an inte ge r, w h e re th e com ple xity tuning h as no
re spe ct to th e siz e of inte ge r.

* Inte rnal Accession Date Only Approved for Exte rnal Publication
 Copyrigh t H e w le tt-Pack ard Com pany 2000

Veri�able Partial Escrow of Integer Factors

Wenbo Mao

Hewlett-Packard Laboratories

Filton Road, Stoke Gi�ord

Bristol BS34 8QZ

United Kingdom

wm@hplb.hpl.hp.com

November 16, 2000

Abstract

We construct an e�cient interactive protocol for realizing veri�able partial es-

crow of the factors of an integer n with time-delayed and threshold key recovery

features. The computational cost of the new scheme amounts to 10k log2 P multi-

plications of numbers of size of P , where P is a protocol parameter which permits

n of size up to (log2 P) � 4 to be dealt with and k is a security parameter which

controls the error probability for correct key escrow under 1=2k. The new scheme

realizes a practical method for �ne tuning the time complexity for factoring an

integer, where the complexity tuning has no respect to the size of the integer.

Keywords Partial key escrow, RSA, Zero-knowledge protocols.

1 Introduction

In this article we construct an e�cient interactive protocol for realizing veri�able par-

tial escrow of the factors of an integer which features time-delayed and threshold key

recovery.

The idea of partial key escrow was initiated by Shamir [25]. On recognition that an

abusive government in control of an ordinary key escrow scheme may conduct privacy

intrusion against mass individual citizens, Shamir suggested partial key escrow as a

countermeasure. In partial key escrow a user's secret key is split into two parts, denoted

1

by subkey-1 and subkey-2 the two parts. Subkey-1 will be escrowed in an ordinary key

escrow fashion (usually with a group of distributed escrow agents), while subkey-2 will

be rendered missing. At the time of key recovery, only subkey-1 can be reconstructed

algorithmically by the escrow agents using their key recovery data. Recovery of the

whole key is then the task of �nding subkey-2 via brute-force search which needs a

length of time determined by the size of subkey-2. Thus, at the time of key escrow,

the key escrow agents must have made sure that the missing key part (subkey-2) has

an agreed size which will permit them later to recover it at an a�ordable cost. On the

other hand the a�ordable cost should be non-trivial so that it will cause a prohibitive

di�culty, even for well-resourced government agencies, to recover a mass number of keys

in a short period of time. Nevertheless, partial key escrow will preserve the property of

ordinary key escrow in speedy recovery of a small number of keys by resourceful agencies.

Shamir's partial key escrow scheme was proposed for partial escrowing of a DES key.

Partial key escrow has also been investigated by Micali [19] and Bellare and Gold-

wasser [1, 2] with emphasis on public-key cryptosystems. These authors introduced and

addressed an important issue: veri�ability. The veri�ability in partial key escrow goes

beyond Micali's earlier idea of \fair public key cryptosystems" [18] and extends from

merely fair sharing of secret to a guaranteed correctness of the size of a missing key

part, subkey-2. It is necessary for a partial key escrow scheme to have this sense of

veri�ability since an incorrect size of subkey-2 will render impossible the �nding of it

via key search.

Bellare and Goldwasser observed a further important issue in partial key escrow: an

attacking scenario which they termed \early key recovery attack" [1]. A partial key es-

crow scheme will be susceptible to such an attack if the scheme provides information that

can be used for searching for subkey-2 before recovery of subkey-1. If such information is

available then the key search can take place o�-line and on a massive scale with many or

all users in the system targeted. This essentially nulli�es the e�ect of partial key escrow

since the missing key part is no longer really missing and the whole secret key of a user

can be made readily available straight after the recovery of subkey-1. (The veri�able

partial key escrow scheme suggested by Micali [19] is susceptible to early key recovery

attack [1].) Thus, during the time of key escrow, a partial key escrow scheme must not

disclose any information that can be used for determination of subkey-2 before recovery

of subkey-1. To meet this requirement is often a non-trivial problem and apparently

the di�culty lies in the need of meeting the other requirement: making available the

information of the size of subkey-2 at the same time rendering the latter missing.

1.1 Partial Escrow of Integer Factors

Keys in di�erent cryptosystems take di�erent structures. As a result there seems no

general way to construct a partial key escrow scheme by following the basic idea of

2

splitting a secret key into two parts with one of them escrowed and the other made

missing. Constructions of partial key escrow schemes vary for di�erent cryptosystems

and some of them turn out to be more di�cult to realize than others.

A particularly di�cult case of cryptosystems is those based on the problem of integer

factorization. The private key of such a cryptosystem is essentially the prime factors

of a given integer. It has been understood that partial key escrow for integer factoring

based cryptosystems should not be based on directly splitting a prime factor of the

integer because it is well-known that partial information of a prime factor can produce

e�cient algorithms to factor the integer (for instance, for n = pq with p and q primes

of roughly equal size, knowledge of up to half the bits of p will su�ce to factor n in

polynomial time in the size of n, see Coppersmith [8]). In general, for an integer of size

secure against modern factorization methods and for a part of its prime factor rendered

missing which has a size small enough to search back at an a�ordable cost, it is likely

that the available part of the factor will be large enough to allow the whole prime to be

found in an e�cient manner. In other words, rendering a part of a prime factor missing

will not result in a sound time complexity problem upon which to base a partial key

escrow scheme.

