

X-Ability: A Theory of Replication

Svend Frolund, Rachid Guerraoui1
Software Technology Laboratory
HP Laboratories Palo Alto
HPL-2000-15
January, 2000

replication,
fault-tolerance,
high-
availability,
Exactly-once

Different replication mechanisms provide different solutions to
the same basic problem. However, there is no precise
specification of the problem itself, only of particular classes of
solutions, such as active replication and primary-backup.
Having a precise specification of the problem would help us
better understand the space of possible solutions.

We present a formal definition of the problem solved by
replication. We introduce x-ability (Exactly-once-ability) as a
correctness criterion for replicated services. An x-able service
has obligations to its environment and its clients. It must
update its environment under exactly-once semantics.
Furthermore, it must provide idempotent, non-blocking request
processing and deliver consistent results to clients. X-ability is
a local property: replicated services can be specified and
implemented independently, and later composed in the
implementation of more complex replicated services.

We illustrate the value of x-ability through a novel replication
protocol that handles non-determinism and external side-
effects.

1 Swiss Federal Institute of Technology, Lausanne, Switzerland CH 1015
 Copyright Hewlett-Packard Company 2000

Internal Accession Date Only

X-Ability: A Theory of Replication

Svend Fr�lund1 Rachid Guerraoui2

1 Hewlett-Packard Laboratories, Palo Alto, CA 94304
2 Swiss Federal Institute of Technology, Lausanne, CH 1015

Abstract

Di�erent replication mechanisms provide di�er-

ent solutions to the same basic problem. However,

there is no precise speci�cation of the problem it-

self, only of particular classes of solutions, such

as active replication and primary-backup. Having

a precise speci�cation of the problem would help

us better understand the space of possible solu-

tions.

We present a formal de�nition of the prob-

lem solved by replication. We introduce x-ability

(Exactly-once-ability) as a correctness criterion

for replicated services. An x-able service has obli-

gations to its environment and its clients. It

must update its environment under exactly-once

semantics. Furthermore, it must provide idempo-

tent, non-blocking request processing and deliver

consistent results to clients. X-ability is a local

property: replicated services can be speci�ed and

implemented independently, and later composed

in the implementation of more complex replicated

services.

We illustrate the value of x-ability through

a novel replication protocol that handles non-

determinism and external side-e�ects.

1 Introduction

There is a signi�cant body of literature about

replication algorithms. Surprisingly, there is no

precise speci�cation of the general problem that

these algorithms solve. There are well-known

speci�cations of correctness for particular ways

of implementing replication, such as primary-

backup [BMST93] and active replication [Sch93].

However, these are speci�cations of replication so-

lutions rather than a speci�cation of the actual

problem solved by replication. The very few ab-

stract replication properties that we know about,

e.g., [Aiz89] and [MP88], do not address correct-

ness with respect to external side-e�ect. They

only address consistency of state that is encapsu-

lated within the service itself. In particular, there

is no provisioning, in the speci�cations, for having

a replicated service call a third-party entity, e.g.,

another replicated service. This form of interac-

tion is however common in practice, especially for

middleware application servers.
1

This paper de�nes x-ability (Exactly-once-

ability), a correctness criterion for replicated ser-

vices. X-ability is independent of particular repli-

cation algorithms. The main idea behind x-ability

is to consider a replicated service correct if it

somehow behaves like a single, fault-tolerant pro-

cess. We develop a theory to express, in a precise

manner, what it takes for a service to provide

this illusion. Roughly speaking, an x-able service

must satisfy a contract with its clients as well as

a contract with third-party entities. In terms of

clients, a service must provide idempotent, non-

blocking request processing. Moreover, it must

deliver replies that are consistent with its invoca-

tion history. The side-e�ect of a service, on third-

1Three-tier architectures are becoming mainstream for

the Internet. In a three-tier architecture, a client typi-

cally invokes a middle-tier application server (which may

be replicated), which itself invokes a back-end database.

1

party entities, must obey exactly-once semantics.

To deal with side-e�ects, x-ability is based on

the notion of action execution. Actions are exe-

cuted correctly (i.e., are x-able) if their side-e�ect

appears to have happened exactly-once. The side-

e�ect of actions can be the modi�cation of a

shared state or the invocation of another (repli-

cated or not) service. Our theory represents the

execution of actions as event histories. We for-

mally de�ne the notion of \appears to have hap-

pened exactly-once" in terms of history equiva-

lence: an action history h is x-able if it is equiv-

alent to a history h0 obtained under failure-free

conditions.
2

We de�ne history equivalence relative to the

execution of two particular kinds of actions:

idempotent and undoable. Essentially, the side-

e�ect of a history with n incarnations of an idem-

potent action is equivalent to a history with a

single incarnation. Writing a particular value to

a data object is an idempotent action. An un-

doable action is similar to a transaction [GR93]:

we can cancel its side-e�ect up to a certain point

(the commit point), after which the side-e�ect is

permanent. Thus, the side-e�ect of a history with

a cancelled action is equivalent to the side-e�ect

of a history with no action at all. Formalizing

these intuitive properties of idempotent and un-

doable actions is the biggest technical di�culty in

de�ning x-ability.

Our theory allows actions to be non-

deterministic. Moreover, it is extensible: we can

de�ne equivalence rules for other types of actions

without changing the basic notion of x-ability.

X-ability can be used in a recursive way to

locally prove the correctness of composing repli-

cated services. Let S1 be a replicated service that

is proven to be x-able, and S2 be a replicated ser-

vice that invokes S1. We can prove the x-ability

of S2 by simply assuming that any interaction

with S1 is an idempotent action. In particular,

2Being de�ned relative to failure-free executions, x-

ability encompasses both safety and liveness. It is a safety

property because it states that certain partial histories

must not occur. It is also a liveness property since it en-

forces guarantees about what must occur (in fact, x-ability

encompasses a notion of wait-freedom [Her91]).

we can reason about system correctness one ser-

vice at a time. As long as all services satisfy their

contracts, the system as a whole will be correct.

Being independent of particular replication

protocols, x-ability introduces a uni�ed frame-

work to express and compare existing replication

protocols. Because x-ability models services with

side-e�ects, we can also use it to devise new

replication protocols that involve third-party

interaction. We designed a distributed protocol

that handles the replication of services that

execute non-deterministic actions with external

side-e�ect. Interestingly, our replication protocol

may vary at run-time and according to the

asynchrony of the system, between some form

of primary-backup and some form of active

replication. In a companion paper [FG00], we

use an incarnation of our protocol to replicate

application servers in three-tier systems. The

servers execute transactions on non-replicated,

third-party databases. With our protocol, the

servers provide exactly-once transaction seman-

tics to frontend clients.