The only known previous work on partial key escrow for integer factoring based cryp-

tosystems is due to Bellare and Goldwasser [2]. Their approach is called \encapsulated

key escrow" (EKE) and uses a primitive called an EKE time capsule. An EKE time

capsule encrypts a secret in a timed-release manner, which means that its decryption

procedure has a speci�ed time complexity. In their EKE scheme for RSA, a key owner,

who has generated an RSA modulus n, will create a list of EKE time capsules. Each

capsule encrypts, respectively, one of two di�erent square roots, mod n, of a quadratic

residue element of the multiplicative group modulo n. The correctness of the encryption

is checked in a cut-and-choose manner. Here the correctness means two things: �rst,

the decryption of an EKE time capsule will reveal two square roots, mod n, of the same

quadratic residue element and the two roots have di�erent Jacobi symbols; secondly, the

encryption key to form each time capsule conforms to an agreed size and thereby the

decryption procedure will require time de�ned by the size of the key. It is well known

that two such square roots will su�ce to factor n with a simple calculation. During

the cut-and-choose checking phase, a group of agents who are responsible for escrowing

the key material will ask the key owner to open a random subset of the time capsules

(they let the key owner disclose the respective encryption keys) for correctness checking.

They will also perform secret sharing schemes to share each of the unchecked capsules

as a secret. Later in the key recovery time, these agents can collectively reconstruct one

of the shared capsule and thereby enable a time-delayed procedure to open it. Upon

opening of the capsule, two square roots of the same quadratic residue element becomes

available and n is factored. In this way, time-delayed factorization of n, or partial key

escrow for RSA, is realized.

3

The need of checking the correct formation for a subset of time capsules is due to

a high probability of error inhere in the cut-and-choose technique (in association with

this is the key owner's interest in introducing errors deliberately). Obviously, enlarging

the number of checkings (i.e., the size of the subset of the checked capsules) will reduce

the probability of error and the reduction reaches the highest rate if the number of

the checked capsules equals that of the unchecked ones. Let k=2 be the number of the

checked and the unchecked capsules. After k=2 cut-and-choose checkings, the probability

of error is (by Stirling's approximation, see, e.g., page 46 of [14])

1
k

k=2

! � 2�k

s
�k

2
: (1)

For this value to be acceptably small (so that the key owner's successful cheating becomes

unlikely), k > 40 is necessary. Consequently, in the EKE scheme, the secret sharing

agents will have to perform more than 20 instances of secret sharing for the unchecked

time capsules. Secret sharing, especially with a veri�able threshold recovery feature,

is rather costly. High cost in achieving a veri�able threshold secret sharing is a major

disadvantage of the EKE scheme for RSA.

1.2 Our Work

We propose a veri�able partial key escrow scheme for integer factoring based cryptosys-

tems, which features (t;m)-threshold key recovery. (Here (t;m)-threshold key recovery

means that any t(< m) escrow agents can enable a key recovery procedure.) The new

scheme is based on an observation that the time complexity (the time complexity is one

of the cryptanalysis results of Mao and Lim reported in [16]) for factoring a composite

integer n can be �ne tuned by tuning the size of a factor of �(n) (the Euler phi function).

That factor will be in place of subkey-1, which has a proven size and will be shared in

a veri�able threshold secret sharing scheme by a group of escrow agents.

Our scheme uses e�cient zero-knowledge proof protocols for checking the correctness

in key splitting. The computational cost for the protocols is measured by 10k log2 P

multiplications of numbers of size of P , where P is a protocol parameter which permits

n of size up to (log2 P)�4 to be dealt with; here k is a security parameter which controls

the probability of error under 2�k. In the veri�able secret sharing part, there is only

one piece of secret that is needed to share by the key escrow agents.

In comparison with the EKE scheme for RSA, our scheme forms a major cost re-

duction in the veri�able secret sharing part.1 Based on similar probabilities of error:

1We only compare the secret sharing costs of the two schemes. Due to the multi-party nature of the

EKE scheme's cut-and-choose protocol, we have not been able to provide a precise measurement on its

computational cost, though it is easy to see a heavy communication overhead of that protocol.

4

2�k against the value estimated in (1), the EKE scheme for RSA needs to share k=2

secrets while our scheme only needs to share one. This forms a big di�erence since

veri�able threshold secret sharing is rather costly both in communication overhead and

in computation.

In the remainder of this article: Section 2 describes an observation on a �ne tunable

time complexity for factorization; Section 3 constructs the proposed scheme; its security

and performance are analyzed in Section 4 and Section 5, respectively; �nally, Section 6

concludes the work.

2 Fine Tunable Time Complexity for Factorization

Let n = pq for p and q being distinct primes. Then

n+ 1 = (p� 1)(q � 1) + (p+ q): (2)

Let r be a factor of �(n) = (p� 1)(q � 1). Then

p + q � n + 1 (mod r): (3)

For r � p+ q, congruence (3) implies

p+ q = (n+ 1 mod r) + kr; (4)

for an unknown k. If p+ q is known then factoring n becomes a simple job (see Steps 5

and 6 in Figure 1 for an algorithm). Equation (4) shows that �nding the quantity p+ q

with r known is equivalent to �nding the unknown k and hence the di�culty of factoring

n cannot be harder than that of �nding k. Below we investigate the time complexity for

�nding k given the condition that p and q are of equal magnitude (this is compatible to

a desired key structure for integer factoring based cryptosystems).

Combining (2) and (4), we have

n + 1 = (p� 1)(q � 1) + (n+ 1 mod r) + kr: (5)

Let u be an element randomly picked from (Z=nZ)�. Raising u to both sides of (5),

writing w = u
r mod n, and noticing u(p�1)(q�1) � 1 (mod n), we have

u
n+1�(n+1 mod r) � w

k (mod n): (6)

If the order of u exceeds p+ q then k in (6) will be exactly the same as that in (4). This

is because kr � p+ q < order(u) and so

kr mod order(u) = kr;

5

T ime Tuned Factoring(r; n)

1. pick u < n at random;

2. v := u
[n+1�(n+1 mod r)](mod n);

3. w := u
r(mod n);

4. extract the discrete logarithm of v to the base w modulo n (denote by k the

returned discrete logarithm);

5. m := (n + 1 mod r) + kr;

6. solve quadratic equation (the two roots, denote by p, q, satisfy n = pq)

x
2 �mx + n = 0:

Figure 1: An algorithm to factor n = pq with time tuned by a factor of �(n)

i.e., k will not be reduced as a result of transforming (4) to (6). Below we provide the

probability for a uniform element u 2 (Z=nZ)� to have order less than p+ q. Let p > q.

Then 2(p � 1) > p � 1 + q � 1. In (Z=nZ)� there can be at most 2(p � 1) elements

of orders less than p + q since these orders must divide 2(p � 1) or 2(q � 1). So for a

uniform element u 2 (Z=nZ)�,

Pr[order(u) < p + q] � 2(p� 1)=�(n) = 2=(q � 1):

With p and q of equal magnitude this probability is negligible.

With r, and hence w (see step 3 in Algorithm T ime Tuned Factoring(r; n)), known,

to �nd k from (6) can be via to compute the discrete logarithm of wk(modn) to the

base w. For k of a relatively small size there exists a number of algorithms which can

extract k in O(
p
k) multiplications (modulo n). Shank's baby-step giant-step algorithm

(see e.g., [7], Section 5.4.1) provides a deterministic method with space requirement also

measured by O(
p
k). Pollard's kangaroo algorithm [23] provides a probabilistic method

and requires a trivial amount of space. Note that Pollard's rho method (e.g., page 106

of [17]) is not applicable here because it needs the order of w which is unknown in this

case.

Figure 1 provides an algorithm which factors n = pq using r, a known factor of �(n).

Lemma 1 Let n = pq, p, q be distinct primes of equal magnitude, and r be a factor of

�(n). The time complexity of the algorithm T ime Tuned Factoring(r; n), measured in

the number of multiplications, is bounded by O(n1=4=r1=2).

6

Proof For p and q of equal magnitude, p+ q � n
1=2. From (4) k � (p+ q)=r � n

1=2
=r.

The main computations in T ime Tuned Factoring(r; n) is in Step 4 for extracting k

which requires O(
p
k) multiplications of integers modulo n. 2

Remarks

1. Although Lemma 1 merely states an upper bound, we conjecture that the bound is

also the lowest known to date with the following reasons. With the use of a sizable

r, the di�culty for factoring n is reduced substantially from any methods that do

not make use of r. The square-root reduction from �nding k in (4) to extracting

discrete logarithm k in (6) forms a further big step of complexity reduction. Any

method for factoring n that does not exploit these two big steps of reductions

yet still has a lower time complexity clearly forms a breakthrough in the integer

factorization problem.

2. Van Oorschot and Wiener suggested a parallelized kangaroo algorithm [21] for

extracting discrete logarithms. Using m processors that algorithm can shorten

the computing time to 1=m of that of Pollard's original sequential algorithm (i.e.,

a linear speedup). However, our complexity bound O(n1=4=r1=2) shows that de-

creasing of the magnitude of r will cause increasing of the computing time in a

sub-exponentiation rate; the e�ect of a linear speedup in any large scale can be sup-

pressed easily. Moreover, we should also notice that the space requirement of Van

Oorschot and Wiener's parallelized algorithm remains at the level of O(n1=4=r1=2)

which is still prohibitively high. We emphasize that it is a high cost, rather than

a un-by-passable time length, that is the necessary feature of a partial key escrow

scheme.

3. A number of previous integer factoring based cryptosystems make use of a disclosed

sizable factor of �(n) (e.g., [10, 11, 13]). Each of these systems includes moduli

settings that allow the factorization of the moduli in a feasible time. For instance,

a modulus setting in [10] satis�es n1=4=r1=2 � 235.

If r is unavailable, then equation (4), hence congruence (6), will not be usable.

Factoring n is believed to be hard.

We will make use of the following two facts gained in this section as the underlying

principles of a veri�able partial key escrow scheme for integer factoring based cryptosys-

tems:

� there is a big di�erence in time complexity between factoring n with a sizeable

factor of �(n), and doing it without, and

� the time complexity for factoring n is �ne tunable by the factor of �(n).