Roadmap. The rest of the paper is organized as

follows. Section 2 describes our system model.

Section 3 de�nes what it means for a history to

be x-able. Section 4 de�nes what it means for a

replicated service to be x-able. Section 5 illus-

trates the use of x-ability through our replication

algorithm. Section 6 contrasts our work with re-

lated work. Appendix A contains more details

about our x-ability theory and Appendix B con-

tains more details about our replication protocol.

2 System Model

To formally introduce x-ability, we consider a

general model where a set of process replicas im-

plement a service. The functionality of the service

is captured by a state machine. Each replica has

its own copy of the state machine. Clients send

requests to the service to invoke state-machine

actions.

To describe the fault-tolerance semantics, and

reason about correctness of a service, we associate

events with the start and completion of actions.

2

Event histories convey the observable behavior of

processes, i.e., the externally observable behavior

of a service. Di�erent runs of a service on the

same input may produce di�erent histories: the

service may fail di�erently in di�erent runs, ac-

tions may be non-deterministic, and the concur-

rency within the service may cause events to be

interleaved di�erently. We use history patterns to

abstract out some of these di�erences and capture

structural properties of histories.

2.1 State Machines

A state machine exports a number of actions.

An action takes an input value and produces an

output value. In addition, an action may mod-

ify the internal state of its state machine and it

may communicate with external entities. In con-

trast to [Sch93], our state machines may be non-

deterministic. That is, the side-e�ect and output

value of a speci�c action may not be the same

each time we execute it, even if we execute it in

the same initial state.

A client can invoke a replica's state machine

by sending a request to the replica. A request

contains the name of an action and an input value

for the action. If no failures occur, the replica

returns the action's output value to the client as

a reply to the request. The execution of an action

may fail (for example if the action manipulates a

remote database and the database crashes), or the

replica executing the action may fail. If the action

fails, it returns an exception (or error) value as

the execution result. Otherwise, we say that the

action executes successfully.

Formally speaking, we model action names as

elements of a set Action. We refer to elements

of this set using the letter a. The set Value

contains the input and output values associated

with actions. Furthermore, we identify two sets,

Request (Request � (Action � Value)) and Result

(Result � Value). A request is simply a pair value

that contains an action name and an input value.

We write pairs as \(a; v)" (this pair contains the

action name a and the value v).

2.2 Events

A state machine represents the program that

a service must execute. To reason about ser-

vice correctness, we associate events with the ex-

ecution of actions, and introduce a hypothetical

event observer that can watch the occurrence of

events and construct an event history . Events are

subject to a total order that re
ects the (relative)

time at which they were observed.

We associate events with the start and com-

pletion of actions. The causal and temporal rela-

tionship between action execution and event ob-

servation is subject to the following axioms:

� An action's start event cannot be observed

before the action is invoked.

� An action's completion event cannot be ob-

served before its start event.

� If an action returns successfully, then its

start and completion events have been ob-

served.

In a failure-free run, the execution of an action

gives rise to a start event and a completion event.

If a failure occurs, an action may give rise to both

events, a start event only, or no events at all.

We use events to reason about the side-e�ect of

actions. A start event signi�es that the side-e�ect

may happen; a completion event means that the

side-e�ect has happened (successfully).

We model events as elements of the set Event.

Events are structured values with the following

structure:

e ::= S(a; iv) j C(a; ov)

The event S(a; iv) captures the start of execut-

ing the action a with iv as argument. The event

C(a; ov) captures the completion of executing the

action a, and ov is the output value produced by

the action.

2.3 Histories

A history is a sequence of events. The notion

of a sequence captures the total order in which

3

events are observed. We model histories as ele-

ments of the set History, and we consider histories

to be structured values as de�ned by the following

syntax:

h ::= � j e1 : : : en j h1 � : : : � hn

The symbol � denotes the empty history|a his-

tory with no events. The history e1 : : : en con-

tains the events e1 through en. The history

h1 � : : : � hn is the concatenation of histories h1
through hn. The semantics of concatenating his-

tories is to concatenate the corresponding event

sequences.

The action a appears with input value iv in

a history h if h contains a start event produced

by the execution of a on iv . We write this as

(a; iv) 2 h.

2.4 Patterns

We typically consider histories that are pro-

duced by multiple processes. For example, we

may want to reason about a history that is pro-

duced by a set of server processes that collectively

implement a replicated service. Since processes

execute concurrently, we end up with a \com-

bined" history in which events produced by di�er-

ent processes are interleaved. In many cases, we

want to consider this interleaving as \incidental"

(or un-important), and reason about histories at a

level of abstraction where histories that only dif-

fer in the particular interleaving are considered

equivalent. We use history patterns (or simply

patterns) to capture these higher-level structural

properties.

In Figure 1, we de�ne an abstract syntax for

patterns. Formally speaking, patterns are ele-

ments of the set Pattern, and we use the letter

p to refer to patterns.

sp ::= [a; iv ; ov] j ?[a; iv ; ov]

p ::= sp j sp1 kh sp2

Figure 1: Abstract syntax for history patterns

. � (History � Pattern) (1)

S(a; iv)C(a; ov) . [a; iv ; ov] (2)

� . ?[a; iv ; ov] (3)

S(a; iv) . ?[a; iv ; ov] (4)

S(a; iv)C(a; ov) . ?[a; iv ; ov] (5)

Figure 2: Pattern matching rules for simple pat-

terns

The only use for patterns is to match histories.

A simple pattern sp matches single-action histo-

ries. The pattern [a; iv ; ov] matches a history that

contains the events from a failure-free execution

of an action a. The value iv is the input to a and

ov is the output from a. The pattern ?[a; iv ; ov]

matches a history in which a may have failed. A

matching history may be the empty history, it

may contain a start event only, or it may contain

both the start and completion event of a.

The pattern sp1 kh sp2 matches a history h0

that contains an interleaving of three sub histories

h1, h2, and h, where h1 matches sp1, h2 matches

sp2, and h is an arbitrary history. The interleav-

ing is constrained in the sense that the �rst event

in h1 must also be the �rst event in h0 and the

last event in h2 must also be the last event in h0.

Formally speaking, pattern matching is a re-

lation . between elements of the set History and

elements of the set Pattern. In other words, . is

a subset of History � Pattern (the set of all pairs

from History and Pattern). We de�ne this relation

in �gures 2 and 3.