7

Our realization will consist of sharing the factor r among a group of escrow agents

with veri�ability on its size and a proof of correct threshold secret sharing of it. Time

delayed factorization of n will become possible after an agreed subset of the agents have

recovered r.

3 The Proposed Scheme

Let user Alice construct her public key n = pq such that p and q are prime, are of the

same magnitude and that (p�1)(q�1) has a factor r which makes n1=4=r1=2 su�ciently

large yet still feasible to search by well resourced agencies. An instance of the magnitude

of n1=4=r1=2 is 240.

Alice shall then prove in zero-knowledge the following things: (i) n is the product

of two primes p and q of the same size; (ii) a number r is a factor of (p � 1)(q � 1);

(iii) prove the size of n1=4=r1=2 as agreed; (iv) veri�able secret sharing of r with a set of

trustees (called shareholders). We notice that because the proofs in (i), (ii) and (iii) can

be made into publicly veri�able (we will further clarify this in the end of Section 3.2 and

in Section 4.1), therefore it su�ces to use a single veri�er (Bob) to verify Alice's proofs.

Secret sharing in (iv) will be in threshold access structure, which allows a subgroup of

shareholders to recover r as long as they satisfy the access structure.

After these have been done, we know from the previous section that once r is recov-

ered by co-operative shareholders, n can be factored using T ime Tuned Factoring(r; n)

in O(n1=4=r1=2) multiplications. On the other hand, if r is not available, the time com-

plexity for factoring n will be measured purely by the size of n, and when n is su�ciently

large, the factoring problem is infeasible.

In this section we will construct zero-knowledge proof protocols for the proof of the

required structure of n, and for veri�able secret sharing of r. These constructions will

use various previous results as building blocks, which can be found, respectively, in

the work of Chaum and Pedersen [6] (for the proof of the discrete logarithm equality),

Damg�ard [9] (for showing of integer sizes), Pedersen [22] (for veri�able threshold secret

sharing), and Mao [15] (for the proof of correct integer arithmetic).

These protocols will make use of a public cyclic group with the following construction.

Let P be a large prime such that QjP � 1 be also prime. Let f 2 (Z=PZ)� be a �xed

element of order Q. The public group is the group generated by f with multiplication

as the group operation. We assume that it is computationally infeasible to compute

discrete logarithms to the base f . Once setup, the numbers f and P and Q will be

announced for use by the system wide entities.

8

3.1 Proof of Correct Integer Arithmetic

We shall apply y � f
x (mod P) as the one-way function needed to prove the correct inte-

ger arithmetic. For simplicity, in the sequel we will omit the operation mod P whenever

the omission will not cause confusion.

For integers a and b, Alice can use the above one-way function to prove c = ab

without revealing a, b and c. She shall commit to the values a, b and c by sending to

Bob (veri�er) their one-way images (A;B;C) = (fa; f b; fab) and prove to him that the

pre-image of C is the product of those of A and B.

Note that for the one-way function fx used, the proved multiplication relationship in

the exponents is in terms of modulo ord(f) (here ord(f) = Q, the order of the element f),

and in general this relationship does not demonstrate that logf (C) = logf(A) logf(B) is

also the case in the integer space. Nevertheless, if Alice can show the sizes of the respec-

tive discrete logarithms then the following lemma guarantees the correct multiplication

(in the sequel we denote by jaj the size of the number a in the binary representation).

Lemma 2 Let ab = c (modQ) and jcj+ 2 < jQj. If jaj+ jbj � jcj+ 1 then ab = c.

proof The inequality ab 6= c implies ab = c + `Q for some integer ` 6= 0. Since

0 < c < Q,

jaj+ jbj � jabj = jc+ `Qj � jQj � 1 > jcj+ 1;

contradicting the condition jaj+ jbj � jcj+ 1. 2

Thus y = f
x does form a suitable one-way function to be used for the proof of the

correct multiplication of the integers in its pre-image space provided the sizes of the pre-

images are shown. Given fx, there exists e�cient protocols to show jxj without revealing
x (e.g., [9], we will specify such a protocol in the next subsection). Below we specify a

protocol (predicate) Product(A;B;C) to achieve a proof of the correct multiplication of

the integers as the discrete logarithms of the input quantities. The predicate will return

1 (Bob accepts) if logf(C) = logf (A) logf (B), or return 0 (Bob rejects) if otherwise.

Protocol Product(A;B;C)

(Abandon a run and return 0 if Bob �nds any error in any checking step,

otherwise return 1 upon termination.)

Alice sends to Bob: j logf(A)j, j logf(B)j, j logf(C)j, and demonstrates:

1. logf(A) � logB(C) (modQ) and logf(B) � logA(C) (modQ);

2. j logf (A)j+ j logf(B)j � j logf(C)j+ 1 < jQj � 1.

9

In Product, showing the equalities in step 1 can use the protocol of Chaum and

Pedersen [6], and showing the size information in step 2 can use a protocol Bit-Size to

be speci�ed in the next subsection. Note that only the bit sizes regarding the �rst two

input values need to be shown because, having shown the equations in step 1, the size

regarding the third value is always the summation of those regarding the former two.