�rst(�) = � �rst(e1e2) = e1 (9)

�rst(e) = e second(�) = � (10)

second(e) = e second(e1e2) = e2 (11)

Figure 4: The de�nition of �rst and second

A history that matches a simple pattern con-

tains at most two events. We de�ne two operators

4

h1 . sp1 h2 . sp2
(h1 � h � h2) . (sp1 kh sp2)

(6)

h1 . sp1 h2 . sp2
(�rst(h1) � h3 � second(h1) � h4 � �rst(h2) � h5 � second(h2)) . (sp1 kh3�h4 �h5 sp2)

(7)

h1 . sp1 h2 . sp2
(�rst(h1) � h3 � �rst(h2) � h4 � second(h1) � h5 � second(h2)) . (sp1 kh3�h4 �h5 sp2)

(8)

Figure 3: Pattern matching rules for complex patterns

on such histories: �rst() and second(). We de�ne

those operators in Figure 4. The �rst operator re-

turns the �rst element in a history, if any, and �

otherwise. The second operator returns the sec-

ond element in a history of length two, the only

element in a history of length one, and the empty

history otherwise.

3 X-Able Histories

To be fault-tolerant, a replicated service must

be prepared to invoke the same action multi-

ple times until the action executes successfully.

To provide replication transparency, the service

must have exactly-once semantics relative to its

environment|the service must maintain the illu-

sion that the action was executed once only. An

x-able history is a history that maintains the il-

lusion of exactly-once but possibly contains mul-

tiple incarnations of the same action.

3.1 History Reduction

We de�ne a relation,), on histories. If h)

h0, then the execution that produced h has the

same side-e�ect as an execution that produced

h0. We refer to) as a reduction operator because

it is asymmetric, and h0 always has fewer events

than h. Essentially, a history is x-able if it can be

reduced, under), to a history that could arise

from a system that does not fail.

In de�ning), we consider two particular types

of actions: idempotent and undoable. Informally

speaking, n executions of an idempotent action

has the same side-e�ect as a single execution of

it. Thus, we write h) h0 if h contains n incar-

nations of an idempotent action and h0 contains

n� 1 incarnations of the same action. Similarly,

an undoable action is like a database transaction:

it can be rolled back up to a certain point (the

commit point), after which its e�ects are perma-

nent. We also write h) h0 if h contains an un-

doable action that was rolled back and h0 does

not contain the action at all.

More precisely, we identify two subsets of

Action: Idempotent and Undoable. The set

Idempotent contains the names of idempotent ac-

tions. We use the notation ai to indicate that the

action a is idempotent. The set Undoable contains

names of undoable actions. We use the notation

au to indicate that an action a is undoable. An

undoable action, au, has two associated actions:

a cancellation action, a�1
, and a commit action,

ac. The commit and cancellation actions for an

action au take the same arguments as au, and

they return the value nil. Cancellation and com-

mit actions are idempotent.

We then de�ne the) operator in terms of

idempotent and undoable actions in Figure 5.

� The �rst inference rule (13) de�nes) as a

transitive relation.

� The second rule (14) captures the semantics

of idempotent actions. If a history contains

a successfully executed idempotent action

ai, then we can remove the events from a

previous attempt to execute ai. The events

from the previous attempt and the success-

5

) � (History � History) (12)

h1) h2 h2) h3

h1) h3
(13)

h . (?[ai; iv ; ov] kh0 [ai; iv ; ov])

h1 � h � h2) h1 � h0 � (S(ai; iv)C(ai; ov)) � h2
(14)

h . (?[au; iv ; ov] kh0 [a�1; iv ; nil]) (au; iv) =2 h1 (ac; iv) =2 h0

h1 � h � h2) h1 � h0 � h2
(15)

h . (?[ac; iv ; nil] kh0 [ac; iv ; nil]) (au; iv) =2 h0

h1 � h � h2) h1 � h0 � (S(ac; iv)C(ac; nil)) � h2
(16)

Figure 5: De�nition of history reduction

ful attempt can overlap. Moreover, there

can be an interleaving history h0 between

these sets of events as well.

� The third rule (15) is concerned with can-

cellation of undoable actions. Intuitively, if

we successfully cancel an undoable action,

then we remove its side-e�ect (it appears

as if the action was never executed). We

can keep alternating between executing the

action and cancelling it. But for the action

to happen exactly-once, we must eventually

execute it successfully and execute its com-

mit action successfully. The rule captures

when we can remove events that stem from

an attempt to execute an action au and then

cancel it.

The sub-history h contains the events from

such an action pair (au followed by a�1
). It

also contains a history h0 that is interleaved

with the events from au and a�1
. One re-

quirement is that h0 must not contain the

commit action of au: if we committed au

before issuing a�1
, the cancellation would

not take e�ect. Furthermore, we need this

constraint on h0 to ensure that an algorithm

does not concurrently cancel and commit

the same action.

The requirement that (au; iv) =2 h1 states

that the preceding sub-history, h1, can-

not contain any events from au. Since

?[a; iv ; ov] matches the empty history, we

need to ensure that the cancellation events

are not removed by themselves if they actu-

ally do cancel an action. If that is the case,

we should also remove the action itself from

the history. Thus, we create a constraint so

that the ?[a; iv ; ov] part of the pattern only

matches the empty history if there are no

events from a to the left of ?[a; iv ; ov].

� The fourth rule (16) states that commit ac-

tions are idempotent. The requirement that

(au; iv) =2 h0 ensures that the commit ac-

tion and the action being committed do not

overlap.

Appendix A illustrates the reduction rules by

means of example history reductions.

3.2 Failure-Free Histories

A failure-free history is a history that could

have been produced by a failure-free execution

of a single state machine action. To de�ne the

notion of failure-free history, we de�ne a function,

called eventsof, on actions and their values. The

eventsof function returns the failure-free history

associated with the action and the values.

6

eventsof(au; iv ; ov) =

S(au; iv)C(au; ov)S(ac; iv)C(ac; nil)
(17)

eventsof(ai) = S(ai; iv)C(ai; ov) (18)

Due to non-determinism, there are multiple

failure-free histories which are possible for a given

action a and a given input value iv . We de�ne the

set of all possible histories, FailureFree(a;iv), as fol-

lows:

FailureFree(a;iv) = fh 2 History j

9 ov 2 Result : h = eventsof(a; iv ; ov)g
(19)

A single-action history is x-able if it can be

\reduced" to a failure-free history under the)

relation. We capture this through a predicate,

x-able on histories:

x-able(a;iv)(h) =(
true if 9h0 2 FailureFree(a;iv) : h) h0

false otherwise

(20)

Notice that the predicate x-able(a;iv) determines

x-ability relative to a particular action-value pair.

3.3 History Signature

We need to ensure that the result delivered to

the client corresponds to the server-side history.

We introduce the notion of a history signature,

which captures the client-side information (re-

quest and result) that is legal relative to a given

server-side history. Because of non-determinism

and server-side retry, a history can have multiple

signatures. We de�ne the set of signatures by the

following inference rules:

h) S(au; iv)C(au; ov)S(ac; iv)C(ac; nil)

(a; iv ; ov) 2 signature(h)
(21)

h) S(ai; iv)C(ai; ov)

(a; iv ; ov) 2 signature(h)
(22)

3.4 Possible Reply Values

The execution of state machine actions may be

non-deterministic. The same request may result

in di�erent reply values. For example, the state of

the machine may determine the reply value, and

this state may change over time.

We want to characterize the set of possible

reply values for a given request. Since we do

not know what state machine actions do, we

cannot describe which speci�c values are possi-

ble. Instead, we assume the existence of a set

PossibleReply that contains the possible reply val-

ues for a given request. To capture the history-

sensitive nature of the set of possible replies,

we de�ne PossibleReply in the context of a re-

quest sequence R1 : : : Rn. The interpretation of

PossibleReply in the context of a sequence is the

set of possible replies to request Rn after the state

machine has executed the requests R1 : : : Rn�1

one after the other. Thus, we write the set as:

PossibleReply(R1:::Rn).

Notice that the set PossibleReply is de�ned for

state machines, not replicated services. Thus,

there is no notion of failures or replication in-

volved in its de�nition. The set is well-de�ned

for state machines in general.

4 X-Able Services

We provide here a formal speci�cation of repli-

cation that is independent of a particular repli-

cation protocol. We can implement the speci-

�cation with various protocols, including proto-

cols that have a primary-backup
avor and proto-

cols that have an active-replication
avor. More-

over, the speci�cation takes side-e�ects and non-

determinism into account.

Formally speaking, a replicated service consists

of a server-side state machine S and a client-side

action submit . The state machine captures the

functionality of the service. It is executed by a

set of server processes s1 : : : sn that each has a

copy of S. These are the only processes that have

a copy of S. The action submit can be used by

any process p to invoke the service. The action

takes a value in the domain Request and, when

7

executed, produces a value in the domain Result.

We specify correctness relative to a single client

C. Thus, we consider a system that consists of the

processes s1 : : : sn and C only. The client submits

one request at a time, and we can observe the

server-side history for each request. The service

is x-able if the following conditions hold:

R1. The action submit is idempotent.

R2. The client C will eventually be able to exe-

cute submit successfully.

R3. If the client submits a request (a; iv), then

the server-side history for (a; iv) is either

empty or it satis�es x-able(a;iv).

R4. If the client receives a reply ov in response

to a request (a; iv), and if the server-side

history for executing this request is h, then

(a; iv ; ov) 2 signature(h).

R5. If the client successfully submits R1 : : : Rn

and receives the reply R0
in response to Rn,

then R0
is in PossibleReply(R1:::Rn).

The �rst two requirements (R1 and R2) are

concerned with the contract between a service

and its clients. Clients use the action submit to

invoke the service. Because submit is idempotent,

clients can repeatedly invoke the service without

concern for duplicating side-e�ects. The second

requirement (R2) is a liveness property. The ac-

tion submit is not allowed to fail an in�nite num-

ber of times. The requirement also makes a ser-

vice non-blocking in the sense that the submit

is guaranteed to eventually return a value. In

addition, submit is free to fail a �nite number

of times and return an error value (a value that

does not belong to Result). The combination of

the �rst two requirements facilitates composition

of services. Since a replicated service can exe-

cute idempotent actions that eventually succeed,

it can invoke another replicated service and view

its invocation as an idempotent action.

The third requirement (R3) deals with the

server-side side-e�ect of executing a request. The

resulting server-side history must be x-able, that

is, it must be equivalent (under history reduction)

to a failure-free history.

The fourth requirement (R4) forces an algo-

rithm to preserve consistency between the client-

side view (request and reply) and the server-side

view (the side-e�ect). This requirement, prevents

the submit action from inventing reply values. It

also prevents the service from inventing request

values.

The �fth requirement (R5) forces the service to

correctly maintain S's state, if any. The server-

side history must be equivalent to a failure-free

execution of the sequence R1 : : : Rn. But since

R1 may result in a transformation of S's state,

the actions executed for R2 may depend on this

state transformation. So, a replication algorithm

must ensure that the state resulting from R1 is

used as a context for executing R2. The repli-

cation algorithm cannot assume that R1 did not

update the state of S, or that the state update is

immaterial to the processing of R2.

5 A Replication Algorithm

Being independent of particular replication

protocols, x-ability introduces a uni�ed frame-

work to express and compare existing replica-

tion protocols. Because x-ability models services

with side-e�ects, we can also use it to devise

new replication protocols that involve third-party

interaction. We sketch the principle of a dis-

tributed replication protocol that handles non-

deterministic actions with external side-e�ect.

We also discuss how traditional replication pro-

tocols can be viewed as specialized incarnations

of our protocol.

At �rst glance, it may appear trivial to guar-

antee exactly-once execution for idempotent and

undoable actions: we can always retry an idem-

potent action, and we can always cancel an un-

doable action, and try again, if the action appears

to have failed. However, the trick is to coordinate

the execution logic with the retry logic so that

there is agreement on the result of a nondeter-

ministic idempotent action and on the outcome

(abort or commit) of an undoable action.

8

Interestingly, our protocol may vary, at run-

time and according to the asynchrony of the

system, between some form of active repli-

cation [Sch93], and some form of primary-

backup [BMST93].

5.1 Protocol Description (sketch)

Our replication algorithm is round-based.

Within each round, a particular replica behaves

as a primary: it tries to compute the request

submitted by the client and sends back a reply.

Rounds are not synchronized, and there may be

several primaries acting at the same time|one for

each round. For presentation simplicity, we con-

sider only the case of a single client, submitting

a single request to the replicated service.

Basically, the client sends the request to a sin-

gle replica and then waits until it either receives

a reply from the replica or it suspects the replica

to have failed, in which case it sends its request

to another replica. In a \nice" run, where no

replica crashes, or is suspected to have crashed,

the protocol goes as follows. The replica that re-

ceives the client's request becomes the primary

in the �rst round: it executes the corresponding

state machine action, and replies to the client. In

such a run, our replication scheme is very much

like a primary-backup scheme applied to general

actions that might have external side e�ect.