3.2 Proof of Integer Size

The basic technique is due to Damg�ard [9]. We specify a simpli�ed version based on the

discrete logarithm problem (in Section 4.2 we shall see that our scheme is secure with

respect to the Decision Di�e-Hellman problem in the group mod P).

Let I be the interval [�; �](= fxj� � x � �g), � = �� �, and I� � = [�� �; �+ �]. In

Protocol Bit-Size speci�ed below, Alice can convince Bob that the discrete logarithm

of the input value to the agreed base lies in the interval I � �.

Protocol Bit-Size(f s)

Execute the following k times:

1. Alice picks 0 < t1 < � at uniformly random, and sets t2 := t1 � �; she sends to

Bob the unordered pair C1 := f
t1 , C2 := f

t2 ;

2. Bob selects challenge c = 0 or c = 1 at uniformly random, and sends c to Alice;

3. Alice sets
u1 = t1; u2 = t2 for c = 0;

u1 = t1 + s; u2 = t2 + s for c = 1;

and sends u1, u2 to Bob;

4. Bob checks (with i = 1; 2)

�� < ui < �; Ci = f
ui for c = 0;

� � � � ui � � + �; Cif
s = f

ui for c = 1;

Let, for instance, I = [2`�1
; 2`]. Then � = 2`�1, and Bit-Size will prove that the

discrete logarithm of the input value does not exceed `+1 bits. The probability for this

to hold is at least 1� 1=2k.

Using a secure one-way hash function to generate challenge bits, the proof becomes

publicly veri�able. That is why we can trust Bob to be honest in correctly verifying

Alice's proofs. (Using the same method, the proof of the discrete logarithm equality in

Product can also be made publicly veri�able.)

10

3.3 Proof of the Structure of n

Let n = pq be Alice's public key for an integer factoring based cryptosystem. We require

Alice to set the primes p and q with the following structure

p = 2p0s + 1; q = 2q0t + 1; (7)

Here p0; q0; s; t are odd numbers, any two of them are relatively prime. Let

r = 4st

Then we have r j�(n).
Let L be such that performing 2L=2 multiplications forms a non-trivial burden for

even well resourced agencies (L = 80 is a typical setting). Alice should set the sizes for

these quantities to satisfy

jpj = jqj (8)

and

jpj � jrj = L: (9)

As a recommended procedure for modulus setup, Alice should �rst choose the num-

bers p0, q0, s, t at random with the required sizes, parity and relative-prime relationship.

She then samples if p and q in (7) are prime. The procedure repeats until p and q are

found to be prime. For p0, q0, s, t being odd, both p and q will be congruent to 3 modulo

4, rendering n a Blum integer [4]. It is advisable that p0 and q
0 be chosen as primes.

Then for n of a secure size (at least of 512 bits), p0 and q
0 will be su�ciently large which

results in p and q as the so-called strong primes. This follows a desirable moduli setting

for integer factoring based cryptosystems.

Once the above values are �xed, Alice shall publish

U = f
p
; V = f

q
; W = f

(p�1)(q�1)

r ; R = f
r
:

Using these published values, Alice and Bob can run the following protocol steps:

1. Product(U; V; fn);

2. Product(W;R;
fn+1

UV
).

Step 1 proves n = logf (U) logf(V) and step 2 proves the fact that logf(R) divides

(logf(U)� 1)(logf (V)� 1). Note that fn+1

UV
is used as the third input to Product in step

2 because its discrete logarithm is n + 1� (p + q) = (p� 1)(q � 1). During the proofs

that use Product, Alice has also demonstrated the bit size values j logf(U)j, j logf(V)j
and j logf(R)j. Bob should check that (review (8))

j logf (U)j = j logf (V)j; (10)

11

and that (review (9))

j logf(U)j � j logf (R)j = L: (11)

Alice should �nally prove that n consists of two prime factors only. This can be

achieved by applying the protocol of Van de Graaf and Peralta [12] for the proof of

Blum integers (we have constructed n to be a Blum integer), and the protocol of Boyar

et al [5] for the proof of square-free integers.

From the size check in (10) Bob knows that the two prime factors of n are of the

same size. Thus, logf(U) � n
1=2. Then the size check in (11) implies

[logf (U)= logf(R)]
1=2 � 2L=2;

that is

n
1=4

=r
1=2 � 2L=2: (12)

Thus, once r = logf(R) becomes available, to factor n using T ime Tuned Factoring(r; n)

(in Figure 1) will indeed have a cost measured by 2L=2.

Finally we should note that for n > 2512 (the least secure size in this date) and

L = 80, (12) implies that the size of r is at the level of

jnj=2� 80 > 256� 80 = 176:

So r has an adequately large size against �nding it from R = f
r by extraction of a

small discrete logarithm. For a larger n, (12) shows that r should further be increased

accordingly.

3.4 Veri�able Threshold Secret Sharing of r = logf(R)

For self-containment, we include Pedersen's threshold veri�able secret sharing scheme

[22] for sharing the secret r among a multi number of shareholders with threshold re-

coverability.

Let the system use m shareholders, Using Shamir's t (< m) out ofm threshold secret

sharing method ([24]), Alice can interpolate a t-degree polynomial r(x)

r(x) =
t�1X
i=0

cix
i mod Q;

where the coe�cients c1; c2; � � � ; ct�1 are randomly chosen from (Z=QZ)�, and c0 = r.