In a run where a replica q suspects the crash of

a primary replica p, q tries to terminate the action

executed by p: if p was executing an undoable ac-

tion, q tries to abort the action; if p was executing

a non-deterministic idempotent action, q prevents

p from responding to the client. After terminating

the possible ongoing action execution, q initiates

a new round, and tries to become primary for that

round.

Because of false failure suspicions, we may very

well end-up in the situation where multiple repli-

cas concurrently execute the same request (in dif-

ferent rounds): in such a con�guration, our repli-

cation scheme is very much like an active replica-

tion scheme (applied to general actions that might

be non-deterministic and have external side ef-

fect).

It is important to notice that since actions

might fail, a primary typically needs to keep reis-

suing them until they succeed. Idempotent ac-

tions are simply repeated. For undoable actions,

the procedure is slightly more complicated. If an

undoable action fails, we apply its cancellation

action �rst.

The complete protocol is given in Appendix B.

As we point out in the appendix, the protocol

tolerates crash failures and its correctness relies

on the assumptions of (1) reliable channels; (2)

the existence of at least one correct process; (3) a

failure detector used by the client that eventually

detects the crash of every replica; (4) an even-

tually perfect failure detector among the repli-

cas [CT96]; and the existence of a consensus ob-

ject [Her91] to ensure agreement among the repli-

cas on results, outcomes, and primaries.

5.2 Active Replication and
Primary-Backup

Our protocol is a general replication protocol.

Traditional replication protocols can be viewed

as special cases that handle particular subsets of

actions.

If we assume a perfect failure detector (in the

sense of [CT96]), we can optimize our protocol by

eliminating the need for agreement on primaries.

Furthermore, if we assume that actions only up-

date local state and computes a result, then we

can also eliminate the need for agreement on the

outcome of undoable actions. Interestingly, the

resulting protocol turns out to be very similar to

a traditional primary-backup protocol.

If we assume that the client directly sends its

request to all replicas, then every replica will ac-

tively try to execute the corresponding action and

reply to the client. If we assume that actions are

both deterministic and idempotent, with respect

to their environment, then we can eliminate the

need for our three agreement steps. In this case,

the resulting protocol turns out to be very similar

to a conventional active-replication scheme.
3

3If we assume multiple clients, in order to ensure that

actions indeed remain deterministic, some total ordering

of messages will be needed, just as in [Sch93].

9

6 Concluding Remarks

The role of x-ability for replicated programs

is similar to that of linearizability for concur-

rent objects [HW90] and serializability for con-

current transactions [Pap79]. It facilitates certain

kinds of formal reasoning by transforming asser-

tions about complex replicated behavior (resp.

concurrent for [HW90, Pap79]) into assertions

about simpler non-replicated (resp. sequential

for [HW90, Pap79]) behavior.

Considering that a replicated program is cor-

rect if it can somehow be shown to be equivalent

to a non-replicated program is an intuitive idea,

and this idea has already been explored by di�er-

ent authors. The de�nition of equivalence is the

main di�erence between the various approaches:

� In [MP88], an algebra of action sequences

is used to de�ne a correctness criterion for

replication. TheN replication of a base pro-

cess is a replicated process, denoted by PN
.

The replicated process PN
is correct if it is

possible to extract , from every trace tN of

PN
, a trace t of P . The authors assume

the existence of a generic extract function,

and describe an implementation example of

that function for deterministic pure server

processes (that do not interact with third

party entities). As pointed out by the au-

thors, it is not clear how to devise such a

function for non-deterministic programs. It

is also not clear how to express it for ser-

vices that invoke third-party entities.

� In [Aiz89], the author de�nes a reduction

relation between programs in terms of re-

�nement mapping, using temporal logic de-

scriptions of state sequences. The au-

thor does not describe a mechanical way of

performing the reduction, but rather sug-

gests a methodology for transforming a non-

replicated program into a replicated one.

Our reduction technique is much simpler than

those considered in [MP88] and [Aiz89]: we de-

scribe simple rewriting rules that mechanically

exploit idempotence and undoability properties of

actions. In this sense, our theory is closer to the

theory of 1-copy serializability [BHG87], which

exploits the semantics of read() and write() oper-

ations: a replicated history is view-equivalent to

a non-replicated one if they have the same reads-

from relationships and �nal writes. There are

however many di�erences between x-ability and

1-copy serializability. First, 1-copy serializabil-

ity assumes replicated entities to be data servers

on which read() and write() operations can be

performed.
4
We more generally assume replicated

entities to execute arbitrary actions, that may

very well be operations on data objects, but also

non-deterministic invocations of third party enti-

ties (which enables us to state interesting proper-

ties about replication composition). Second, we

do not restrict ourselves to committed actions,

and we integrate liveness in the x-ability theory.

Third, x-ability does not directly handle concur-

rent invocations of a replicated service. More

precisely, x-ability states constraints about the

concurrency among replicas in the context of a

given request (\intra-request" concurrency), but

ignores the concurrency that originates from dif-

ferent requests (from di�erent clients). The lat-

ter kind of concurrency is indirectly viewed in our

case as a source of non-determinism of actions.
5

Finally, and as we pointed out, unlike serializabil-

ity, but (somehow) like linearizability, x-ability is

a local property of replicated services.

References

[Aiz89] J. Aizikowitz. Designing distributed ser-

vices using re�nement mappings. Techni-

cal Report CS TR 89-1040, Cornell Uni-

versity, 1989.

[BHG87] P. A. Bernstein, V. Hadzilacos, and

N. Goodman. Concurrency Control and

Recovery in Database Systems. Addison-

Wesley, Reading, Mass., 1987.

4One could consider operations on more complex data

objects, along the lines of [LMWF94], but the underlying

model would remain that of replicated data servers.
5We believe the decoupling of concurrency and dupli-

cation to be an important step towards the design of more

modular replication protocols.

10

[BMST93] N. Budhiraja, K. Marzullo, F. B. Schnei-

der, and S. Toueg. The primary-backup

approach. In S. Mullender, editor, Dis-

tributed Systems. Addison-Wesley, 1993.

[CT96] T. Chandra and S. Toueg. Unreliable fail-

ure detectors for reliable distributed sys-

tems. Journal of the ACM, 43(2):225{267,

1996.

[FG00] S. Frolund and R. Guerraoui. Imple-

menting e-transactions with asynchronous

replication. Technical report, Hewlett-

Packard Laboratories, February 2000. To

appear.

[GR93] J. Gray and A. Reuter. Transaction Pro-

cessing: Concepts and Techniques. Mor-

gan Kaufmann, 1993.

[Her91] M. Herlihy. Wait-free synchronization.

ACM Transactions on Programming Lan-

guages and Systems, 13(1):123{149, Jan-

uary 1991.

[HW90] M. Herlihy and J. Wing. Linearizabil-

ity: a correctness condition for concurrent

objects. ACM Transactions on Program-

ming Languages and Systems, 12(3):463{

492, July 1990.

[LMWF94] N. Lynch, M. Merrit, W. Weihl, and

A. Fekete. Atomic Transactions. Morgan-

Kaufmann, 1994.

[MP88] L. Mancini and G. Pappalardo. Towards

a theory of replicated processings. In For-

mal Techniques in Real-time and Fault-

tolerant Systems, pages 175{192. LNCS

(331), Springer Verlag, 1988.

[Pap79] C. Papadimitriou. The serializability of

concurrent database updates. Journal of

the ACM, 26(4):631{653, October 1979.

[Sch93] F. B. Schneider. Replication management

using the state machine approach. In

S. Mullender, editor, Distributed Systems.

Addison-Wesley, 1993.

A Examples Of History Reduction

To illustrate the semantics of the rules in Fig-

ure 5, we show some example reductions. The

goal of the rules is to formally capture our intu-

ition about idempotent and undoable actions. We

want the rules to allow elimination of \enough"

events, but not \too many," relative to our intu-

ition. We demonstrate both aspects. We show

reductions that are possible, and we identify re-

ductions that are impossible. We focus on un-

doable actions and their associated cancellation

and commit actions. Although the rules are given

as inference rules, we do not describe the cor-

responding proof trees. Instead, we describe re-

duction sequences, and argue in the text why a

particular reduction rule is possible or why no re-

duction rule is possible.

Consider the reduction of history h1 in Fig-

ure 6. We use [and] to demarcate the events

that are eliminated in a reduction step. The �rst

step uses the idempotence property of cancella-

tion actions (14). We gather the events from

the failed and successful cancellation action, and

eliminate the events from the failed cancellation

action. Then we apply the rule for undoable ac-

tions (15) to eliminate the undoable action au and

the the cancellation action. The resulting history

is now equivalent to a failure-free history.

The history h2 in Figure 6 shows that we can-

not have interleaving commit and cancel actions.

We apply the idempotence rule for cancellation

actions to gather the cancellation events into a

consistent cancellation action. This is the �rst re-

duction step. However, we cannot apply the rule

for undoable actions (15) to the resulting history.

In the rule, the history h0 must not contain any

commit events. But in the above history, h0 would

be equal to S(ac; iv), which means that we cannot

use the rule.

B A General Replication Algorithm

We present a general, asynchronous replication

algorithm. The algorithm is general in the sense

that it handles the replication of services that

may execute actions that are non-deterministic

11

h1 = S(au; iv)[S(a�1; iv)S(a�1; iv)C(a�1; nil)]S(au; iv)C(au; ov)S(ac; iv)C(ac; nil)

(14)
) [S(au; iv)S(a�1; iv)C(a�1; nil)]S(au; iv)C(au; ov)S(ac; iv)C(ac; nil)

(15)
) S(au; iv)C(au; ov)S(ac; iv)C(ac; nil)

h2 = S(au; iv)[S(a�1; iv)S(a�1; iv)]S(ac; iv)[C(a�1; nil)]S(au; iv)C(au; ov)S(ac; iv)C(ac; nil)

(14)
) S(au; iv)S(a�1; iv)S(ac; iv)C(a�1; nil)S(au; iv)C(au; ov)S(ac; iv)C(ac; nil)

Figure 6: Examples of history reduction

and have external side-e�ect. It is asynchronous

in the sense that it may vary, at run-time, and ac-

cording to the asynchrony of the system, between

some form of active replication [Sch93], and some

form of primary-backup [BMST93]. We describe

the algorithm and then prove its correctness, i.e.,

we show that every service replicated using this

algorithm is x-able.

B.1 Overview

Our replication algorithm is mainly composed

of two parts. A client part, described in Figure 7
6
,

and the replica part, described in Figure 8. For

presentation simplicity, we consider only the case

of a single client, submitting a single request to

the replicated service. The replicated service is

implemented by n replicas. Basically, the client

sends the request to a single replica and then

waits until it either suspects the replica to have

failed or receives a result from the replica. All

replicas execute the same protocol (Figure 8).

In a \nice" run, where no replica crashes or is

suspected to have crashed, the protocol goes as

follows. The replica that receives the client's re-

quest, executes the corresponding state machine

action, and sends back the resulting reply to the

client. In such a run, the replication scheme is

very much like a primary-back scheme (applied

to general actions that might have external side

e�ect).

6In fact, the �gure actually describes the algorithm ex-

ecuted by the client's stub. In the presentation, we simply

do not distinguish between the client and the client's stub.

Any replica that suspects the crash of the pri-

mary tries to terminate the action execution by

the primary: if the primary was executing an un-

doable action, the replica aborts this action; if the

primary was executing a non-deterministic idem-

potent action, the replica prevents the primary

from responding to the client. After terminating

the possible ongoing action execution, the replica

initiates a new round, and tries to become pri-

mary for that round.

Because of false failure suspicions, we may very

well end-up in the situation where all replicas con-

currently execute actions on behalf of the same

clients (in di�erent rounds): in such a con�gu-

ration, our replication scheme is very much like

an active replication scheme (applied to general

actions that might be non-deterministic and have

external side e�ect).

B.2 Assumptions

We assume that processes (client and replicas)

fail by crashing. They do not recover after a

crash, neither do they ever behave maliciously.

A correct process is one that does not fail, and

we assume the existence of at least one correct

replica process. We assume that communication

channels are reliable: there is no message creation

or duplication and if a correct process sends a

message to another correct process, then the mes-

sage is eventually received. We also assume that

every action is eventually successful. If we keep

invoking an action, it will eventually execute to

successful completion. Furthermore, we assume

that a successfully executed undoable action can

12

be committed.