The polynomial satis�es r(0) = r. She shall send the secret shares r(i) (i = 1; 2; � � � ; m)

to each of the m shareholders, respectively (via secret channels), and publishes

f
r(i) mod P; for i = 0; 1; � � � ; m;

12

and

f
cj mod P for j = 0; 1; � � � ; t� 1:

Each shareholder can verify

f
r(i) �

t�1Y
j=0

(f cj)i
j

(mod P) for i = 1; 2 � � � ; m:

Assume that at least t of the m shareholders are honest by performing correct check-

ing. Then the polynomial r(x) is now secretly shared among them. When key recovery

is needed, they can use their secret shares to interpolate r(x) and recover r = r(0).

We should point out that this sub-protocol is not a necessary component in the

proposed scheme. There exists other schemes to prove a correct threshold encryption of a

discrete logarithm (e.g., [15] achieves veri�able secret sharing with a public veri�ability;

that is, secret sharing can be done without the presence of the m shareholders and

without assuming t of them to be honest). We have chosen Pedersen's scheme for

simplicity in presentation.

4 Security Analysis

In security analysis we are mainly concerned with two issues: correctness and privacy.

In correctness we are concerned whether Alice is able to successfully cheat Bob to accept

her false proofs, or whether they can collude to create false proofs, with the aim that the

recovery of the prime factors of her modulus will have a much higher cost than that which

is agreed in the prescribed key recovery procedure. In privacy we are concerned whether

Bob can gain any useful knowledge, as a result of verifying Alice's proof, which leads

to discovery of Alice's private key without going through the prescribed key recovery

procedure.

4.1 Correctness

The correctness of the scheme lies in that of the protocols that our scheme applies to

achieve a proof of a discrete logarithm equality, a proof of the size of an integer, a proof

of the two prime product structure, and the veri�able secret sharing.

Firstly, the probability for a successful cheating in the proof of the discrete logarithm

equality (protocol of Chaum and Pedersen [6]) is 1=Q, where Q is the order of f . Since

Q > n, this probability is adequately small (can be omitted in comparison with 1=2k).

The probability for a successful cheating in the proof of the integer size (protocol of

Damg�ard [9]) is 1=2k where k is the number of challenging bits sent (either by Bob, or

from the output of a secure one-way hash function).

13

Next, the correctness of the protocol for the proof of the two-prime product structure

is also well established [5, 12], with error probability 1=2k for k iterations of message

veri�cation. Here, k can be the same as that used in the size proof protocol.

We note that in the proofs of the correct structure of n (i.e., n = pq, the primality of

p, q, the condition rj(p� 1)(q � 1), and the required sizes of n1=4=r1=2), the veri�cation

job does not involve handling any secret information. Therefore it can be carried out by

anybody and can be repeated if necessary. The standard way for making these protocols

publicly veri�able is to use a secure one-way hash function to generate random challenge

bits sent to Alice. The input to the hash function should include n and other public

values such as U , V , W and R. The public veri�ability means that Bob cannot collude

with Alice in creating invalid proofs without being caught.

Finally, Pedersen's protocol [22] for the veri�able threshold secret sharing of r has a

two-sided error. The error probability for Alice's successful cheating is 1=Q. The other

side of the error is determined by the number of dishonest shareholders. The number r

can be correctly recovered if no fewer than t out of the m shareholders are honest (i.e.,

they follow the protocol and securely store the data for secret recovery). Usually the

threshold value t is set to bm
2
c + 1 to achieve a good tradeo� between reliability and

fairness.

4.2 Privacy

Due to the scope and the space limits of this article, we shall only provide an informal

discussion on the privacy quality of our scheme.

In the proof of the correct partial escrow of the prime factors of n, Alice has made

the following quantities public

(U; V;W;R) = (f p; f q; f
(p�1)(q�1)

r ; f
r) (mod P);

where f is an element in the multiplicative group modulo P and P is a large prime.

Evidently, were the above quantities not available, the prime factors of n are pro-

tected by the factorization problem. On the other hand, were n not available, given the

disclosed quantities (U; V;W;R) to �nd (p; q; r) one faces the discrete logarithm prob-

lem. Our privacy analysis shall nevertheless identify whether �nding p, q or r will still

remain a hard problem given the availability of n and (U; V;W;R). Clearly, we can no

longer consider the problem to be those of pure factorization or pure discrete logarithm.

Firstly we should point out that because r is a random secret and is su�ciently large

(review the end of Section 3.3 for the magnitude of r), we can consider that the pairs

(U; V) and the pair (W;R) are computationally unrelated. Therefore we can examine

their impacts on the privacy of the scheme separately.

Now let's identify the di�culty for �nding p, q from n and (U; V). Suppose there

14

exists an e�cient algorithm A such that with input (f; U; V; n) it will output p and q in

time bounded by a polynomial in the size of n. We should keep in mind that A works

because the input values are related by

n � logf(U) logf(V) (modQ); (13)

where (review Section 3) Q is the order of f and is a prime. Were the input values not

related in any way then because to date there exists no polynomial-time algorithms to

factor integers or to compute discrete logarithms, A should not have output logf(U),

logf(V) in time bounded by any polynomial in the size of n. Notice that Q in the

relation in (13) is a prime; so for any x < Q, (13) is equivalent to

n � [x logf(U)][x
�1 logf (V)] � logf(U

x) logf (V
x�1) (modQ):

So with input (f; Ux
; V

x�1
; n)A should output logf(U

x) and logf(V
x�1) in time bounded

by a polynomial in the size of n. Further notice that Ux (and V x�1) forms a permutation

in the group generated by f . Thus, given a quadruple (f; U 0

; V
0

; f
n) with U 0, V 0 arbitrary

elements in the group generated by f ,A forms an e�cient decision procedure for deciding

whether (f; U 0

; V
0

; f
n) forms a Di�e-Hellman quadruple.

The privacy of r can be argued analogously using the quadruple (f;W;R;
fn+1

UV
).

The above argument indicates that �nding p and q from n and (U; V) is likely a

problem of deciding the Decision Di�e-Hellman problem in a subgroup of a big prime

order. This is widely regarded a hard problem [20, 26].

5 Performance

The proposed scheme consists of (i) two instances of running Product, (ii) the proof of

the two-prime product structure of n, and (iii) the veri�able secret sharing of r.

Since (iii) should be common to any veri�able threshold secret sharing schemes, we

shall only analyze the performance due to (i) and (ii) as additional costs in achieving

veri�able partial sharing of integer factors.

In (i), the main cost of running Product is to prove the size of two integers (twice

running Bit-Size), plus a trivial cost for the proof of discrete logarithm equality (a

three-move protocol): in each run of Bit-Size, Alice and Bob will each compute 2k

exponentiations mod P where k is the number of iterations in Bit-Size; in the proof of

discrete logarithm equality they only need to compute a few additional exponentiations

mod P . Since on average one exponentiation mod P amounts to 1:5 log2 P multiplica-

tions mod P , the total number of multiplications for two instances of running Product

can be bounded by 7k log2 P .

15

Next, we look at the cost for the proof of the two-prime product structure of n.

Because n is a Blum integer, the protocol of Van de Graaf and Peralta [12] can be

applied which involves agreeing k pairs of random numbers in (Z=nZ)� and k bits as

random signs. For each pair of the agreed numbers, Alice needs to compute a square

root which costs an exponentiation mod n; Bob's computation is trivial: to evaluate a

Jacobi symbol and to check one squaring; all together his performance is at the level

of a few multiplications mod n. Finally, the protocol of Boyar et al for the proof of

square-free numbers [5] needs to be run for k times, each run costs one exponentiation

mod n for each party. Thus, after k runs of the both protocols we can use 3k log2 n to

bound the total number of multiplications mod n computed by Alice; Bob will need to

do no more than half of this amount.

In Lemma 2 we know that the size of n should be three bits smaller than that of

Q which can be of similar size of that of P (e.g., let P = 2Q + 1). Thus we can use

(log2 P)� 4 to bound the size of n.

Our performance analysis concludes in the following theorem.

Theorem 1 With a veri�able secret sharing scheme for sharing a secret in the form

of a discrete logarithm, the proposed scheme for veri�able partial sharing of the prime

factors of an integer of size up to (log2 P)�4 bits has a cost for both prover and veri�er

bounded by 7k log2 P multiplications modulo P and 3k log2 n multiplications modulo n.

2

Let P a 1540 bit prime; then the maximum size of the integers that can dealt with

by the proposed scheme will be 1536 (= 3� 512) binary bits. Veri�able partial escrow

of the prime factors of an integer of this size with a su�ciently small error probability

of 1=240 can be achieved with no more than 615,520 multiplications.

6 Conclusion

We have constructed a veri�able partial key escrow scheme for integer factoring based

cryptosystems. To the author's knowledge this is the �rst practically e�cient con-

struction which features time-delayed and (t;m)-threshold key recovery. We have also

analyzed the security of the scheme and our analysis indicates that the di�culty of

�nding the escrowed secret through an unspeci�ed way is likely to be that of solving a

Decision Di�e-Hellman problem in a group of a big prime order. The new scheme real-

izes a practical method for �ne tuning the time complexity for factoring an integer and

the tunable complexity has no respect to the size of the integer. The time complexity

for factoring an integer using a known factor of �(n) has an independent value in that

16

it should be a piece of must-know knowledge for designing protocols or cryptosystems

based on disclosing a factor of �(n) of a non-trivial size.

Acknowledgments

I would like to thank the anonymous referees of Designs, Codes and Cryptography for

valuable comments and the lead to reference [2], and Nigel Smart for helpful discussions.

References

[1] M. Bellare and S. Goldwasser. Veri�able partial key escrow. Proceedings of 4th

ACM Conference on Computer and Communications Security. ACM Press. April

1997. pages 78{91.

[2] M. Bellare and S. Goldwasser. Encapsulated key escrow. MIT Labo-

ratory for Computer Science Technical Report 688, November 1996. Pre-

sented at rump session of EUROCRYPT 96, May 1996. Available at

http://www-cse.ucsd.edu/users/mihir/papers/escrow.html.