In order to ensure that the service is indeed

x-able, we rely on two kinds of abstractions:
7

1. Failure detector [CT96]. The failure de-

tector is a distributed oracle that provides

hints about failed processes. The client

uses the failure detector to monitor the

crashes of replicas, and every replica uses

the failure detector to monitor the crashes

of other replicas. We assume here that the

client's failure detector satis�es the strong

completeness property [CT96]: eventually,

every crashed replica is suspected by the

client. Among the replicas, we assume

the failure detector to be eventually per-

fect [CT96]. Besides strong completeness, it

also ensures eventual strong accuracy : even-

tually, no replica is suspected unless it has

crashed. These assumptions are needed to

guarantee progress. If a replica suspects an-

other replica, it will try to clean up the ex-

ecution state of the suspected replica. For

undoable actions, this means cancelling the

actions. Thus, if we forever have false sus-

picions, the same action could in principle

be cancelled over and over again.

2. Consensus object [Her91]. The consen-

sus abstraction is used for three kinds of

synchronization: (1) to ensure agreement

about which replica is primary for a given

round, (2) to ensure agreement about the

outcome of undoable actions (commit or

abort), and (3) to ensure agreement about

the replies of idempotent actions (these

might be non-deterministic). The consen-

sus abstraction is used here through two

primitives: a propose() primitive which

takes as input a value proposed for consen-

sus, and returns the value decided, and a

read() primitive that returns the value de-

cided, if any, or ? if no such value has been

decided.

7We simply assume here the existence of these abstrac-

tions, i.e., we do not discuss their implementation in a

message passing system.

B.3 The pseudo-code

We discuss below the semantics of our C++-

like pseudo-code we use in Figure 7, Figure 8, and

Figure 9 to describe our algorithm

A channel is speci�ed by two primitives: send

and receive. For example, the statement \send

[Request,req] to pj" captures the action of send-

ing the message [Request,req] to process pj . A

message [Request,req] is of type \Request" and

contains the value req. We assume that messages

are uniquely identi�ed. In many cases, servers ac-

knowledge receipt of messages. We assume that

the receiver of an acknowledgment message can

correlate it with the message being acknowledged.

This can be achieved by appropriate tagging of

acknowledgment messages. However, to simplify

the presentation, we do not describe this tagging

and correlation in our protocol. The statement

\receive [Request,req] from pi" captures the ac-

tion of waiting for a message of type \Request"

from process pi. When such a message arrives,

the variable req is assigned to the contents of the

message, and the variable pi is assigned to the

sender's identity. We also use the receive primi-

tive without a \from" part if we do not need to

assign the sender's identity to a variable.

Besides message passing, we also use vari-

ous synchronization primitives. We use \await"

statements to wait for an event to occur. Events

can be the reception of messages and detection

of failures. We use and and or combinators to

specify these event sets. Traditional control struc-

tures, such as branches and loops, are used with

their usual semantics. In addition, we also use

cobegin and coend to capture concurrent execu-

tions. The cobegin statement terminates when

any of the contained activities terminates. We

use \==" (resp. \!=") to compare values for

equality (resp. non-equality) and \:=" for assign-

ment. Finally, we abstract the suspicion informa-

tion through a predicate suspect(). The execution

of suspect(pi) by process pj at t returns true if and

only if pj suspects pi at time t.

13

Client f
Process replicas[n];

Int i = 1;

Result submit(Request req) f
Result res;

send [Request,req] to replicas[i];

await (receive [Result,res]) or

suspect(replicas[i]);

if(received [Result,res]) then

return res;

else

i = (i +1) mod n;

return failure;

g
g

Figure 7: Client-side algorithm

B.4 Algorithm Description

The client part of the algorithm consist of the

submit primitive described in Figure 7. The

submit primitive sends a request to one of the

replicas. It then waits for a result, and if it has

suspected the replica, it returns an error. The

primitive uses two \global" variables replicas

and i. The variable replicas contains a list of

the replicas. The variable i is the replica to con-

tact next time submit is executed.

All replicas execute the same algorithm, and

they all have a copy of the same state machine S.

Rather than describe invocation of state machine

actions directly, we assume that a state machine

has a method, called execute, that \dispatches"

a request. A request contains the name of an ac-

tion and a list of input parameters for the action.

One of these parameters is called round, and it

keeps track of the current execution round of the

request (the server-side algorithm increments this

parameter when a new round is initiated). Hav-

ing the round number as part of the parameters

ensures that commit and cancellation actions are

speci�c to a particular round. Thus, a cancel-

lation action issued for round number n cannot

cancel the action of round number n+ 1.

Round number one is initiated by a replica

p1, that receives a request from the client. This

replica starts executing the requested state ma-

chine action. If it does not fail, and is not sus-

pected to have failed, p1 executes the action to

completion and returns the result to the client. If

another replica pi suspects p1 to have failed, pi
will start round two as a continuation of round

one. Each round is owned by a single replica, and

a replica only takes ownership of rounds greater

than one if they suspect another owner to have

failed.

In Figure 8, we show the behavior of the main

part of a server replica. A server contains two

activities: a thread to receive and execute re-

quests and a thread to perform failure detec-

tion cleanup. Since the failure suspicion may be

false|the replica may be suspected, but has ac-

tually not failed|we need to coordinate the ac-

tions taken by cleaner threads and replicas during

request processing since they may execute in par-

allel.

Each replica has access to three arrays of con-

sensus objects. The owner-agreement array con-

tains consensus objects that control ownership

of particular rounds. This array has a total of

max-round objects. If a replica wishes to be-

come the owner of round i, it will try to propose

its own identity as the value of consensus object

number i in the array. The outcome-agreement

array contains consensus objects that implement

the required coordination on the outcome (com-

mit or abort) of undoable actions. Finally, the

result-agreement array contains consensus ob-

jects that ensure agreement on the result of idem-

potent actions.

Di�erent rounds can have a di�erent out-

come for the same undoable action. For ex-

ample, we may have a number of rounds in

which the outcome is abort followed by a single

round in which the outcome is commit. Sub-

sequent rounds will then not execute the ac-

tion once it has been successfully committed.