[3] B. Blackley. Safeguarding cryptographic keys. Proceedings of the National Com-

puter Conference 1979, volume 48 of American Federation of Information Processing

Societies Proceedings, pages 313{317, 1979.

[4] M. Blum. Coin ipping by telephone: a protocol for solving impossible problems.

Proceedings of 24th IEEE Computer Conference (CompCon), 1982. pages 133{137.

[5] J. Boyar, K. Friedl and C. Lund. Practical zero-knowledge proofs: Giving hints

and using de�ciencies. Advances in Cryptology: Proceedings of EUROCRYPT 89

(J.-J. Quisquater and J. Vandewalle, eds.), Lecture Notes in Computer Science 434,

Springer-Verlag (1990) pages 155{172.

[6] D. Chaum and T. P. Pedersen. Wallet databases with observers. Advances in

Cryptology: Proceedings of CRYPTO 92 (E.F. Brickell, ed.), Lecture Notes in

Computer Science 740, Springer-Verlag (1993) pages 89{105.

[7] H. Cohen. A Course in Computational Algebraic Number Theory. Springer-Verlag

Graduate Texts in Mathematics 138 (1993).

[8] D. Coppersmith. Finding a small root of a bivariate integer equation; factoring with

high bits known. Advances in Cryptology | Proceedings of EUROCRYPT 96 (U.

Maurer, ed.), Lecture Notes in Computer Science 1070 Springer-Verlag (1996) pages

178{189.

17

[9] I.B. Damg�ard. Practical and provably secure release of a secret and exchange of

signatures. Advances in Cryptology: Proceedings of EUROCRYPT 93 (T. Helle-

seth, ed.), Lecture Notes in Computer Science 765, Springer-Verlag (1994) pages

201{217.

[10] M. Girault. An identity-based identi�cation scheme based on discrete logarithms

modulo a composite number. Advances in Cryptology: Proceedings of EURO-

CRYPT 90 (I.B. Damg�ard, ed.), Lecture Notes in Computer Science 473, Springer-

Verlag (1991) pages 481{486.

[11] M. Girault and J.C. Paill�es. An identity-based scheme providing zero-knowledge

authentication and authenticated key-exchange. First European Symposium on

Research in Computer Security { ESORICS 90 (1990) pages 173{184.

[12] J. Van de Graaf and R. Peralta. A simple and secure way to show the validity

of your public key. Advances in Cryptology: Proceedings of CRYPTO 87 (E.

Pomerance, ed.), Lecture Notes in Computer Science 293, Springer-Verlag (1988)

pages 128{134.

[13] S. J. Kim, S. J. Park and D. H. Won. Convertible group signatures. Advances

in Cryptology: Proceedings of ASIACRYPT 96 (K. Kim, T. Matsumoto, eds.),

Lecture Notes in Computer Science 1163, Springer-Verlag (1996) pages 310{321.

[14] D.E. Knuth. The Art of Computer Programming, Volume 1, Fundamental Algo-

rithms. Addison-Wesley, 1973.

[15] W. Mao. Necessity and realization of universally veri�able secret sharing. 1998

IEEE Symposium on Security and Privacy, IEEE Computer Society (1998) pages

208{214.

[16] W. Mao and C.H. Lim. Cryptanalysis of prime order subgroup of Z�

n. Advances

in Cryptology: Proceedings of ASIACRYPT 98 (K. Ohta, D. Pei, eds.), Lecture

Notes in Computer Science 1514, Springer-Verlag (1998) pages 214{226.

[17] A.J., Menezes, P.C. van Oorschot, and S.A. Vanstone. Handbook of Applied Cryp-

tography. CRC Press, 1997.

[18] S. Micali. Fair public key cryptosystems. Advances in Cryptology | Proceedings of

CRYPTO'92 (E. F. Brickell, ed.) Lecture Notes in Computer Science 740, Springer-

Verlag (1993) pages 113{138.

[19] S. Micali. Guaranteed partial key escrow. MIT/LCS TM-537 September 1995.

[20] M. Naor and O. Reingold. Number-theoretic constructions of e�cient pseudo-

random functions. In 38th Annual Symposium on Foundations of Computer Science,

1997.

18

[21] P.C. van Oorschot. and M.J. Wiener. Parallel collision search with cryptanalytic

applications. J. of Cryptology, Vol.12, No.1 (1999), pages 1{28.

[22] T. Pedersen. Non-interactive and information-theoretic secure veri�able secret shar-

ing. Advances in Cryptology: Proceedings of CRYPTO 91 (J. Feigenbaum, ed.),

Lecture Notes in Computer Science 576, Springer-Verlag (1992) pages 129{120.

[23] J.M. Pollard. Monte Carlo method for index computation (mod p), Mth. Comp.,

Vol.32, No.143 (1978), pages 918{924.

[24] A. Shamir. How to share a secret. Communications of the ACM, Vol 22 (1979)

pages 612{613.

[25] A. Shamir. Partial key escrow: a new approach to software key escrow. Presented

at Key Escrow Conference, Washington, D.C., September 15, 1995.

[26] M. Stadler. Publicly veri�able secret sharing. Advances in Cryptology: Proceedings

of EUROCRYPT 96 (U. Maurer, ed.), Lecture Notes in Computer Science 1070,

Springer-Verlag (1996), pages 190{199.

19