The outcome-agreement is indexed by requests,

which have the round number as part of their

parameters. The owner-agreement array is uni-

dimensional because there is one owner per round,

and result-agreement array is uni-dimensional

14

Server f
Consensus(Process,Request,Process)

owner-agreement[max-round];

Consensus(Result)

result-agreement[Request];

Consensus(Outcome,Result)

outcome-agreement[Request];

Result result-store[Request];

State-machine S;

cobegin

Request req; Process client;

while true f
receive [Request,req] from client;

req.round := 1;

this->process-request(req,client);

g
||

this->cleaner();

coend;

g

Server::process-request(Request r,Process cl)f
Process id,tmp-client; Request tmp-val;

(id,tmp-req,tmp-client) :=

owner-agreement[r.round].propose(my-id,r,cl);

if id == my-id then

if result-store[r] != nil then

res-val := result-store[r];

else

Result res-val := execute-until-success(r);

res-val := result-coordination(r,res-val);

result-store[r] := res-val;

if res-val != empty-result then

send [Result,res-val] to cl;

g

Server::cleaner()f
while true f

Process id,suspected-id,client; Request r;

if suspect(suspected-id) then

let last-round be the largest defined

index in owner-agreement;

(id,r,client) :=

owner-agreement[last-round].read();

if id == suspected-id then

res-val :=

result-coord(r,empty-result);

if res-val == empty-result then

r.round := last-round + 1;

this->process-request(r,client);

g
g

Figure 8: Main algorithm on server side

Result Server::result-coord(Request r,Value v)f
Result res-val; Outcome outcome;

if S.is-idempotent(r) then

res-val := result-agreement[r].propose(v);

if S.is-undoable(r) then

if val == empty-result then

(outcome,res-val) :=

outcome-agreement[r.round].

propose(abort,val);

else

(outcome,res-val) :=

outcome-agreement[r.round].

propose(commit,val);

if outcome == abort then

this->execute-until-success(cancel(r));

else

this->execute-until-success(commit(r));

return res-val;

g

Result Server::execute-until-success(Request r)f
while true f
Result res-val;

try res-val := S.execute(r);

catch(failure)

if S.is-idempotent(r) then

continue;

if S.is-undoable(r) then

this->execute-until-success(cancel(r));

continue;

return res-val;

g
g

Figure 9: Algorithms to execute and clean se-

quences of actions

15

because the result can be �xed the �rst time an

idempotent action is successfully executed.

The local array, result-store, ensures that

each replica only executes a round that owns once.

A replica stores the result of a round into this

array, and examines the array prior to execut-

ing any action. Due to the owner-agreement, a

replica cannot re-execute a round owned by an-

other replica.

The method called result-coordination in

Figure 8 implements the required coordination of

action results. The method can be used in two

\modes:" cleaning mode and execution mode. In

cleaning mode, the method is used to prevent a

suspected primary from enforcing its action re-

sults. In execution mode, it is used to propose a

value that is the result of a successfully executed

action. The parameter val determines the mode.

If it contains the value empty-result, we are in

cleaning mode. If it contains a regular value, that

value is used as the agreed upon result.

The method execute-until-success exe-

cutes a state machine action until it succeeds. For

idempotent actions, we simply keep reissuing the

action. For undoable actions, the procedure is

slightly more complicated. If an undoable action

fails, we apply its cancellation action. We obtain

the name of a cancellation action by using the

primitive cancel. This primitive takes a request

r, and returns a request that invokes the cancel-

lation action of r. We construct commit actions

in a similar manner by using the primitive called

commit.

B.5 Protocol Correctness

To discuss the correctness of our protocol, we

consider below, and separately, each of the prop-

erties of an x-able service.

Proposition (R1) The action submit is idempo-

tent.

Proof (sketch): Before returning any reply to

the client, every replica �rst stores the reply in the

consensus object result-agreement, and there

is one such object per request. By the properties

of consensus, even if a client invokes a request

several times, and on di�erent replicas, the same

reply is returned. 2

Proposition (R2) The client is eventually able

to execute submit successfully.

Proof (sketch): By the assumption of reliable

channels and the wait-free property of consensus,

no process remains inde�nitely blocked waiting

for a message or a consensus access. By the com-

pleteness property of the failure detector, every

crashed process is eventually suspected. As we

assume that some replica is correct, then even-

tually some correct process becomes primary and

that process is not suspected. Since we assume

that actions eventually succeed, then if the client

keeps invoking the action submit , it eventually

receives a reply back. 2

Proposition (R3) If the client submits a request

(a; iv), then the server-side history for (a; iv) is

either empty or it satis�es x-able(a;iv).

Proof (sketch): Consider a request that in-

vokes an idempotent action. The server-side his-

tory only contains events from executing this ac-

tion. The key requirement is that the history

must end with a successful execution of the ac-

tion. If this requirement is satis�ed, we can

eliminate the events from all previous executions,

whether they are successful or not. All histo-

ries produced by the algorithm does indeed sat-

isfy this requirement. We ensure this through

the result-agreement consensus objects. Es-

sentially, a replica only stores an action's result

in this array if it executed the action successfully.

Moreover, no replica retries an action whose re-

sult is stored in the array. Finally, a replica will

eventually store a result in the array. This is due

to the completion properties of actions and the

eventually perfect failure detection between repli-

cas.

For an undoable action, the server-side history

may contain events from executing the action as

well as events from executing its cancellation and

commit actions. Our algorithm executes an un-

doable action in a number of rounds, and it sat-

is�es the following properties. (1) A given round

will contain events from either a commit or can-

16

cellation action, but not both. Moreover, (2)

round number n will only be committed if round

n � 1 was aborted. And (3) the same round is

only executed once. Finally, (4) the algorithm will

eventually execute a commit round. These prop-

erties are due to use of the outcome-agreement

consensus objects, the result store, and the com-

pletion properties of actions and failure-detection.

In terms of reduction rules, each round of an un-

doable action can be analyzed separately: the

events from di�erent rounds will not match the

same pattern. This is because each round has a

unique input value (the round number is part of

the input value). An aborted round produces a

history with some events from the action itself as

well as its cancellation action. We can completely

remove the events from an aborted round using

the idempotence rule for cancellation actions, and

the rule for undoable actions. A committed round

contains events from the action as well as its com-

mit action. We can use the idempotence rule for

commit actions to reduce these events to a his-

tory that contains only a successful execution of

the action followed by a successful execution of

its commit action. Thus, we can remove all the

aborted rounds from the server-side history, and

the committed round can be reduced to an x-able

history. 2

Proposition (R4) If the client receives a reply

ov in response to a request (a; iv), and if the

server-side history for executing this request is h,

then (a; iv ; ov) 2 signature(h).

Proof (sketch): By the no-creation property

of reliable channels, a client can only receive a

reply that was computed by some replica. Con-

versely, a replica can only receive a request that

was sent by the client.

Proposition (R5) If the client successfully sub-

mits R1 : : : Rn and receives the reply R0
in re-

sponse to Rn, then R0
is in PossibleReply(R1:::Rn).

Proof (sketch): This property is trivially sat-

is�ed since we only consider a single request. 2

17

